This study investigates osteoblastic cell spheroid cultivation methods, exploring flat-bottom, U-bottom, and rotary flask techniques with and without amorphous calcium phosphate (ACP) supplementation to replicate the 3D bone tissue microenvironment. ACP particles derived from eggshell waste exhibit enhanced osteogenic activity in 3D models. However, representative imaging of intricate 3D tissue-engineered constructs poses challenges in conventional imaging techniques due to notable scattering and absorption effects in light microscopy, and hence limited penetration depth. We investigated contrast-enhanced micro-CT as a methodological approach for comprehensive morphological 3D-analysis of thein-vitromodel and compared the technique with confocal laser scanning microscopy, scanning electron microscopy and classical histology. Phosphotungstic acid and iodine-based contrast agents were employed for micro-CT imaging in laboratory and synchrotron micro-CT imaging. Results revealed spheroid shape variations and structural integrity influenced by cultivation methods and ACP particles. The study underscores the advantage of 3D spheroid models over traditional 2D cultures in mimicking bone tissue architecture and cellular interactions, emphasising the growing demand for novel imaging techniques to visualise 3D tissue-engineered models. Contrast-enhanced micro-CT emerges as a promising non-invasive imaging method for tissue-engineered constructs containing ACP particles, offering insights into sample morphology, enabling virtual histology before further analysis.
{"title":"Improved visualisation of ACP-engineered osteoblastic spheroids: a comparative study of contrast-enhanced micro-CT and traditional imaging techniques.","authors":"Torben Hildebrand, Qianli Ma, Dagnija Loca, Kristaps Rubenis, Janis Locs, Liebert Parreiras Nogueira, Håvard Jostein Haugen","doi":"10.1088/1758-5090/ad8bf5","DOIUrl":"10.1088/1758-5090/ad8bf5","url":null,"abstract":"<p><p>This study investigates osteoblastic cell spheroid cultivation methods, exploring flat-bottom, U-bottom, and rotary flask techniques with and without amorphous calcium phosphate (ACP) supplementation to replicate the 3D bone tissue microenvironment. ACP particles derived from eggshell waste exhibit enhanced osteogenic activity in 3D models. However, representative imaging of intricate 3D tissue-engineered constructs poses challenges in conventional imaging techniques due to notable scattering and absorption effects in light microscopy, and hence limited penetration depth. We investigated contrast-enhanced micro-CT as a methodological approach for comprehensive morphological 3D-analysis of the<i>in-vitro</i>model and compared the technique with confocal laser scanning microscopy, scanning electron microscopy and classical histology. Phosphotungstic acid and iodine-based contrast agents were employed for micro-CT imaging in laboratory and synchrotron micro-CT imaging. Results revealed spheroid shape variations and structural integrity influenced by cultivation methods and ACP particles. The study underscores the advantage of 3D spheroid models over traditional 2D cultures in mimicking bone tissue architecture and cellular interactions, emphasising the growing demand for novel imaging techniques to visualise 3D tissue-engineered models. Contrast-enhanced micro-CT emerges as a promising non-invasive imaging method for tissue-engineered constructs containing ACP particles, offering insights into sample morphology, enabling virtual histology before further analysis.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1088/1758-5090/ad88a6
Hamed Alizadeh Sardroud, Gustavo Dos Santos Rosa, William Dust, Tat-Chuan Cham, Gwen Roy, Sarah Bater, Alan Chicoine, Ali Honaramooz, Xiongbiao Chen, B Frank Eames
Cartilage tissue engineering (CTE) with the help of engineered constructs has shown promise for the regeneration of hyaline cartilage, where fibrocartilage may also be formed due to the biomechanical loading resulting from the host weight and movement. Previous studies have primarily reported on hyaline cartilage formationin vitroand/or in small animals, while leaving the fibrocartilage formation undiscovered. In this paper, we, at the first time, present a comparison study on hyaline cartilage versus fibrocartilage formation in a large animal model of pig by using two constructs (namely hydrogel and hybrid ones) engineered by means of three-dimensional (3D) bioprinting. Both hydrogel and hybrid constructs were printed from the bioink of alginate (2.5%) and ATDC5 cells (chondrogenic cells at a cell density of 5 × 106cells ml-1), with the difference in that in the hybrid construct, there was a polycaprolactone (PCL) strand printed between every two bioink strands, which were strategically designed to shield the force imposed on the cells within the bioink strands. Both hydrogel and hybrid constructs were implanted into the chondral defects created in the articular cartilage of weight-bearing portions of pig stifle joints; the cartilage formation was examined at one- and three-months post-implantation, respectively, by means of Safranin O, Trichrome, immunofluorescent staining, and synchrotron radiation-based (SR) inline phase contrast imaging microcomputed tomography (inline-PCI-CT). Glycosaminoglycan (GAG) and collagen type II (Col II) secretion were used to evaluate the hyaline cartilage formation, while collagen type I (Col I) was used to indicate fibrocartilage given that Col I is low in hyaline cartilage but high in fibrocartilage. Our results revealed that cartilage formation was enhanced over time in both hydrogel and hybrid constructs; particularly, the hydrogel construct exhibited more cartilage formation at both one- and three-months post-implantation, while hybrid constructs tended to have less fibrocartilage formed in a long time period. Also, the result from the inline-PCI-CT revealed that the inline-PCI-CT was able to provide not only the information seen in other histology images, but also high-resolution details of biomaterials and regenerating cartilage. This would represent a significant advance toward the non-invasive assessment of cartilage formation regeneration within large animal models and eventually in human patients.
{"title":"Comparison study on hyaline cartilage versus fibrocartilage formation in a pig model by using 3D-bioprinted hydrogel and hybrid constructs.","authors":"Hamed Alizadeh Sardroud, Gustavo Dos Santos Rosa, William Dust, Tat-Chuan Cham, Gwen Roy, Sarah Bater, Alan Chicoine, Ali Honaramooz, Xiongbiao Chen, B Frank Eames","doi":"10.1088/1758-5090/ad88a6","DOIUrl":"10.1088/1758-5090/ad88a6","url":null,"abstract":"<p><p>Cartilage tissue engineering (CTE) with the help of engineered constructs has shown promise for the regeneration of hyaline cartilage, where fibrocartilage may also be formed due to the biomechanical loading resulting from the host weight and movement. Previous studies have primarily reported on hyaline cartilage formation<i>in vitro</i>and/or in small animals, while leaving the fibrocartilage formation undiscovered. In this paper, we, at the first time, present a comparison study on hyaline cartilage versus fibrocartilage formation in a large animal model of pig by using two constructs (namely hydrogel and hybrid ones) engineered by means of three-dimensional (3D) bioprinting. Both hydrogel and hybrid constructs were printed from the bioink of alginate (2.5%) and ATDC5 cells (chondrogenic cells at a cell density of 5 × 10<sup>6</sup>cells ml<sup>-1</sup>), with the difference in that in the hybrid construct, there was a polycaprolactone (PCL) strand printed between every two bioink strands, which were strategically designed to shield the force imposed on the cells within the bioink strands. Both hydrogel and hybrid constructs were implanted into the chondral defects created in the articular cartilage of weight-bearing portions of pig stifle joints; the cartilage formation was examined at one- and three-months post-implantation, respectively, by means of Safranin O, Trichrome, immunofluorescent staining, and synchrotron radiation-based (SR) inline phase contrast imaging microcomputed tomography (inline-PCI-CT). Glycosaminoglycan (GAG) and collagen type II (Col II) secretion were used to evaluate the hyaline cartilage formation, while collagen type I (Col I) was used to indicate fibrocartilage given that Col I is low in hyaline cartilage but high in fibrocartilage. Our results revealed that cartilage formation was enhanced over time in both hydrogel and hybrid constructs; particularly, the hydrogel construct exhibited more cartilage formation at both one- and three-months post-implantation, while hybrid constructs tended to have less fibrocartilage formed in a long time period. Also, the result from the inline-PCI-CT revealed that the inline-PCI-CT was able to provide not only the information seen in other histology images, but also high-resolution details of biomaterials and regenerating cartilage. This would represent a significant advance toward the non-invasive assessment of cartilage formation regeneration within large animal models and eventually in human patients.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1088/1758-5090/ad8b72
Savvini Gkouma, Nayanika Bhalla, Solène Frapard, Alexander Jönsson, Hakan Gürbüz, Asli Aybike Dogan, Stefania Giacomello, Martin Duvfa, Patrik L Ståhl, Mona Widhe, My Hedhammar
Physiologically relevant human skin models that include key skin cell types can be used forin vitrodrug testing, skin pathology studies, or clinical applications such as skin grafts. However, there is still no golden standard for such a model. We investigated the potential of a recombinant functionalized spider silk protein, FN-silk, for the construction of a dermal, an epidermal, and a bilayered skin equivalent (BSE). Specifically, two formats of FN-silk (i.e. 3D network and nanomembrane) were evaluated. The 3D network was used as an elastic ECM-like support for the dermis, and the thin, permeable nanomembrane was used as a basement membrane to support the epidermal epithelium. Immunofluorescence microscopy and spatially resolved transcriptomics analysis demonstrated the secretion of key ECM components and the formation of microvascular-like structures. Furthermore, the epidermal layer exhibited clear stratification and the formation of a cornified layer, resulting in a tight physiologic epithelial barrier. Our findings indicate that the presented FN-silk-based skin models can be proposed as physiologically relevant standalone epidermal or dermal models, as well as a combined BSE.
{"title":"Standalone single- and bi-layered human skin 3D models supported by recombinant silk feature native spatial organization.","authors":"Savvini Gkouma, Nayanika Bhalla, Solène Frapard, Alexander Jönsson, Hakan Gürbüz, Asli Aybike Dogan, Stefania Giacomello, Martin Duvfa, Patrik L Ståhl, Mona Widhe, My Hedhammar","doi":"10.1088/1758-5090/ad8b72","DOIUrl":"10.1088/1758-5090/ad8b72","url":null,"abstract":"<p><p>Physiologically relevant human skin models that include key skin cell types can be used for<i>in vitro</i>drug testing, skin pathology studies, or clinical applications such as skin grafts. However, there is still no golden standard for such a model. We investigated the potential of a recombinant functionalized spider silk protein, FN-silk, for the construction of a dermal, an epidermal, and a bilayered skin equivalent (BSE). Specifically, two formats of FN-silk (i.e. 3D network and nanomembrane) were evaluated. The 3D network was used as an elastic ECM-like support for the dermis, and the thin, permeable nanomembrane was used as a basement membrane to support the epidermal epithelium. Immunofluorescence microscopy and spatially resolved transcriptomics analysis demonstrated the secretion of key ECM components and the formation of microvascular-like structures. Furthermore, the epidermal layer exhibited clear stratification and the formation of a cornified layer, resulting in a tight physiologic epithelial barrier. Our findings indicate that the presented FN-silk-based skin models can be proposed as physiologically relevant standalone epidermal or dermal models, as well as a combined BSE.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1088/1758-5090/ad8966
Chang Zhou, Changru Liu, Zhendong Liao, Yuan Pang, Wei Sun
Biofabrication is an advanced technology that holds great promise for constructing highly biomimeticin vitrothree-dimensional human organs. Such technology would help address the issues of immune rejection and organ donor shortage in organ transplantation, aiding doctors in formulating personalized treatments for clinical patients and replacing animal experiments. Biofabrication typically involves the interdisciplinary application of biology, materials science, mechanical engineering, and medicine to generate large amounts of data and correlations that require processing and analysis. Artificial intelligence (AI), with its excellent capabilities in big data processing and analysis, can play a crucial role in handling and processing interdisciplinary data and relationships and in better integrating and applying them in biofabrication. In recent years, the development of the semiconductor and integrated circuit industries has propelled the rapid advancement of computer processing power. An AI program can learn and iterate multiple times within a short period, thereby gaining strong automation capabilities for a specific research content or issue. To date, numerous AI programs have been applied to various processes around biofabrication, such as extracting biological information, designing and optimizing structures, intelligent cell sorting, optimizing biomaterials and processes, real-time monitoring and evaluation of models, accelerating the transformation and development of these technologies, and even changing traditional research patterns. This article reviews and summarizes the significant changes and advancements brought about by AI in biofabrication, and discusses its future application value and direction.
{"title":"AI for biofabrication.","authors":"Chang Zhou, Changru Liu, Zhendong Liao, Yuan Pang, Wei Sun","doi":"10.1088/1758-5090/ad8966","DOIUrl":"10.1088/1758-5090/ad8966","url":null,"abstract":"<p><p>Biofabrication is an advanced technology that holds great promise for constructing highly biomimetic<i>in vitro</i>three-dimensional human organs. Such technology would help address the issues of immune rejection and organ donor shortage in organ transplantation, aiding doctors in formulating personalized treatments for clinical patients and replacing animal experiments. Biofabrication typically involves the interdisciplinary application of biology, materials science, mechanical engineering, and medicine to generate large amounts of data and correlations that require processing and analysis. Artificial intelligence (AI), with its excellent capabilities in big data processing and analysis, can play a crucial role in handling and processing interdisciplinary data and relationships and in better integrating and applying them in biofabrication. In recent years, the development of the semiconductor and integrated circuit industries has propelled the rapid advancement of computer processing power. An AI program can learn and iterate multiple times within a short period, thereby gaining strong automation capabilities for a specific research content or issue. To date, numerous AI programs have been applied to various processes around biofabrication, such as extracting biological information, designing and optimizing structures, intelligent cell sorting, optimizing biomaterials and processes, real-time monitoring and evaluation of models, accelerating the transformation and development of these technologies, and even changing traditional research patterns. This article reviews and summarizes the significant changes and advancements brought about by AI in biofabrication, and discusses its future application value and direction.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1088/1758-5090/ad89fd
Zhitong Li, Panna Kovács, Alice Le Friec, Bjarke Nørrehvedde Jensen, Jens Vinge Nygaard, Menglin Chen
Mimicking the multilayered, anisotropic, elastic structure of cardiac tissues for controlled guidiance of 3D cellular orientation is essential in designing bionic scaffolds for cardiac tissue biofabrication. Here, a hierarchically organized, anisotropic, wavy and conductive polycaprolactone/Au scaffold was created in a facile fashion based on mechanical memory during fabrication. The bionic 3D scaffold shows good biocompatibility, excellent biomimetic mechanical properties that guide myoblast alignment, support the hyperelastic behavior observed in native cardiac muscle tissue, and promote myotube maturation, which holds potential for cardiac muscle engineering and the establishment of anin vitroculture platform for drug screening.
{"title":"Mechanical memory based biofabrication of hierarchical elastic cardiac tissue.","authors":"Zhitong Li, Panna Kovács, Alice Le Friec, Bjarke Nørrehvedde Jensen, Jens Vinge Nygaard, Menglin Chen","doi":"10.1088/1758-5090/ad89fd","DOIUrl":"10.1088/1758-5090/ad89fd","url":null,"abstract":"<p><p>Mimicking the multilayered, anisotropic, elastic structure of cardiac tissues for controlled guidiance of 3D cellular orientation is essential in designing bionic scaffolds for cardiac tissue biofabrication. Here, a hierarchically organized, anisotropic, wavy and conductive polycaprolactone/Au scaffold was created in a facile fashion based on mechanical memory during fabrication. The bionic 3D scaffold shows good biocompatibility, excellent biomimetic mechanical properties that guide myoblast alignment, support the hyperelastic behavior observed in native cardiac muscle tissue, and promote myotube maturation, which holds potential for cardiac muscle engineering and the establishment of an<i>in vitro</i>culture platform for drug screening.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1088/1758-5090/ad8b70
Nihan Sengokmen-Ozsoz, Mina Aleemardani, Marco Palanca, Alice Hann, Gwendolen C Reilly, Enrico Dall'Ara, Frederik Claeyssens
Combining emulsion templating with additive manufacturing enables the production of inherently porous scaffolds with multiscale porosity. This approach incorporates interconnected porous materials, providing a structure that supports cell ingrowth. However, 3D printing hierarchical porous structures that combine semi-micropores and micropores remains a challenging task. Previous studies have demonstrated that using a carefully adjusted combination of light absorbers and photoinitiators in the resin can produce open surface porosity, sponge-like internal structures, and a printing resolution of about 150µm. In this study, we explored how varying concentrations of tartrazine (0, 0.02, 0.04, and 0.08 wt%) as a light absorber affect the porous structure of acrylate-based polymerized medium internal phase emulsions fabricated via vat photopolymerization. Given the importance of a porous and interconnected structure for tissue engineering and regenerative medicine, we tested cell behavior on these 3D-printed disk samples using MG-63 cells, examining metabolic activity, adhesion, and morphology. The 0.08 wt% tartrazine-containing 3D-printed sample (008 T) demonstrated the best cell proliferation and adhesion. To show that this high internal phase emulsion (HIPE) resin can be used to create complex structures for biomedical applications, we 3D-printed trabecular bone structures based on microCT imaging. These structures were further evaluated for cell behavior and migration, followed by microCT analysis after 60 days of cell culture. This research demonstrates that HIPEs can be used as a resin to print trabecular bone mimics using additive manufacturing, which could be further developed for lab-on-a-chip models of healthy and diseased bone.
{"title":"Fabrication of hierarchically porous trabecular bone replicas via 3D printing with high internal phase emulsions (HIPEs).","authors":"Nihan Sengokmen-Ozsoz, Mina Aleemardani, Marco Palanca, Alice Hann, Gwendolen C Reilly, Enrico Dall'Ara, Frederik Claeyssens","doi":"10.1088/1758-5090/ad8b70","DOIUrl":"10.1088/1758-5090/ad8b70","url":null,"abstract":"<p><p>Combining emulsion templating with additive manufacturing enables the production of inherently porous scaffolds with multiscale porosity. This approach incorporates interconnected porous materials, providing a structure that supports cell ingrowth. However, 3D printing hierarchical porous structures that combine semi-micropores and micropores remains a challenging task. Previous studies have demonstrated that using a carefully adjusted combination of light absorbers and photoinitiators in the resin can produce open surface porosity, sponge-like internal structures, and a printing resolution of about 150<i>µ</i>m. In this study, we explored how varying concentrations of tartrazine (0, 0.02, 0.04, and 0.08 wt%) as a light absorber affect the porous structure of acrylate-based polymerized medium internal phase emulsions fabricated via vat photopolymerization. Given the importance of a porous and interconnected structure for tissue engineering and regenerative medicine, we tested cell behavior on these 3D-printed disk samples using MG-63 cells, examining metabolic activity, adhesion, and morphology. The 0.08 wt% tartrazine-containing 3D-printed sample (008 T) demonstrated the best cell proliferation and adhesion. To show that this high internal phase emulsion (HIPE) resin can be used to create complex structures for biomedical applications, we 3D-printed trabecular bone structures based on microCT imaging. These structures were further evaluated for cell behavior and migration, followed by microCT analysis after 60 days of cell culture. This research demonstrates that HIPEs can be used as a resin to print trabecular bone mimics using additive manufacturing, which could be further developed for lab-on-a-chip models of healthy and diseased bone.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1088/1758-5090/ad8965
Yangwang Jin, Ming Yang, Weixin Zhao, Meng Liu, Wenzhuo Fang, Yuhui Wang, Guo Gao, Ying Wang, Qiang Fu
Urethral strictures are common in urology; however, the reconstruction of long urethral strictures remains challenging. There are still unavoidable limitations in the clinical application of grafts for urethral injuries, which has facilitated the advancement of urethral tissue engineering. Tissue-engineered urethral scaffolds that combine cells or bioactive factors with a biomaterial to mimic the native microenvironment of the urethra, offer a promising approach to urethral reconstruction. Despite the recent rapid development of tissue engineering materials and techniques, a consensus on the optimal strategy for urethral repair and reconstruction is still lacking. This review aims to collect the achievements of urethral tissue engineering in recent years and to categorize and summarize them to shed new light on their design. Finally, we visualize several important future directions for urethral repair and reconstruction.
{"title":"Scaffold-based tissue engineering strategies for urethral repair and reconstruction.","authors":"Yangwang Jin, Ming Yang, Weixin Zhao, Meng Liu, Wenzhuo Fang, Yuhui Wang, Guo Gao, Ying Wang, Qiang Fu","doi":"10.1088/1758-5090/ad8965","DOIUrl":"10.1088/1758-5090/ad8965","url":null,"abstract":"<p><p>Urethral strictures are common in urology; however, the reconstruction of long urethral strictures remains challenging. There are still unavoidable limitations in the clinical application of grafts for urethral injuries, which has facilitated the advancement of urethral tissue engineering. Tissue-engineered urethral scaffolds that combine cells or bioactive factors with a biomaterial to mimic the native microenvironment of the urethra, offer a promising approach to urethral reconstruction. Despite the recent rapid development of tissue engineering materials and techniques, a consensus on the optimal strategy for urethral repair and reconstruction is still lacking. This review aims to collect the achievements of urethral tissue engineering in recent years and to categorize and summarize them to shed new light on their design. Finally, we visualize several important future directions for urethral repair and reconstruction.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-30DOI: 10.1088/1758-5090/ad88a7
Yusuf Mastoor, Mahsa Karimi, Michael Sun, Fereshteh Ahadi, Pattie Mathieu, Mingyue Fan, Lin Han, Li-Hsin Han, Alisa Morss Clyne
The gold standard to measure arterial health is vasodilation in response to nitric oxide. Vasodilation is generally measured via pressure myography of arteries isolated from animal models. However, animal arteries can be difficult to obtain and may have limited relevance to human physiology. It is, therefore, critical to engineer human cell-based arterial models capable of contraction. Vascular smooth muscle cells (SMCs) must be circumferentially aligned around the vessel lumen to contract the vessel, which is challenging to achieve in a soft blood vessel model. In this study, we used gelatin microribbons to circumferentially align SMCs inside a hydrogel channel. To accomplish this, we created tunable gelatin microribbons of varying stiffnesses and thicknesses and assessed how SMCs aligned along them. We then wrapped soft, thick microribbons around a needle and encapsulated them in a gelatin methacryloyl hydrogel, forming a microribbon-lined channel. Finally, we seeded SMCs inside the channel and showed that they adhered best to fibronectin and circumferentially aligned in response to the microribbons. Together, these data show that tunable gelatin microribbons can be used to circumferentially align SMCs inside a channel. This technique can be used to create a human artery-on-a-chip to assess vasodilation via pressure myography, as well as to align other cell types for 3Din vitromodels.
{"title":"Vascular smooth muscle cells can be circumferentially aligned inside a channel using tunable gelatin microribbons.","authors":"Yusuf Mastoor, Mahsa Karimi, Michael Sun, Fereshteh Ahadi, Pattie Mathieu, Mingyue Fan, Lin Han, Li-Hsin Han, Alisa Morss Clyne","doi":"10.1088/1758-5090/ad88a7","DOIUrl":"10.1088/1758-5090/ad88a7","url":null,"abstract":"<p><p>The gold standard to measure arterial health is vasodilation in response to nitric oxide. Vasodilation is generally measured via pressure myography of arteries isolated from animal models. However, animal arteries can be difficult to obtain and may have limited relevance to human physiology. It is, therefore, critical to engineer human cell-based arterial models capable of contraction. Vascular smooth muscle cells (SMCs) must be circumferentially aligned around the vessel lumen to contract the vessel, which is challenging to achieve in a soft blood vessel model. In this study, we used gelatin microribbons to circumferentially align SMCs inside a hydrogel channel. To accomplish this, we created tunable gelatin microribbons of varying stiffnesses and thicknesses and assessed how SMCs aligned along them. We then wrapped soft, thick microribbons around a needle and encapsulated them in a gelatin methacryloyl hydrogel, forming a microribbon-lined channel. Finally, we seeded SMCs inside the channel and showed that they adhered best to fibronectin and circumferentially aligned in response to the microribbons. Together, these data show that tunable gelatin microribbons can be used to circumferentially align SMCs inside a channel. This technique can be used to create a human artery-on-a-chip to assess vasodilation via pressure myography, as well as to align other cell types for 3D<i>in vitro</i>models.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1088/1758-5090/ad8379
S R Moxon, Z McMurran, M J Kibble, M Domingos, J E Gough, S M Richardson
Intervertebral disc (IVD) function is achieved through integration of its two component regions: the nucleus pulposus (NP) and the annulus fibrosus (AF). The NP is soft (0.3-5 kPa), gelatinous and populated by spherical NP cells in a polysaccharide-rich extracellular matrix (ECM). The AF is much stiffer (∼100 kPa) and contains layers of elongated AF cells in an aligned, fibrous ECM. Degeneration of the disc is a common problem with age being a major risk factor. Progression of IVD degeneration leads to chronic pain and can result in permanent disability. The development of therapeutic solutions for IVD degeneration is impaired by a lack ofin vitromodels of the disc that are capable of replicating the fundamental structure and biology of the tissue. This study aims to investigate if a newly developed suspended hydrogel bioprinting system (termed SLAM) could be employed to fabricate IVD analogues with integrated structural and compositional features similar to native tissue. Bioprinted IVD analogues were fabricated to recapitulate structural, morphological and biological components present in the native tissue. The constructs replicated key structural components of native tissue with the presence of a central, polysaccharide-rich NP surrounded by organised, aligned collagen fibres in the AF. Cell tracking, actin and matrix staining demonstrated that embedded NP and AF cells exhibited morphologies and phenotypes analogous to what is observedin vivowith elongated, aligned AF cells and spherical NP cells that deposited HA into the surrounding environment. Critically, it was also observed that the NP and AF regions contained a defined cellular and material interface and segregated regions of the two cell types, thus mimicking the highly regulated structure of the IVD.
椎间盘(IVD)的功能是通过整合其两个组成区域实现的:髓核(NP)和纤维环(AF)。髓核柔软(0.3-5 千帕),呈胶状,由富含多糖的细胞外基质(ECM)中的球形髓核细胞构成。AF 的硬度要高得多(约 100 千帕),包含多层细长的 AF 细胞,分布在排列整齐的纤维状 ECM 中。椎间盘退化是一个常见问题,年龄是一个主要风险因素。IVD 退化的进展会导致慢性疼痛,并可能造成永久性残疾。由于缺乏能够复制椎间盘基本结构和生物学特性的体外模型,因此阻碍了针对 IVD 退化的治疗方案的开发。本研究旨在探讨新开发的悬浮水凝胶生物打印系统(称为 SLAM)能否用于制造具有与原生组织相似的综合结构和组成特征的 IVD 类似物。制作的生物打印 IVD 类似物再现了原生组织的结构、形态和生物成分。这些构建物复制了原生组织的关键结构成分,在AF中存在一个富含多糖的中心NP,周围是有组织、排列整齐的胶原纤维。细胞追踪、肌动蛋白和基质染色表明,嵌入的 NP 和 AF 细胞表现出的形态和表型类似于在体内观察到的细长、排列整齐的 AF 细胞和球形 NP 细胞,它们将 HA 沉积到周围环境中。重要的是,还观察到 NP 和 AF 区域包含明确的细胞和材料界面以及两种细胞类型的隔离区域,从而模拟了 IVD 的高度调节结构。
{"title":"3D bioprinting of an intervertebral disc tissue analogue with a highly aligned annulus fibrosus via suspended layer additive manufacture.","authors":"S R Moxon, Z McMurran, M J Kibble, M Domingos, J E Gough, S M Richardson","doi":"10.1088/1758-5090/ad8379","DOIUrl":"10.1088/1758-5090/ad8379","url":null,"abstract":"<p><p>Intervertebral disc (IVD) function is achieved through integration of its two component regions: the nucleus pulposus (NP) and the annulus fibrosus (AF). The NP is soft (0.3-5 kPa), gelatinous and populated by spherical NP cells in a polysaccharide-rich extracellular matrix (ECM). The AF is much stiffer (∼100 kPa) and contains layers of elongated AF cells in an aligned, fibrous ECM. Degeneration of the disc is a common problem with age being a major risk factor. Progression of IVD degeneration leads to chronic pain and can result in permanent disability. The development of therapeutic solutions for IVD degeneration is impaired by a lack of<i>in vitro</i>models of the disc that are capable of replicating the fundamental structure and biology of the tissue. This study aims to investigate if a newly developed suspended hydrogel bioprinting system (termed SLAM) could be employed to fabricate IVD analogues with integrated structural and compositional features similar to native tissue. Bioprinted IVD analogues were fabricated to recapitulate structural, morphological and biological components present in the native tissue. The constructs replicated key structural components of native tissue with the presence of a central, polysaccharide-rich NP surrounded by organised, aligned collagen fibres in the AF. Cell tracking, actin and matrix staining demonstrated that embedded NP and AF cells exhibited morphologies and phenotypes analogous to what is observed<i>in vivo</i>with elongated, aligned AF cells and spherical NP cells that deposited HA into the surrounding environment. Critically, it was also observed that the NP and AF regions contained a defined cellular and material interface and segregated regions of the two cell types, thus mimicking the highly regulated structure of the IVD.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Interbody fusion is an orthopedic surgical procedure to connect two adjacent vertebrae in patients suffering from spinal disc disease. The combination of synthetic bone grafts with protein-based drugs is an intriguing approach to stimulate interbody bone growth, specifically in patients exhibiting restricted bone progression. Recombinant human thrombomodulin (rhTM), a novel protein drug characterized by its superior stability and potency, shows promise in enhancing bone formation. A composite bone graft, termed CaP-rhTM, has been synthesized, combining calcium phosphate (CaP) microparticles as a delivery vehicle for rhTM to facilitate interbody fusion.In vitrostudies have demonstrated that rhTM significantly promotes the proliferation and maturation of preosteoblasts at nanogram dosage, while exerting minimal impact on osteosarcoma cell growth. The expression levels of mature osteoblast markers, including osteocalcin, osteopontin, alkaline phosphatase, and calcium deposition were also enhanced by rhTM. In rat caudal disc model of interbody fusion, CaP-rhTM with 800 ng of drug dosage was implanted along with a polylactic acid cage, to ensure structural stability within the intervertebral space. Microcomputed tomography analyses revealed that from 8 to 24 weeks, CaP-rhTM substantially improves both bone volume and trabecular architecture, in addition to the textural integrity of bony endplate surfaces. Histological examination confirmed the formation of a continuous bone bridge connecting adjacent vertebrae. Furthermore, biomechanical assessment via three-point bending tests indicated an improved bone quality of the fused disc. This study has demostrated that rhTM exhibits considerable potential in promoting osteogenesis. The use of CaP-rhTM has also shown significant improvements in promoting interbody fusion.
{"title":"Calcium phosphate complex of recombinant human thrombomodulin promote bone formation in interbody fusion.","authors":"Cheng-Li Lin, Yu-Wei Chen, Cheng-Hsiang Kuo, Ting-Yuan Tu, Hua-Lin Wu, Jui-Chen Tsai, Yan-Jye Shyong","doi":"10.1088/1758-5090/ad8035","DOIUrl":"10.1088/1758-5090/ad8035","url":null,"abstract":"<p><p>Interbody fusion is an orthopedic surgical procedure to connect two adjacent vertebrae in patients suffering from spinal disc disease. The combination of synthetic bone grafts with protein-based drugs is an intriguing approach to stimulate interbody bone growth, specifically in patients exhibiting restricted bone progression. Recombinant human thrombomodulin (rhTM), a novel protein drug characterized by its superior stability and potency, shows promise in enhancing bone formation. A composite bone graft, termed CaP-rhTM, has been synthesized, combining calcium phosphate (CaP) microparticles as a delivery vehicle for rhTM to facilitate interbody fusion.<i>In vitro</i>studies have demonstrated that rhTM significantly promotes the proliferation and maturation of preosteoblasts at nanogram dosage, while exerting minimal impact on osteosarcoma cell growth. The expression levels of mature osteoblast markers, including osteocalcin, osteopontin, alkaline phosphatase, and calcium deposition were also enhanced by rhTM. In rat caudal disc model of interbody fusion, CaP-rhTM with 800 ng of drug dosage was implanted along with a polylactic acid cage, to ensure structural stability within the intervertebral space. Microcomputed tomography analyses revealed that from 8 to 24 weeks, CaP-rhTM substantially improves both bone volume and trabecular architecture, in addition to the textural integrity of bony endplate surfaces. Histological examination confirmed the formation of a continuous bone bridge connecting adjacent vertebrae. Furthermore, biomechanical assessment via three-point bending tests indicated an improved bone quality of the fused disc. This study has demostrated that rhTM exhibits considerable potential in promoting osteogenesis. The use of CaP-rhTM has also shown significant improvements in promoting interbody fusion.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}