Jun Takouda, Moeka Nakamura, Akane Murasaki, Waka Shimosako, Aoi Hidaka, Shino Honda, Susumu Tanimura, Fumito Ishibashi, Norihiko Kawasaki, Jun Ishihara, Tsutomu Fukuda, Kohsuke Takeda
Pyroptosis is a form of regulated cell death that promotes inflammation; it attracts much attention because its dysregulation leads to various inflammatory diseases. To help explore the precise mechanisms by which pyroptosis is regulated, in this study, we searched for chemical compounds that inhibit pyroptosis. From our original compound library, we identified azalamellarin N (AZL-N), a hexacyclic pyrrole alkaloid, as an inhibitor of pyroptosis induced by R837 (also called imiquimod), which is an agonist of the intracellular multiprotein complex nucleotide-binding and oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome. However, whereas the effect of AZL-N on R837-induced pyroptosis was relatively weak, AZL-N strongly inhibited pyroptosis induced by extracellular ATP or nigericin, which are different types of NLRP3 inflammasome agonists. This was in contrast with the results that MCC950, a well-established NLRP3 inhibitor, consistently inhibited pyroptosis irrespective of the type of stimulus. We also found that AZL-N inhibited activation of caspase-1 and apoptosis-associated speck-like proteins containing a caspase activation and recruitment domain (ASC), which are components of the NLRP3 inflammasome. Analysis of the structure-activity relationship revealed that a lactam ring of AZL-N, which has been shown to contribute to the strong binding of AZL-N to its known target protein kinases, is required for its inhibitory effects on pyroptosis. These results suggest that AZL-N inhibits pyroptosis by targeting molecule(s), which may be protein kinase(s), that act upstream of NLRP3 inflammasome activation, rather than by directly targeting the components of the NLRP3 inflammasome. Further identification and analysis of target molecule(s) of AZL-N will shed light on the regulatory mechanisms of pyroptosis, particularly those depending on proinflammatory stimuli.
{"title":"Identification of Azalamellarin N as a Pyroptosis Inhibitor.","authors":"Jun Takouda, Moeka Nakamura, Akane Murasaki, Waka Shimosako, Aoi Hidaka, Shino Honda, Susumu Tanimura, Fumito Ishibashi, Norihiko Kawasaki, Jun Ishihara, Tsutomu Fukuda, Kohsuke Takeda","doi":"10.1248/bpb.b23-00569","DOIUrl":"10.1248/bpb.b23-00569","url":null,"abstract":"<p><p>Pyroptosis is a form of regulated cell death that promotes inflammation; it attracts much attention because its dysregulation leads to various inflammatory diseases. To help explore the precise mechanisms by which pyroptosis is regulated, in this study, we searched for chemical compounds that inhibit pyroptosis. From our original compound library, we identified azalamellarin N (AZL-N), a hexacyclic pyrrole alkaloid, as an inhibitor of pyroptosis induced by R837 (also called imiquimod), which is an agonist of the intracellular multiprotein complex nucleotide-binding and oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome. However, whereas the effect of AZL-N on R837-induced pyroptosis was relatively weak, AZL-N strongly inhibited pyroptosis induced by extracellular ATP or nigericin, which are different types of NLRP3 inflammasome agonists. This was in contrast with the results that MCC950, a well-established NLRP3 inhibitor, consistently inhibited pyroptosis irrespective of the type of stimulus. We also found that AZL-N inhibited activation of caspase-1 and apoptosis-associated speck-like proteins containing a caspase activation and recruitment domain (ASC), which are components of the NLRP3 inflammasome. Analysis of the structure-activity relationship revealed that a lactam ring of AZL-N, which has been shown to contribute to the strong binding of AZL-N to its known target protein kinases, is required for its inhibitory effects on pyroptosis. These results suggest that AZL-N inhibits pyroptosis by targeting molecule(s), which may be protein kinase(s), that act upstream of NLRP3 inflammasome activation, rather than by directly targeting the components of the NLRP3 inflammasome. Further identification and analysis of target molecule(s) of AZL-N will shed light on the regulatory mechanisms of pyroptosis, particularly those depending on proinflammatory stimuli.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 1","pages":"28-36"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Most orally administered drugs exert their effects after being absorbed in the small intestine. Therefore, new drugs must undergo nonclinical pharmacokinetic evaluations in the small intestine. Enterocytes derived from human induced pluripotent stem cells (hiPSCs) are expected to be used in the evaluation system, as they reflect human intestinal characteristics more accurately; moreover, several differentiation protocols are available for these cells. However, enterocytes derived from hiPSCs have drawbacks such as time, cost, and lot-to-lot differences. Hence, to address these issues, we attempted to maintain hiPSC-derived intestinal stem cells (ISCs) that can differentiate into various intestinal cells by regulating various pathways. Although our previous attempt was partly successful, the drawbacks of elevated cost and complicated handling remained, because more than 10 factors (A 83-01, CHIR99021, epidermal growth factor, basic fibroblast growth factor, SB202190, nicotinamide, N-acetylcysteine, valproic acid, Wnt3a, R-spondin 1, and noggin) are needed to maintain ISCs. Therefore, in this study, we successfully maintained ISCs using only five factors, including growth factors. Moreover, we generated not only enterocytes but also intestinal organoids from the maintained ISCs. Thus, our novel findings provided a time-saving and cost-effective culture method for enterocytes derived from hiPSCs.
{"title":"New Maintenance Culture Method for Intestinal Stem Cells Derived from Human Induced Pluripotent Stem Cells.","authors":"Shota Mizuno, Yumi Jinnoh, Ayaka Arita, Shimeng Qiu, Tadahiro Hashita, Eisei Hori, Takahiro Iwao, Tamihide Matsunaga","doi":"10.1248/bpb.b23-00573","DOIUrl":"10.1248/bpb.b23-00573","url":null,"abstract":"<p><p>Most orally administered drugs exert their effects after being absorbed in the small intestine. Therefore, new drugs must undergo nonclinical pharmacokinetic evaluations in the small intestine. Enterocytes derived from human induced pluripotent stem cells (hiPSCs) are expected to be used in the evaluation system, as they reflect human intestinal characteristics more accurately; moreover, several differentiation protocols are available for these cells. However, enterocytes derived from hiPSCs have drawbacks such as time, cost, and lot-to-lot differences. Hence, to address these issues, we attempted to maintain hiPSC-derived intestinal stem cells (ISCs) that can differentiate into various intestinal cells by regulating various pathways. Although our previous attempt was partly successful, the drawbacks of elevated cost and complicated handling remained, because more than 10 factors (A 83-01, CHIR99021, epidermal growth factor, basic fibroblast growth factor, SB202190, nicotinamide, N-acetylcysteine, valproic acid, Wnt3a, R-spondin 1, and noggin) are needed to maintain ISCs. Therefore, in this study, we successfully maintained ISCs using only five factors, including growth factors. Moreover, we generated not only enterocytes but also intestinal organoids from the maintained ISCs. Thus, our novel findings provided a time-saving and cost-effective culture method for enterocytes derived from hiPSCs.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 1","pages":"120-129"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139085748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Severe infection pathogenicity is induced by processes such as pathogen exposure, immune cell activation, inflammatory cytokine production, and vascular hyperpermeability. Highly effective drugs, such as antipathogenic agents, steroids, and antibodies that suppress cytokine function, have been developed to treat the first three processes. However, these drugs cannot completely suppress severe infectious diseases, such as coronavirus disease 2019 (COVID-19). Therefore, developing novel drugs that inhibit vascular hyperpermeability is crucial. This review summarizes the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced vascular hyperpermeability and identifies inhibitors that increase endothelial cell (EC) junction-related proteins and determines their efficacy in COVID-19 and endotoxemia models. Analyzing the effects of SARS-CoV-2 on vascular permeability revealed that SARS-CoV-2 suppresses Claudin-5 (CLDN5) expression, which is responsible for adhesion between ECs, thereby increasing vascular permeability. Inhibiting CLDN5 function in mice induced vascular hyperpermeability and pulmonary edema. In contrast, Enhancing CLDN5 expression suppressed SARS-CoV-2-induced endothelial hyperpermeability, suggesting that SARS-CoV-2-induced vascular hyperpermeability contributes to pathological progression, which can be suppressed by upregulating EC junction proteins. Based on these results, we focused on Roundabout4 (Robo4), another EC-specific protein that stabilizes EC junctions. EC-specific Robo4 overexpression suppressed vascular hyperpermeability and mortality in lipopolysaccharide-treated mice. An ALK1 inhibitor (a molecule that increases Robo4 expression), suppressed vascular hyperpermeability and mortality in lipopolysaccharide- and SARS-CoV-2-treated mice. These results indicate that Robo4 expression-increasing drugs suppress vascular permeability and pathological phenotype in COVID-19 and endotoxemia models.
{"title":"Potential Therapeutic Strategies and Drugs That Target Vascular Permeability in Severe Infectious Diseases.","authors":"Yoshiaki Okada","doi":"10.1248/bpb.b24-00028","DOIUrl":"10.1248/bpb.b24-00028","url":null,"abstract":"<p><p>Severe infection pathogenicity is induced by processes such as pathogen exposure, immune cell activation, inflammatory cytokine production, and vascular hyperpermeability. Highly effective drugs, such as antipathogenic agents, steroids, and antibodies that suppress cytokine function, have been developed to treat the first three processes. However, these drugs cannot completely suppress severe infectious diseases, such as coronavirus disease 2019 (COVID-19). Therefore, developing novel drugs that inhibit vascular hyperpermeability is crucial. This review summarizes the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced vascular hyperpermeability and identifies inhibitors that increase endothelial cell (EC) junction-related proteins and determines their efficacy in COVID-19 and endotoxemia models. Analyzing the effects of SARS-CoV-2 on vascular permeability revealed that SARS-CoV-2 suppresses Claudin-5 (CLDN5) expression, which is responsible for adhesion between ECs, thereby increasing vascular permeability. Inhibiting CLDN5 function in mice induced vascular hyperpermeability and pulmonary edema. In contrast, Enhancing CLDN5 expression suppressed SARS-CoV-2-induced endothelial hyperpermeability, suggesting that SARS-CoV-2-induced vascular hyperpermeability contributes to pathological progression, which can be suppressed by upregulating EC junction proteins. Based on these results, we focused on Roundabout4 (Robo4), another EC-specific protein that stabilizes EC junctions. EC-specific Robo4 overexpression suppressed vascular hyperpermeability and mortality in lipopolysaccharide-treated mice. An ALK1 inhibitor (a molecule that increases Robo4 expression), suppressed vascular hyperpermeability and mortality in lipopolysaccharide- and SARS-CoV-2-treated mice. These results indicate that Robo4 expression-increasing drugs suppress vascular permeability and pathological phenotype in COVID-19 and endotoxemia models.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 3","pages":"549-555"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatsuya Ishikawa, Daisuke Uta, Hiroaki Okuda, Ilia Potapenko, Kiyomi Hori, Toshiaki Kume, Noriyuki Ozaki
The pain matrix, which includes several brain regions that respond to pain sensation, contribute to the development of chronic pain. Thus, it is essential to understand the mechanism of causing chronic pain in the pain matrix such as anterior cingulate (ACC), or primary somatosensory (S1) cortex. Recently, combined experiment with the behavior tests and in vivo calcium imaging using fiber photometry revealed the interaction between the neuronal function in deep brain regions of the pain matrix including ACC and the phenotype of chronic pain. However, it remains unclear whether this combined experiment can identify the interaction between neuronal activity in S1, which receive pain sensation, and pain behaviors such as hyperalgesia or allodynia. In this study, to examine whether the interaction between change of neuronal activity in S1 and hyperalgesia in hind paw before and after causing inflammatory pain was detected from same animal, the combined experiment of in vivo fiber photometry system and von Frey hairs test was applied. This combined experiment detected that amplitude of calcium responses in S1 neurons increased and the mechanical threshold of hind paw decreased from same animals which have an inflammatory pain. Moreover, we found that the values between amplitude of calcium responses and mechanical thresholds were shifted to negative correlation after causing inflammatory pain. Thus, the combined experiment with fiber photometry and the behavior tests has a possibility that can simultaneously consider the interaction between neuronal activity in pain matrix and pain induced behaviors and the effects of analgesics or pain treatments.
{"title":"Combined Experiments with in Vivo Fiber Photometry and Behavior Tests Can Facilitate the Measurement of Neuronal Activity in the Primary Somatosensory Cortex and Hyperalgesia in an Inflammatory Pain Mice Model.","authors":"Tatsuya Ishikawa, Daisuke Uta, Hiroaki Okuda, Ilia Potapenko, Kiyomi Hori, Toshiaki Kume, Noriyuki Ozaki","doi":"10.1248/bpb.b23-00700","DOIUrl":"10.1248/bpb.b23-00700","url":null,"abstract":"<p><p>The pain matrix, which includes several brain regions that respond to pain sensation, contribute to the development of chronic pain. Thus, it is essential to understand the mechanism of causing chronic pain in the pain matrix such as anterior cingulate (ACC), or primary somatosensory (S1) cortex. Recently, combined experiment with the behavior tests and in vivo calcium imaging using fiber photometry revealed the interaction between the neuronal function in deep brain regions of the pain matrix including ACC and the phenotype of chronic pain. However, it remains unclear whether this combined experiment can identify the interaction between neuronal activity in S1, which receive pain sensation, and pain behaviors such as hyperalgesia or allodynia. In this study, to examine whether the interaction between change of neuronal activity in S1 and hyperalgesia in hind paw before and after causing inflammatory pain was detected from same animal, the combined experiment of in vivo fiber photometry system and von Frey hairs test was applied. This combined experiment detected that amplitude of calcium responses in S1 neurons increased and the mechanical threshold of hind paw decreased from same animals which have an inflammatory pain. Moreover, we found that the values between amplitude of calcium responses and mechanical thresholds were shifted to negative correlation after causing inflammatory pain. Thus, the combined experiment with fiber photometry and the behavior tests has a possibility that can simultaneously consider the interaction between neuronal activity in pain matrix and pain induced behaviors and the effects of analgesics or pain treatments.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 3","pages":"591-599"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Studies showing that Panax ginseng promotes hair growth have largely been conducted using mice; there are few reports on how P. ginseng affects human hair growth. In particular, little is known about its effect on the telogen to anagen transition. To determine the effect of P. ginseng on human hair growth and the transition from the telogen to the anagen phase. The effects of P. ginseng extract (PGE) and the three major ginsenoside components, Rb1, Rg1, and Re, on the proliferation of human dermal papilla cells (DPCs) and human outer root sheath cells (ORSCs) were investigated. The effects of these compounds on the cell expression of bone morphogenetic protein 4 (BMP4), fibroblast growth factor 18 (FGF18) and Noggin were assessed by real-time PCR. The effect of PGE on hair-shaft elongation was determined in a human hair follicle organ-culture system. PGE and the three ginsenosides stimulated the proliferation of DPCs and ORSCs and suppressed BMP4 expression in DPCs but did not affect FGF18 expression in ORSCs and Noggin expression in DPCs. PGE stimulated hair-shaft growth. PGE and the ginsenosides Rb1, Rg1, and Re stimulate the transition from the telogen phase to anagen phase of the hair cycle by suppressing BMP4 expression in DPCs. These compounds might be useful for promoting the growth of human hair.
{"title":"Ginsenosides in Panax ginseng Extract Promote Anagen Transition by Suppressing BMP4 Expression and Promote Human Hair Growth by Stimulating Follicle-Cell Proliferation.","authors":"Tokuro Iwabuchi, Kazuki Ogura, Kenta Hagiwara, Shogo Ueno, Hiroaki Kitamura, Haruyo Yamanishi, Yuki Tsunekawa, Akinori Kiso","doi":"10.1248/bpb.b23-00276","DOIUrl":"10.1248/bpb.b23-00276","url":null,"abstract":"<p><p>Studies showing that Panax ginseng promotes hair growth have largely been conducted using mice; there are few reports on how P. ginseng affects human hair growth. In particular, little is known about its effect on the telogen to anagen transition. To determine the effect of P. ginseng on human hair growth and the transition from the telogen to the anagen phase. The effects of P. ginseng extract (PGE) and the three major ginsenoside components, Rb1, Rg1, and Re, on the proliferation of human dermal papilla cells (DPCs) and human outer root sheath cells (ORSCs) were investigated. The effects of these compounds on the cell expression of bone morphogenetic protein 4 (BMP4), fibroblast growth factor 18 (FGF18) and Noggin were assessed by real-time PCR. The effect of PGE on hair-shaft elongation was determined in a human hair follicle organ-culture system. PGE and the three ginsenosides stimulated the proliferation of DPCs and ORSCs and suppressed BMP4 expression in DPCs but did not affect FGF18 expression in ORSCs and Noggin expression in DPCs. PGE stimulated hair-shaft growth. PGE and the ginsenosides Rb1, Rg1, and Re stimulate the transition from the telogen phase to anagen phase of the hair cycle by suppressing BMP4 expression in DPCs. These compounds might be useful for promoting the growth of human hair.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 1","pages":"240-244"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139511859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin Liu, Tatsuaki Tagami, Koki Ogawa, Tetsuya Ozeki
Gold-based nanoparticles hold promise as functional nanomedicines, including in combination with a photothermal effect for cancer therapy in conjunction with chemotherapy. Here, we synthesized hollow gold nanoparticles (HGNPs) exhibiting efficient light absorption in the near-IR (NIR) region. Several synthesis conditions were explored and provided monodisperse HGNPs approximately 95-135 nm in diameter with a light absorbance range of approximately 600-720 nm. The HGNPs were hollow and the surface had protruding structures when prepared using high concentrations of HAuCl4. The simultaneous nucleation of a sacrificial AgCl template and Au nanoparticles may affect the resulting HGNPs. Diethyldithiocarbamate (DDTC) is metabolized from disulfiram and is a repurposed drug currently attracting attention. The chelation of DDTC with copper ion (DDTC-Cu) has been investigated for treating glioma, and here we confirmed the cytotoxic effect of DDTC-Cu towards rat C6 glioma cells in vitro. HGNPs alone were biocompatible and showed little cytotoxicity, whereas a mixture of DDTC-Cu and HGNPs was cytotoxic in a dose dependent manner. The temperature of HGNPs was increased by NIR-laser irradiation. The photothermal effect on HGNPs under NIR-laser irradiation resulted in cytotoxicity towards C6 cells and was dependent on the irradiation time. Photothermal therapy by HGNPs combined and DDTC-Cu was highly effective, suggesting that this combination approach hold promise as a future glioma therapy.
{"title":"Development of Hollow Gold Nanoparticles for Photothermal Therapy and Their Cytotoxic Effect on a Glioma Cell Line When Combined with Copper Diethyldithiocarbamate.","authors":"Jin Liu, Tatsuaki Tagami, Koki Ogawa, Tetsuya Ozeki","doi":"10.1248/bpb.b23-00789","DOIUrl":"10.1248/bpb.b23-00789","url":null,"abstract":"<p><p>Gold-based nanoparticles hold promise as functional nanomedicines, including in combination with a photothermal effect for cancer therapy in conjunction with chemotherapy. Here, we synthesized hollow gold nanoparticles (HGNPs) exhibiting efficient light absorption in the near-IR (NIR) region. Several synthesis conditions were explored and provided monodisperse HGNPs approximately 95-135 nm in diameter with a light absorbance range of approximately 600-720 nm. The HGNPs were hollow and the surface had protruding structures when prepared using high concentrations of HAuCl<sub>4</sub>. The simultaneous nucleation of a sacrificial AgCl template and Au nanoparticles may affect the resulting HGNPs. Diethyldithiocarbamate (DDTC) is metabolized from disulfiram and is a repurposed drug currently attracting attention. The chelation of DDTC with copper ion (DDTC-Cu) has been investigated for treating glioma, and here we confirmed the cytotoxic effect of DDTC-Cu towards rat C6 glioma cells in vitro. HGNPs alone were biocompatible and showed little cytotoxicity, whereas a mixture of DDTC-Cu and HGNPs was cytotoxic in a dose dependent manner. The temperature of HGNPs was increased by NIR-laser irradiation. The photothermal effect on HGNPs under NIR-laser irradiation resulted in cytotoxicity towards C6 cells and was dependent on the irradiation time. Photothermal therapy by HGNPs combined and DDTC-Cu was highly effective, suggesting that this combination approach hold promise as a future glioma therapy.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 1","pages":"272-278"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139545351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alzheimer's disease (AD) is accompanied by behavioral and psychological symptoms of dementia (BPSD), which is often alleviated by treatment with psychotropic drugs, such as antidepressants, hypnotics, and anxiolytics. If these drugs also inhibit acetylcholinesterase (AChE) activity, they may contribute to the suppression of AD progression by increasing brain acetylcholine concentrations. We tested the potential inhibitory effects of 31 antidepressants, 21 hypnotics, and 12 anxiolytics on recombinant human AChE (rhAChE) activity. At a concentration of 10-4 M, 22 antidepressants, 19 hypnotics, and 11 anxiolytics inhibited rhAChE activity by <20%, whereas nine antidepressants (clomipramine, amoxapine, setiptiline, nefazodone, paroxetine, sertraline, citalopram, escitalopram, and mirtazapine), two hypnotics (triazolam and brotizolam), and one anxiolytic (buspirone) inhibited rhAChE activity by ≥20%. Brotizolam (≥10-6 M) exhibited stronger inhibition of rhAChE activity than the other drugs, with its pIC50 value being 4.57 ± 0.02. The pIC50 values of the other drugs were <4, and they showed inhibitory activities toward rhAChE at the following concentrations: ≥3 × 10-6 M (sertraline and buspirone), ≥10-5 M (amoxapine, nefazodone, paroxetine, citalopram, escitalopram, mirtazapine, and triazolam), and ≥3 × 10-5 M (clomipramine and setiptiline). Among these drugs, only nefazodone inhibited rhAChE activity within the blood concentration range achievable at clinical doses. Therefore, nefazodone may not only improve the depressive symptoms of BPSD through its antidepressant actions but also slow the progression of cognitive symptoms of AD through its AChE inhibitory actions.
{"title":"Inhibitory Actions of Antidepressants, Hypnotics, and Anxiolytics on Recombinant Human Acetylcholinesterase Activity.","authors":"Keisuke Obara, Haruka Mori, Suzune Ihara, Kento Yoshioka, Yoshio Tanaka","doi":"10.1248/bpb.b23-00719","DOIUrl":"10.1248/bpb.b23-00719","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is accompanied by behavioral and psychological symptoms of dementia (BPSD), which is often alleviated by treatment with psychotropic drugs, such as antidepressants, hypnotics, and anxiolytics. If these drugs also inhibit acetylcholinesterase (AChE) activity, they may contribute to the suppression of AD progression by increasing brain acetylcholine concentrations. We tested the potential inhibitory effects of 31 antidepressants, 21 hypnotics, and 12 anxiolytics on recombinant human AChE (rhAChE) activity. At a concentration of 10<sup>-4</sup> M, 22 antidepressants, 19 hypnotics, and 11 anxiolytics inhibited rhAChE activity by <20%, whereas nine antidepressants (clomipramine, amoxapine, setiptiline, nefazodone, paroxetine, sertraline, citalopram, escitalopram, and mirtazapine), two hypnotics (triazolam and brotizolam), and one anxiolytic (buspirone) inhibited rhAChE activity by ≥20%. Brotizolam (≥10<sup>-6</sup> M) exhibited stronger inhibition of rhAChE activity than the other drugs, with its pIC<sub>50</sub> value being 4.57 ± 0.02. The pIC<sub>50</sub> values of the other drugs were <4, and they showed inhibitory activities toward rhAChE at the following concentrations: ≥3 × 10<sup>-6</sup> M (sertraline and buspirone), ≥10<sup>-5</sup> M (amoxapine, nefazodone, paroxetine, citalopram, escitalopram, mirtazapine, and triazolam), and ≥3 × 10<sup>-5</sup> M (clomipramine and setiptiline). Among these drugs, only nefazodone inhibited rhAChE activity within the blood concentration range achievable at clinical doses. Therefore, nefazodone may not only improve the depressive symptoms of BPSD through its antidepressant actions but also slow the progression of cognitive symptoms of AD through its AChE inhibitory actions.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 1","pages":"328-333"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139696917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Platelets have been reported to exert diverse actions besides hemostasis and thrombus formation in the body. However, whether platelets affect transporter activity remains to be determined. In this study, we examined the effects of platelets on the activity of amino acid transporter system A, which is known to be changed by various factors, and we clarified the mechanism by which platelets affect system A activity. Among system A subtypes, we found that sodium-coupled neutral amino acid transporter (SNAT) 4 played a central role in the transport activity of system A in HuH-7 human hepatoma cells. Interestingly, platelets showed a biphasic effect on system A activity: activated platelet supernatants (APS) including the granule contents released from platelets downregulated system A activity at lower concentrations and the downregulation was suppressed at higher concentrations. The downregulation was due to a decrease in the affinity of SNAT4 for its substrate and not a decrease in the SNAT4 abundance on the plasma membrane. In addition, APS did not decrease the expression level of SNAT4 mRNA. On the other hand, platelets did not affect system A activity when the platelet suspension was added to HuH-7 cells. These results indicate that platelets indirectly affect the transport activity of system A by releasing bioactive substances but do not directly affect it by binding to HuH-7 cells.
据报道,除了止血和血栓形成外,血小板还在体内发挥多种作用。然而,血小板是否会影响转运体的活性仍有待确定。本研究探讨了血小板对氨基酸转运体 A 系统活性的影响,并阐明了血小板影响 A 系统活性的机制。在 A 系统亚型中,我们发现钠偶联中性氨基酸转运体(SNAT)4 在 HuH-7 人肝癌细胞 A 系统转运活性中起着核心作用。有趣的是,血小板对系统 A 的活性有双相影响:活化血小板上清液(APS)(包括血小板释放的颗粒内容物)在较低浓度时会下调系统 A 的活性,而在较高浓度时这种下调被抑制。下调的原因是 SNAT4 对其底物的亲和力下降,而不是质膜上 SNAT4 丰度的下降。此外,APS 并未降低 SNAT4 mRNA 的表达水平。另一方面,当血小板悬浮液加入 HuH-7 细胞时,血小板并不影响 A 系统的活性。这些结果表明,血小板通过释放生物活性物质间接影响 A 系统的转运活性,但不会通过与 HuH-7 细胞结合直接影响 A 系统的转运活性。
{"title":"Platelets Affect the Activity of Amino Acid Transporter SNAT4 in HuH-7 Human Hepatoma Cells.","authors":"Hitoshi Kashiwagi, Yuki Sato, Shunsuke Nashimoto, Shungo Imai, Yoh Takekuma, Mitsuru Sugawara","doi":"10.1248/bpb.b23-00904","DOIUrl":"10.1248/bpb.b23-00904","url":null,"abstract":"<p><p>Platelets have been reported to exert diverse actions besides hemostasis and thrombus formation in the body. However, whether platelets affect transporter activity remains to be determined. In this study, we examined the effects of platelets on the activity of amino acid transporter system A, which is known to be changed by various factors, and we clarified the mechanism by which platelets affect system A activity. Among system A subtypes, we found that sodium-coupled neutral amino acid transporter (SNAT) 4 played a central role in the transport activity of system A in HuH-7 human hepatoma cells. Interestingly, platelets showed a biphasic effect on system A activity: activated platelet supernatants (APS) including the granule contents released from platelets downregulated system A activity at lower concentrations and the downregulation was suppressed at higher concentrations. The downregulation was due to a decrease in the affinity of SNAT4 for its substrate and not a decrease in the SNAT4 abundance on the plasma membrane. In addition, APS did not decrease the expression level of SNAT4 mRNA. On the other hand, platelets did not affect system A activity when the platelet suspension was added to HuH-7 cells. These results indicate that platelets indirectly affect the transport activity of system A by releasing bioactive substances but do not directly affect it by binding to HuH-7 cells.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 3","pages":"652-659"},"PeriodicalIF":2.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The oleo-gum-resin of Boswellia serrata, an Ayurvedic herb for the treatment of chronic inflammatory diseases, contains both volatile (terpenes) and nonvolatile (boswellic acids) molecules as responsible for its bioactivity. The present randomized, double-blinded, placebo-controlled, crossover study evaluated the human pharmacokinetics of a 'natural' hybrid-hydrogel formulation of a unique full-spectrum boswellia extract (BFQ-20) (standardized for both volatile and nonvolatile bioactives) in comparison with unformulated extract (U-BE), for the first time. Mass spectrometry coupled with LC (UPLC-MS/MS) and gas chromatography (GC-MS/MS) measurements of the plasma concentration of boswellic acids and α-thujene at different post-administration time points followed by a single dose (400 mg) of U-BE and BFQ-20, to healthy volunteers (n = 16), offered 4-fold enhancement in the overall bioavailability of boswellic acids from BFQ-20, [area under the curve (AUC) (BFQ-20) = 9484.17 ± 767.82 ng * h/mL vs. AUC (U-BE) = 2365.87 ± 346.89 ng * h/mL], with the absorption maximum (Tmax) at 6.3 h post-administration and elimination half-life (T1/2) of 15.5 h (p < 0.001). While plasma α-thujene was not detectable upon U-BE administration, BFQ-20 provided significant absorption, [AUC (BFQ-20): 298.60 ± 35.48 ng * h/mL; Cmax: 68.80 ± 18.60 ng/mL; Tmax: 4.12 ± 0.38 h; T1/2: 16.24 ± 1.12 h]. Further investigation of the anti-inflammatory effect revealed 70.5% inhibition of paw edema in rats compared to 38.0% for U-BE. In summary, the natural self-emulsifying reversible hybrid-hydrogel (N'SERH) formulation of boswellia extract using fenugreek mucilage (FenuMat®) significantly increased the solubility (58-fold), stability, and bioavailability of both the volatile and non-volatile bioactives which in turn improved the anti-inflammatory efficacy of Boswellia extract.
{"title":"Pharmacokinetics of a Natural Self-emulsifying Reversible Hybrid-Hydrogel (N'SERH) Formulation of Full-Spectrum Boswellia serrata Oleo-Gum Resin Extract: Randomised Double-Blinded Placebo-Controlled Crossover Study.","authors":"Ashil Joseph, Maliakkal Balakrishnan Abhilash, Johannah Natinga Mulakal, Krishnakumar Illathu Madhavamenon","doi":"10.1248/bpb.b24-00306","DOIUrl":"10.1248/bpb.b24-00306","url":null,"abstract":"<p><p>The oleo-gum-resin of Boswellia serrata, an Ayurvedic herb for the treatment of chronic inflammatory diseases, contains both volatile (terpenes) and nonvolatile (boswellic acids) molecules as responsible for its bioactivity. The present randomized, double-blinded, placebo-controlled, crossover study evaluated the human pharmacokinetics of a 'natural' hybrid-hydrogel formulation of a unique full-spectrum boswellia extract (BFQ-20) (standardized for both volatile and nonvolatile bioactives) in comparison with unformulated extract (U-BE), for the first time. Mass spectrometry coupled with LC (UPLC-MS/MS) and gas chromatography (GC-MS/MS) measurements of the plasma concentration of boswellic acids and α-thujene at different post-administration time points followed by a single dose (400 mg) of U-BE and BFQ-20, to healthy volunteers (n = 16), offered 4-fold enhancement in the overall bioavailability of boswellic acids from BFQ-20, [area under the curve (AUC) (BFQ-20) = 9484.17 ± 767.82 ng * h/mL vs. AUC (U-BE) = 2365.87 ± 346.89 ng * h/mL], with the absorption maximum (T<sub>max</sub>) at 6.3 h post-administration and elimination half-life (T<sub>1/2</sub>) of 15.5 h (p < 0.001). While plasma α-thujene was not detectable upon U-BE administration, BFQ-20 provided significant absorption, [AUC (BFQ-20): 298.60 ± 35.48 ng * h/mL; C<sub>max</sub>: 68.80 ± 18.60 ng/mL; T<sub>max</sub>: 4.12 ± 0.38 h; T<sub>1/2</sub>: 16.24 ± 1.12 h]. Further investigation of the anti-inflammatory effect revealed 70.5% inhibition of paw edema in rats compared to 38.0% for U-BE. In summary, the natural self-emulsifying reversible hybrid-hydrogel (N'SERH) formulation of boswellia extract using fenugreek mucilage (FenuMat<sup>®</sup>) significantly increased the solubility (58-fold), stability, and bioavailability of both the volatile and non-volatile bioactives which in turn improved the anti-inflammatory efficacy of Boswellia extract.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"47 9","pages":"1583-1593"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}