首页 > 最新文献

Biofabrication最新文献

英文 中文
A micro-lung chip with macrophages for targeted anti-fibrotic therapy.
IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-25 DOI: 10.1088/1758-5090/adb338
Jingjing Xia, Ruming Dong, Yongcong Fang, Jiabin Guo, Zhuo Xiong, Ting Zhang, Wei Sun

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. Macrophages are implicated in the fibrotic process, but exhibit remarkable plasticity in the activated immune environmentin vivo, presenting significant challenges as therapeutic targets. To explore the influence of macrophages on IPF and develop macrophage-targeted therapies, we engineered a micro-lung chip with a lung epithelium-interstitium tissue unit to establish a controlled immune environment containing only macrophages. We discovered that macrophages exacerbated inflammation and fibrosis by comparing microchips treated with bleomycin (BLM) in the presence and absence of macrophages. Based on the duration of BLM treatment, we established pathological models corresponding to inflammation and fibrosis stages. Transcriptome analysis revealed that activation of the PI3K-AKT signalling pathway facilitates the transition from inflammation to fibrosis. However, LY294002, a PI3K inhibitor, not only suppressed fibrosis and decreased the accumulation of M2 macrophages but also intensified the severity of inflammation. These findings suggest that macrophages play a pivotal role in the potential development at the tissue level. The micro-lung chip co-cultured with macrophages holds significant potential for exploring the pathological progression of IPF and elucidating the mechanisms of anti-fibrotic drugs.

{"title":"A micro-lung chip with macrophages for targeted anti-fibrotic therapy.","authors":"Jingjing Xia, Ruming Dong, Yongcong Fang, Jiabin Guo, Zhuo Xiong, Ting Zhang, Wei Sun","doi":"10.1088/1758-5090/adb338","DOIUrl":"10.1088/1758-5090/adb338","url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. Macrophages are implicated in the fibrotic process, but exhibit remarkable plasticity in the activated immune environment<i>in vivo</i>, presenting significant challenges as therapeutic targets. To explore the influence of macrophages on IPF and develop macrophage-targeted therapies, we engineered a micro-lung chip with a lung epithelium-interstitium tissue unit to establish a controlled immune environment containing only macrophages. We discovered that macrophages exacerbated inflammation and fibrosis by comparing microchips treated with bleomycin (BLM) in the presence and absence of macrophages. Based on the duration of BLM treatment, we established pathological models corresponding to inflammation and fibrosis stages. Transcriptome analysis revealed that activation of the PI3K-AKT signalling pathway facilitates the transition from inflammation to fibrosis. However, LY294002, a PI3K inhibitor, not only suppressed fibrosis and decreased the accumulation of M2 macrophages but also intensified the severity of inflammation. These findings suggest that macrophages play a pivotal role in the potential development at the tissue level. The micro-lung chip co-cultured with macrophages holds significant potential for exploring the pathological progression of IPF and elucidating the mechanisms of anti-fibrotic drugs.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143363552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Support-less 3D bioceramic/extracellular matrix printing in sanitizer-based hydrogel for bone tissue engineering.
IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-21 DOI: 10.1088/1758-5090/adb4a3
Siwi Setya Utami, Naren Raja, Jueun Kim, Imam Akbar Sutejo, Honghyun Park, Aram Sung, Changwoo Gal, Hui-Suk Yun, Yeong-Jin Choi

To meet the increasing demand for bone scaffolds, advancements in 3D printing have significantly impacted bone tissue engineering. However, the materials used must closely mimic the biological components and structural characteristics of natural bone tissue. Additionally, constructing complex, oblique structures presents considerable challenges. To address these issues, we explored 3D bioceramic printing using a sanitizer-based hydrogel. Collagen, a primary component of the bone extracellular matrix (ECM), was combined with alpha-tricalcium phosphate (α-TCP) to create the bioceramic ink. The sanitizer-based hydrogel was chosen as the gel bath due to its carbopol content, which provides hydrogel-like support, and ethanol, which coagulates collagen and maintains the integrity of the 3D-printed structure. Theα-TCP/collagen bioceramic ink was printed within the sanitizer-based hydrogel, then collected, immersed in ethanol, and finally submerged in phosphate-buffer saline to initiate a self-setting reaction that convertedα-TCP into calcium-deficient hydroxyapatite. The results demonstrated that complex ceramic/ECM structures could be successfully printed in the sanitizer bath, exhibiting excellent mechanical characteristics. Additionally, scaffolds printed in the sanitizer bath showed higher levels of cell growth and osteogenic activity compared to those produced with onlyα-TCP in an open-air environment. This bioceramic printing approach has a strong potential for constructing complex scaffolds with enhanced osteogenic potential for bone regeneration.

{"title":"Support-less 3D bioceramic/extracellular matrix printing in sanitizer-based hydrogel for bone tissue engineering.","authors":"Siwi Setya Utami, Naren Raja, Jueun Kim, Imam Akbar Sutejo, Honghyun Park, Aram Sung, Changwoo Gal, Hui-Suk Yun, Yeong-Jin Choi","doi":"10.1088/1758-5090/adb4a3","DOIUrl":"10.1088/1758-5090/adb4a3","url":null,"abstract":"<p><p>To meet the increasing demand for bone scaffolds, advancements in 3D printing have significantly impacted bone tissue engineering. However, the materials used must closely mimic the biological components and structural characteristics of natural bone tissue. Additionally, constructing complex, oblique structures presents considerable challenges. To address these issues, we explored 3D bioceramic printing using a sanitizer-based hydrogel. Collagen, a primary component of the bone extracellular matrix (ECM), was combined with alpha-tricalcium phosphate (<i>α</i>-TCP) to create the bioceramic ink. The sanitizer-based hydrogel was chosen as the gel bath due to its carbopol content, which provides hydrogel-like support, and ethanol, which coagulates collagen and maintains the integrity of the 3D-printed structure. The<i>α</i>-TCP/collagen bioceramic ink was printed within the sanitizer-based hydrogel, then collected, immersed in ethanol, and finally submerged in phosphate-buffer saline to initiate a self-setting reaction that converted<i>α</i>-TCP into calcium-deficient hydroxyapatite. The results demonstrated that complex ceramic/ECM structures could be successfully printed in the sanitizer bath, exhibiting excellent mechanical characteristics. Additionally, scaffolds printed in the sanitizer bath showed higher levels of cell growth and osteogenic activity compared to those produced with only<i>α</i>-TCP in an open-air environment. This bioceramic printing approach has a strong potential for constructing complex scaffolds with enhanced osteogenic potential for bone regeneration.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-based multi-material bioprinting of vascularised adipose tissue for breast fatty tissue engineering.
IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-20 DOI: 10.1088/1758-5090/adb890
Nina Hedemann, Alexander Thomas, Nils Tribian, Anna-Klara Amler, Sandra Krueger, David Holthaus, Patricia Huebbe, Inken Floerkemeier, Joerg-Paul Weimer, Nicolai Maass, Lutz Kloke, Dirk O Bauerschlag, Marion Tina van Mackelenbergh

Reconstructive surgery following breast cancer ablation is a surgical gold standard and of increasing importance, but current options comprising autogenous fatty tissue transfer and artificial soft tissue implants are inferior. With the advent of powerful biofabrication technologies like bioprinting, researchers for the first time have the tools to engineer life-like tissues with the ultimate goal of clinical application. In this work, we apply multi-material stereolithographic bioprinting together with a novel sacrificial biomaterial system to engineer complex fatty tissue constructs. Biomaterials, cellular composition and cultivation conditions of these constructs were designed to enable in vitro creation of vascularised fatty tissue. Cells within the constructs showed an overall good survival (>93%) indicated by Calcein-AM staining for living cells and cytotoxicity levels below 7 % (PI-positivity), which even decreased during The constructs showed highay significant increase in cellular viability and activity overthe entire cultivation the culture period of 27 days. Bioprinted aAdipose-derived stem cells were successfully differentiated into adipocytes in situ and expressed PPARy as well as FABP4. Additionally, secretion of adipokines leptin and adiponectin into culture supernatants increased significantly. Endothelial cells vascularised the constructs, creating macro- and microvascular structures within the printed channels and extending beyond with culture time. Multi-modal imaging revealed dynamic cell activitymigration of cells within the bioprinted constructs and signs of progressing maturation towards fatty tissue. Moreover, cells invaded into the surrounding hydrogel. The engineered fatty tissue constructs could serve as a base to develop patient-specific tissue building blocks with the final goal to achieve an all-natural reconstruction of the breast.

{"title":"Light-based multi-material bioprinting of vascularised adipose tissue for breast fatty tissue engineering.","authors":"Nina Hedemann, Alexander Thomas, Nils Tribian, Anna-Klara Amler, Sandra Krueger, David Holthaus, Patricia Huebbe, Inken Floerkemeier, Joerg-Paul Weimer, Nicolai Maass, Lutz Kloke, Dirk O Bauerschlag, Marion Tina van Mackelenbergh","doi":"10.1088/1758-5090/adb890","DOIUrl":"https://doi.org/10.1088/1758-5090/adb890","url":null,"abstract":"<p><p>Reconstructive surgery following breast cancer ablation is a surgical gold standard and of increasing importance, but current options comprising autogenous fatty tissue transfer and artificial soft tissue implants are inferior. With the advent of powerful biofabrication technologies like bioprinting, researchers for the first time have the tools to engineer life-like tissues with the ultimate goal of clinical application. In this work, we apply multi-material stereolithographic bioprinting together with a novel sacrificial biomaterial system to engineer complex fatty tissue constructs. Biomaterials, cellular composition and cultivation conditions of these constructs were designed to enable in vitro creation of vascularised fatty tissue. Cells within the constructs showed an overall good survival (>93%) indicated by Calcein-AM staining for living cells and cytotoxicity levels below 7 % (PI-positivity), which even decreased during The constructs showed highay significant increase in cellular viability and activity overthe entire cultivation the culture period of 27 days. Bioprinted aAdipose-derived stem cells were successfully differentiated into adipocytes in situ and expressed PPARy as well as FABP4. Additionally, secretion of adipokines leptin and adiponectin into culture supernatants increased significantly. Endothelial cells vascularised the constructs, creating macro- and microvascular structures within the printed channels and extending beyond with culture time. Multi-modal imaging revealed dynamic cell activitymigration of cells within the bioprinted constructs and signs of progressing maturation towards fatty tissue. Moreover, cells invaded into the surrounding hydrogel. The engineered fatty tissue constructs could serve as a base to develop patient-specific tissue building blocks with the final goal to achieve an all-natural reconstruction of the breast.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of crop by-products into bio-based dental materials: advancements and prospects. 农作物副产品转化为生物基牙科材料:进展与展望。
IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-18 DOI: 10.1088/1758-5090/ada736
Marcin Mikulewicz, Katarzyna Chojnacka

The objective of this review is to deepen understanding and emphasize scientific and technological progress in the transformation of crop by-products into bio-based dental materials. Amid heightened environmental sustainability consciousness, various sectors including dentistry have achieved novel advancements by utilizing bio-based materials from crop by-products for dental restorations. This paper provides a thorough review of the extraction, processing, and application of natural polymers, biopolymers, and bio-based mixtures at both the macroscopic and nanoscopic scales, with a focus on their contextualization within dental practices. The performance and efficacy of bio-resins, bio-sourced monomers, and biopolymers derived from these resources were scrutinized and compared with traditional petroleum-based counterparts. This study addresses the recycling and industrial valorization of bio-based dental materials, emphasizing their potential to foster a circular economy in dentistry.

本文综述的目的是加深对农作物副产品转化为生物基牙科材料的认识和强调科学技术的进展。随着环境可持续性意识的增强,包括牙科在内的各个部门通过利用农作物副产品的生物基材料进行牙齿修复取得了新的进展。本文在宏观和纳米尺度上对天然聚合物、生物聚合物和生物基混合物的提取、加工和应用进行了全面的综述,重点介绍了它们在牙科实践中的应用情况。研究人员仔细研究了从这些资源中提取的生物树脂、生物源单体和生物聚合物的性能和功效,并将其与传统的石油基聚合物进行了比较。本研究解决了生物基牙科材料的回收和工业价值,强调了它们在牙科领域促进循环经济的潜力。
{"title":"Valorization of crop by-products into bio-based dental materials: advancements and prospects.","authors":"Marcin Mikulewicz, Katarzyna Chojnacka","doi":"10.1088/1758-5090/ada736","DOIUrl":"10.1088/1758-5090/ada736","url":null,"abstract":"<p><p>The objective of this review is to deepen understanding and emphasize scientific and technological progress in the transformation of crop by-products into bio-based dental materials. Amid heightened environmental sustainability consciousness, various sectors including dentistry have achieved novel advancements by utilizing bio-based materials from crop by-products for dental restorations. This paper provides a thorough review of the extraction, processing, and application of natural polymers, biopolymers, and bio-based mixtures at both the macroscopic and nanoscopic scales, with a focus on their contextualization within dental practices. The performance and efficacy of bio-resins, bio-sourced monomers, and biopolymers derived from these resources were scrutinized and compared with traditional petroleum-based counterparts. This study addresses the recycling and industrial valorization of bio-based dental materials, emphasizing their potential to foster a circular economy in dentistry.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in biofabrication and simulation strategies for gut-on-a-chip.
IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-18 DOI: 10.1088/1758-5090/adb7c1
Ke Wang, Yushen Wang, Junlei Han, Zhixiang Liang, Wenhong Zhang, Xinyu Li, Jun Chen, Li Wang

Biomimetic gut models show promise for enhancing our understanding of intestinal disorder pathogenesis and accelerating therapeutic strategy development. Current in vitro models predominantly comprise traditional static cell culture and animal models. Static cell culture lacks the precise control of the complex microenvironment governing human intestinal function. Animal models provide greater microenvironment complexity but fail to accurately replicate human physiological conditions due to interspecies differences. As the available models do not accurately reflect the microphysiological environment and functions of the human intestine, their applications are limited. An optimal approach to intestinal modelling is yet to be developed, but the field will probably benefit from advances in biofabrication techniques. This review highlights biofabrication strategies for constructing biomimetic intestinal models and research approaches for simulating key intestinal physiological features. We also discuss potential biomedical applications of these models and provide an outlook on multi-scale intestinal modeling.

{"title":"Advances in biofabrication and simulation strategies for gut-on-a-chip.","authors":"Ke Wang, Yushen Wang, Junlei Han, Zhixiang Liang, Wenhong Zhang, Xinyu Li, Jun Chen, Li Wang","doi":"10.1088/1758-5090/adb7c1","DOIUrl":"https://doi.org/10.1088/1758-5090/adb7c1","url":null,"abstract":"<p><p>Biomimetic gut models show promise for enhancing our understanding of intestinal disorder pathogenesis and accelerating therapeutic strategy development. Current in vitro models predominantly comprise traditional static cell culture and animal models. Static cell culture lacks the precise control of the complex microenvironment governing human intestinal function. Animal models provide greater microenvironment complexity but fail to accurately replicate human physiological conditions due to interspecies differences. As the available models do not accurately reflect the microphysiological environment and functions of the human intestine, their applications are limited. An optimal approach to intestinal modelling is yet to be developed, but the field will probably benefit from advances in biofabrication techniques. This review highlights biofabrication strategies for constructing biomimetic intestinal models and research approaches for simulating key intestinal physiological features. We also discuss potential biomedical applications of these models and provide an outlook on multi-scale intestinal modeling.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational design of 3D-printed scaffolds for breast tissue engineering using structural analysis.
IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-17 DOI: 10.1088/1758-5090/adaf5a
Sharon Kracoff-Sella, Idit Goldfracht, Asaf Silverstein, Shira Landau, Lior Debbi, Rita Beckerman, Hagit Shoyhat, Yifat Herman-Bachinsky, Gali Guterman-Ram, Inbal Michael, Rita Shuhmaher, Janette Zavin, Ronen Ben Horin, Dana Egozi, Shulamit Levenberg

Best cosmetic outcomes of breast reconstruction using tissue engineering techniques rely on the scaffold architecture and material, which are currently both to be determined. This study suggests an approach for a rational design of breast-shaped scaffold architecture, in which structural analysis is implemented to predict its stiffness and adjust it to that of the native tissue. This approach can help achieve the goal of optimal scaffold architecture for breast tissue engineering. Based on specifications defined in a preliminary implantation study of a non-rationally designed scaffold, and using analytical modeling and finite element analysis, we rationally designed a polycaprolactone made, 3D-printed, highly porous, breast-shaped scaffold with a stiffness similar to the breast adipose tissue. This scaffold had an architecture of a double-shelled dome connected by pillars, with no bottom to allow direct contact of its fat graft with the host's blood vessels (shelled hemisphere adaptive design (SHAD)). To demonstrate the potential of the SHAD scaffold in breast tissue engineering, a proof-of-concept study was performed, in which SHAD scaffolds were embedded with human adipose derived mesenchymal stem cells, isolated from lipoaspirates, and implanted in nod-scid-gamma mouse model with a delayed fat graft injection. After 4 weeks of implantation, the SHAD implants were vascularized with a viable fat graft, indicating the suitability of the SHAD scaffold for breast tissue engineering.

{"title":"Rational design of 3D-printed scaffolds for breast tissue engineering using structural analysis.","authors":"Sharon Kracoff-Sella, Idit Goldfracht, Asaf Silverstein, Shira Landau, Lior Debbi, Rita Beckerman, Hagit Shoyhat, Yifat Herman-Bachinsky, Gali Guterman-Ram, Inbal Michael, Rita Shuhmaher, Janette Zavin, Ronen Ben Horin, Dana Egozi, Shulamit Levenberg","doi":"10.1088/1758-5090/adaf5a","DOIUrl":"10.1088/1758-5090/adaf5a","url":null,"abstract":"<p><p>Best cosmetic outcomes of breast reconstruction using tissue engineering techniques rely on the scaffold architecture and material, which are currently both to be determined. This study suggests an approach for a rational design of breast-shaped scaffold architecture, in which structural analysis is implemented to predict its stiffness and adjust it to that of the native tissue. This approach can help achieve the goal of optimal scaffold architecture for breast tissue engineering. Based on specifications defined in a preliminary implantation study of a non-rationally designed scaffold, and using analytical modeling and finite element analysis, we rationally designed a polycaprolactone made, 3D-printed, highly porous, breast-shaped scaffold with a stiffness similar to the breast adipose tissue. This scaffold had an architecture of a double-shelled dome connected by pillars, with no bottom to allow direct contact of its fat graft with the host's blood vessels (shelled hemisphere adaptive design (SHAD)). To demonstrate the potential of the SHAD scaffold in breast tissue engineering, a proof-of-concept study was performed, in which SHAD scaffolds were embedded with human adipose derived mesenchymal stem cells, isolated from lipoaspirates, and implanted in nod-scid-gamma mouse model with a delayed fat graft injection. After 4 weeks of implantation, the SHAD implants were vascularized with a viable fat graft, indicating the suitability of the SHAD scaffold for breast tissue engineering.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergizing bioprinting and 3D cell culture to enhance tissue formation in printed synthetic constructs.
IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-14 DOI: 10.1088/1758-5090/adae37
Daniel Günther, Cédric Bergerbit, Ary Marsee, Sitara Vedaraman, Alba Pueyo Moliner, Céline Bastard, Guy Eelen, José Luis Gerardo Nava, Mieke Dewerchin, Peter Carmeliet, Rafael Kramann, Kerstin Schneeberger, Bart Spee, Laura De Laporte

Bioprinting is currently the most promising method to biofabricate complex tissuesin vitrowith the potential to transform the future of organ transplantation and drug discovery. Efforts to create such tissues are, however, almost exclusively based on animal-derived materials, such as gelatin methacryloyl, which have demonstrated efficacy in bioprinting of complex tissues. While these materials are already used in clinical applications, uncertainty about their safety still remains due to their animal origin. Alternatively, synthetic bioinks have been developed that match the printability of natural bioinks but lack their biological complexity, and thereby often fail to support cell growth and facilitate tissue formation. Additionally, most synthetic materials do not meet the mechanical demands of bioprint stable constructs while providing a suitable environment for cells to grow, limiting the number of available bioinks. To bridge this gap and synergize bioprinting and 3D cell culture, we developed a polyethylene glycol-based bioink system to promote the growth and spreading of cell spheroids that consist of human primary endothelial cells and fibroblasts. The 3D bioprinted centimeter-scale constructs have a high shape fidelity and accelerated softening to provide sufficient space for cells to grow. Adjusting the rate of degradability, induced by the integration of ester-functionalized crosslinkers in addition to protease cleavable crosslinkers into the hydrogel network, improves the growth of spheroids in larger printed hydrogel constructs containing an interconnected channel structure. The perfusable constructs enable extensive spheroid sprouting and the formation of a cellular network upon fusion of sprouts as initial steps toward tissue formation with the potential for clinical translation.

生物打印是目前最有前途的体外生物制造复杂组织的方法,有可能改变器官移植和药物研发的未来。然而,创建此类组织的努力几乎完全基于动物源性材料,如明胶甲基丙烯酰,这些材料在复杂组织的生物打印中已被证明有效。虽然这些材料已用于临床应用,但由于其动物来源,其安全性仍存在不确定性。另一种方法是开发合成生物墨水,这种墨水具有天然生物墨水的打印性,但缺乏生物复杂性,因此往往无法支持细胞生长和促进组织形成。此外,大多数合成材料无法满足生物打印稳定构建物的机械要求,同时也无法为细胞生长提供合适的环境,从而限制了可用生物墨水的数量。为了弥合这一差距并使生物打印和三维细胞培养协同增效,我们开发了一种基于 PEG 的生物墨水系统,以促进由人类原代内皮细胞和成纤维细胞组成的细胞球的生长和扩散。三维生物打印的厘米级构造物具有高形状保真度和加速软化的特点,为细胞生长提供了足够的空间。在水凝胶网络中除了加入可被蛋白酶分解的交联剂外,还加入了酯官能化交联剂,从而调整了降解率,改善了含有互连通道结构的较大型打印水凝胶构建体中球体的生长。这种可灌注的构建物能使球体广泛萌发,并在萌发融合后形成细胞网络,这是组织形成的初始步骤,具有临床转化的潜力。
{"title":"Synergizing bioprinting and 3D cell culture to enhance tissue formation in printed synthetic constructs.","authors":"Daniel Günther, Cédric Bergerbit, Ary Marsee, Sitara Vedaraman, Alba Pueyo Moliner, Céline Bastard, Guy Eelen, José Luis Gerardo Nava, Mieke Dewerchin, Peter Carmeliet, Rafael Kramann, Kerstin Schneeberger, Bart Spee, Laura De Laporte","doi":"10.1088/1758-5090/adae37","DOIUrl":"10.1088/1758-5090/adae37","url":null,"abstract":"<p><p>Bioprinting is currently the most promising method to biofabricate complex tissues<i>in vitro</i>with the potential to transform the future of organ transplantation and drug discovery. Efforts to create such tissues are, however, almost exclusively based on animal-derived materials, such as gelatin methacryloyl, which have demonstrated efficacy in bioprinting of complex tissues. While these materials are already used in clinical applications, uncertainty about their safety still remains due to their animal origin. Alternatively, synthetic bioinks have been developed that match the printability of natural bioinks but lack their biological complexity, and thereby often fail to support cell growth and facilitate tissue formation. Additionally, most synthetic materials do not meet the mechanical demands of bioprint stable constructs while providing a suitable environment for cells to grow, limiting the number of available bioinks. To bridge this gap and synergize bioprinting and 3D cell culture, we developed a polyethylene glycol-based bioink system to promote the growth and spreading of cell spheroids that consist of human primary endothelial cells and fibroblasts. The 3D bioprinted centimeter-scale constructs have a high shape fidelity and accelerated softening to provide sufficient space for cells to grow. Adjusting the rate of degradability, induced by the integration of ester-functionalized crosslinkers in addition to protease cleavable crosslinkers into the hydrogel network, improves the growth of spheroids in larger printed hydrogel constructs containing an interconnected channel structure. The perfusable constructs enable extensive spheroid sprouting and the formation of a cellular network upon fusion of sprouts as initial steps toward tissue formation with the potential for clinical translation.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143036655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purified adipose tissue-derived extracellular vesicles facilitate adipose organoid vascularization through coordinating adipogenesis and angiogenesis.
IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-14 DOI: 10.1088/1758-5090/adb2e7
Congxiao Zhu, Zonglin Huang, Hongru Zhou, Xuefeng Han, Lei Li, Ningbei Yin

One of the major challenges in the way of better fabricating vascularized adipose organoids is the destructive effect of adipogenic differentiation on preformed vasculature, which probably stems from the discrepancy between thein vivophysiological microenvironment and thein vitroculture conditions. As an intrinsic component of adipose tissue (AT), adipose tissue-derived extracellular vesicles (AT-EVs) have demonstrated both adipogenic and angiogenic ability in recent studies. However, whether AT-EVs could be employed to coordinate the angiogenesis and adipogenesis in the vascularization of adipose organoids remains largely unexplored. Herein, we present an efficient method for isolating higher-purity AT-EV preparations from lipoaspirates, and verify the superiority of AT-EV preparations' angiogenic and adipogenic capabilities over those from unpurified lipoaspirates. Next, in the spheroid culture model, it was discovered that the addition of AT-EVs could effectively improve the aggregation through enhancing intercellular adhesion of monoculture spheroids composed of human umbilical vascular endothelial cells (HUVECs), and helped produce vascularized adipose organoids with proper lipolysis and glucose uptake ability in the coculture spheroids comprised of adipose-derived stem cells (ADSCs) and HUVECs. Subsequently, it was observed that AT-EVs could exert a retaining effect on the vasculature of prevascularized coculture spheroids cultured in an adipogenic environment, compared to the reduced vascular networks where AT-EVs were absent. Altogether, these results indicate that AT-EVs, by means of releasing bioactive molecules that emulate thein vivomicroenvironment, can modify non-replicativein vitromicroenvironments, coordinatein vitroadipogenesis and angiogenesis, and facilitate the fabrication of vascularized adipose organoids.

{"title":"Purified adipose tissue-derived extracellular vesicles facilitate adipose organoid vascularization through coordinating adipogenesis and angiogenesis.","authors":"Congxiao Zhu, Zonglin Huang, Hongru Zhou, Xuefeng Han, Lei Li, Ningbei Yin","doi":"10.1088/1758-5090/adb2e7","DOIUrl":"10.1088/1758-5090/adb2e7","url":null,"abstract":"<p><p>One of the major challenges in the way of better fabricating vascularized adipose organoids is the destructive effect of adipogenic differentiation on preformed vasculature, which probably stems from the discrepancy between the<i>in vivo</i>physiological microenvironment and the<i>in vitro</i>culture conditions. As an intrinsic component of adipose tissue (AT), adipose tissue-derived extracellular vesicles (AT-EVs) have demonstrated both adipogenic and angiogenic ability in recent studies. However, whether AT-EVs could be employed to coordinate the angiogenesis and adipogenesis in the vascularization of adipose organoids remains largely unexplored. Herein, we present an efficient method for isolating higher-purity AT-EV preparations from lipoaspirates, and verify the superiority of AT-EV preparations' angiogenic and adipogenic capabilities over those from unpurified lipoaspirates. Next, in the spheroid culture model, it was discovered that the addition of AT-EVs could effectively improve the aggregation through enhancing intercellular adhesion of monoculture spheroids composed of human umbilical vascular endothelial cells (HUVECs), and helped produce vascularized adipose organoids with proper lipolysis and glucose uptake ability in the coculture spheroids comprised of adipose-derived stem cells (ADSCs) and HUVECs. Subsequently, it was observed that AT-EVs could exert a retaining effect on the vasculature of prevascularized coculture spheroids cultured in an adipogenic environment, compared to the reduced vascular networks where AT-EVs were absent. Altogether, these results indicate that AT-EVs, by means of releasing bioactive molecules that emulate the<i>in vivo</i>microenvironment, can modify non-replicative<i>in vitro</i>microenvironments, coordinate<i>in vitro</i>adipogenesis and angiogenesis, and facilitate the fabrication of vascularized adipose organoids.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current progress ofin vitrovascular models on microfluidic chips.
IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-13 DOI: 10.1088/1758-5090/adb182
Ran Wang, Hangyu Zhang, Shijun Li, Peishi Yan, Shuai Shao, Bo Liu, Na Li

The vascular tissue, as an integral component of the human circulatory system, plays a crucial role in retaining normal physiological functions within the body. Pathologies associated with the vasculature, whether direct or indirect, also constitute significant public health concerns that afflict humanity, leading to the wide studies on vascular physiology and pathophysiology. Given the precious nature of human derived vascular tissue, substantial efforts have been dedicated to the construction of vascular models. Due to the high cost associated with animal experimentation and the inability to directly translate results to human, there is an increasing emphasis on the use of primary human cells for the development ofin vitrovascular models. For instance, obtaining an ApoE-/-mouse model for atherosclerosis research typically requires feeding a high-fat diet for over 10 weeks, whereasin vitrovascular models can usually be formed within 2 weeks. With advancements in microfluidic technology,in vitrovascular models capable of precisely emulating the hemodynamic environment within human vessels are becoming increasingly sophisticated. Microfluidic vascular models are primarily constructed through two approaches: (1) directly constructing the vascular models based on the three-layer structure of the vascular wall; (2) co-culture of endothelial cells and supporting cells within hydrogels. The former is effective to replicate vascular tissue structure mimicking vascular wall, while the latter has the capacity to establish microvascular networks. This review predominantly presents and discusses recent advancements in template design, construction methods, and potential applications of microfluidic vascular models based on polydimethylsiloxane (PDMS) soft lithography. Additionally, some refined methodologies addressing the limitations of conventional PDMS-based soft lithography techniques are also elaborated, which might hold profound importance in the field of vascular tissue engineering on microfluidic chips.

{"title":"Current progress of<i>in vitro</i>vascular models on microfluidic chips.","authors":"Ran Wang, Hangyu Zhang, Shijun Li, Peishi Yan, Shuai Shao, Bo Liu, Na Li","doi":"10.1088/1758-5090/adb182","DOIUrl":"10.1088/1758-5090/adb182","url":null,"abstract":"<p><p>The vascular tissue, as an integral component of the human circulatory system, plays a crucial role in retaining normal physiological functions within the body. Pathologies associated with the vasculature, whether direct or indirect, also constitute significant public health concerns that afflict humanity, leading to the wide studies on vascular physiology and pathophysiology. Given the precious nature of human derived vascular tissue, substantial efforts have been dedicated to the construction of vascular models. Due to the high cost associated with animal experimentation and the inability to directly translate results to human, there is an increasing emphasis on the use of primary human cells for the development of<i>in vitro</i>vascular models. For instance, obtaining an ApoE<sup>-/-</sup>mouse model for atherosclerosis research typically requires feeding a high-fat diet for over 10 weeks, whereas<i>in vitro</i>vascular models can usually be formed within 2 weeks. With advancements in microfluidic technology,<i>in vitro</i>vascular models capable of precisely emulating the hemodynamic environment within human vessels are becoming increasingly sophisticated. Microfluidic vascular models are primarily constructed through two approaches: (1) directly constructing the vascular models based on the three-layer structure of the vascular wall; (2) co-culture of endothelial cells and supporting cells within hydrogels. The former is effective to replicate vascular tissue structure mimicking vascular wall, while the latter has the capacity to establish microvascular networks. This review predominantly presents and discusses recent advancements in template design, construction methods, and potential applications of microfluidic vascular models based on polydimethylsiloxane (PDMS) soft lithography. Additionally, some refined methodologies addressing the limitations of conventional PDMS-based soft lithography techniques are also elaborated, which might hold profound importance in the field of vascular tissue engineering on microfluidic chips.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced osteogenic differentiation in hyaluronic acid methacrylate (HAMA) matrix: a comparative study of hPDC and hBMSC spheroids for bone tissue engineering.
IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Pub Date : 2025-02-13 DOI: 10.1088/1758-5090/adb2e6
Ane Albillos Sanchez, Filipa Castro Teixeira, Paula Casademunt, Ivo Beeren, Lorenzo Moroni, Carlos Mota

Bone tissue engineering (BTE) seeks to overcome the limitations of traditional bone repair methods, such as autografts and allografts, which are often limited by availability, donor-site morbidity, immune rejection, and infection risks. Recent advancements have highlighted the potential of spheroids or microtissues as building blocks for BTE. This study aimed to investigate the osteogenic differentiation of spheroids formed from human periosteum-derived cells (hPDCs) and bone marrow-derived mesenchymal stromal cells (hBMSCs) in a hyaluronic acid methacrylate (HAMA) matrix, using encapsulation and extrusion bioprinting methods. Results showed significant morphological changes, high viability, and osteogenic differentiation of spheroids from hPDCs or hBMSCs in three-dimensional HAMA environments. Notably, hPDC spheroids demonstrated higher mineralization capabilities and superior hydrogel colonization than hBMSC spheroids. These findings reveal the potential of HAMA bioink containing hPDC spheroids to produce mineralized bone grafts using a bioprinting approach.

{"title":"Enhanced osteogenic differentiation in hyaluronic acid methacrylate (HAMA) matrix: a comparative study of hPDC and hBMSC spheroids for bone tissue engineering.","authors":"Ane Albillos Sanchez, Filipa Castro Teixeira, Paula Casademunt, Ivo Beeren, Lorenzo Moroni, Carlos Mota","doi":"10.1088/1758-5090/adb2e6","DOIUrl":"10.1088/1758-5090/adb2e6","url":null,"abstract":"<p><p>Bone tissue engineering (BTE) seeks to overcome the limitations of traditional bone repair methods, such as autografts and allografts, which are often limited by availability, donor-site morbidity, immune rejection, and infection risks. Recent advancements have highlighted the potential of spheroids or microtissues as building blocks for BTE. This study aimed to investigate the osteogenic differentiation of spheroids formed from human periosteum-derived cells (hPDCs) and bone marrow-derived mesenchymal stromal cells (hBMSCs) in a hyaluronic acid methacrylate (HAMA) matrix, using encapsulation and extrusion bioprinting methods. Results showed significant morphological changes, high viability, and osteogenic differentiation of spheroids from hPDCs or hBMSCs in three-dimensional HAMA environments. Notably, hPDC spheroids demonstrated higher mineralization capabilities and superior hydrogel colonization than hBMSC spheroids. These findings reveal the potential of HAMA bioink containing hPDC spheroids to produce mineralized bone grafts using a bioprinting approach.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143254217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biofabrication
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1