Ramsés Santacruz-Márquez, Adira M Safar, Mary J Laws, Endia J Fletcher, Daryl D Meling, Romana A Nowak, Lori T Raetzman, Jodi A Flaws
The female reproductive system ages before any other physiological system, making it a sensitive indicator of aging. Early reproductive aging is associated with the early onset of infertility and an increased risk of several diseases. During aging, systemic and reproductive oxidative stress and inflammation levels increase through inflammasome activation, leading to ovarian follicle loss. Other markers of reproductive aging include increased fibrosis and shortening of telomeres in ovarian cells. The factors that accelerate reproductive aging are unclear, but likely involve exposure to endocrine-disrupting chemicals such as phthalates. Di(2-ethylhexyl) phthalate (DEHP) is a widely used phthalate and humans are exposed to it daily. Several studies show that DEHP induces reproductive toxicity by affecting estrous cyclicity, follicle numbers, and hormone levels. However, little is known about the mechanisms underlying DEHP-induced early onset of reproductive aging. Thus, this study tested the hypothesis that dietary exposure to DEHP induces early reproductive aging by affecting inflammation, fibrosis, and the expression of telomere regulators and antioxidant enzymes. Adult CD-1 female mice were exposed to vehicle (corn oil) or DEHP (0.5, 1.5, or 1500 ppm) via the chow for six months. Exposure to DEHP increased the expression of antioxidant enzymes and Casp3, increased expression of telomere-associated genes, and increased fibrosis levels in the ovary. In addition, DEHP exposure for 6 months altered ovarian and systemic inflammatory status. Collectively, our novel data suggest that 6-month dietary exposure to DEHP may accelerate reproductive aging by affecting several reproductive aging markers in female mice.
{"title":"Dietary exposure to di (2-ethylhexyl) phthalate (DEHP) for 6 months alters markers of female reproductive aging in mice.","authors":"Ramsés Santacruz-Márquez, Adira M Safar, Mary J Laws, Endia J Fletcher, Daryl D Meling, Romana A Nowak, Lori T Raetzman, Jodi A Flaws","doi":"10.1093/biolre/ioae164","DOIUrl":"https://doi.org/10.1093/biolre/ioae164","url":null,"abstract":"<p><p>The female reproductive system ages before any other physiological system, making it a sensitive indicator of aging. Early reproductive aging is associated with the early onset of infertility and an increased risk of several diseases. During aging, systemic and reproductive oxidative stress and inflammation levels increase through inflammasome activation, leading to ovarian follicle loss. Other markers of reproductive aging include increased fibrosis and shortening of telomeres in ovarian cells. The factors that accelerate reproductive aging are unclear, but likely involve exposure to endocrine-disrupting chemicals such as phthalates. Di(2-ethylhexyl) phthalate (DEHP) is a widely used phthalate and humans are exposed to it daily. Several studies show that DEHP induces reproductive toxicity by affecting estrous cyclicity, follicle numbers, and hormone levels. However, little is known about the mechanisms underlying DEHP-induced early onset of reproductive aging. Thus, this study tested the hypothesis that dietary exposure to DEHP induces early reproductive aging by affecting inflammation, fibrosis, and the expression of telomere regulators and antioxidant enzymes. Adult CD-1 female mice were exposed to vehicle (corn oil) or DEHP (0.5, 1.5, or 1500 ppm) via the chow for six months. Exposure to DEHP increased the expression of antioxidant enzymes and Casp3, increased expression of telomere-associated genes, and increased fibrosis levels in the ovary. In addition, DEHP exposure for 6 months altered ovarian and systemic inflammatory status. Collectively, our novel data suggest that 6-month dietary exposure to DEHP may accelerate reproductive aging by affecting several reproductive aging markers in female mice.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Han, Junrong Diao, Xinyan Wang, Shuai Zhang, Lina Yuan, Yaqiong Ping, Ge Gao, Yunshan Zhang, Haining Luo
Objective: To investigate the follicle microenvironment of individuals with premature ovarian insufficiency (POI), normal ovarian reserve (normal) and advanced maternal age (AMA), and identify potential therapeutic targets.
Methods: A total of 9 women, including 3 POI, 3 normal and 3 AMA women, underwent in vitro fertilization or intracytoplasmic sperm injection were included in this study. For each participant, the first punctured follicle not containing cumulus cells were submitted to single-cell RNA sequencing to explore the characteristics of the follicle microenvironment of POI, normal and AMA individuals.
Result(s): A total of 87,323 cells were isolated and grouped into six clusters: T cells, B cells, neutrophils, basophils, mononuclear phagocytes, and granulosa cells. Further analysis demonstrated that the population of granulosa cells in cluster 6 was increased in AMA and POI patients, whereas the population of gamma delta T (GDT)-cells was decreased. We also found that the genes that were differentially expressed between GDT cells and monocytes were enriched in ribosome- and endoplasmic reticulum (ER)-related pathways. In addition, it showed that VEGFA-FLT1 interaction between the monocytes and granulosa cells may be lost in the AMA and POI patients as compared with the normal group.
Conclusion(s): Loss of the VEGFA-FLT1 interaction in monocytes and granulosa cells, along with enriched ER- and ribosome-related pathways, may drive excess inflammation, accelerating granulosa cell senility and contributing to infertility. This study provides new insights into the pathogenesis of POI and aging and highlights the VEGFA/FLT1 interaction may be a potential therapeutic target for reducing inflammation and treating POI.
目的研究卵巢早衰(POI)、卵巢储备功能正常(Normal)和高龄产妇(AMA)的卵泡微环境,并确定潜在的治疗靶点:本研究共纳入了9名接受体外受精或卵胞浆内单精子注射的女性,其中包括3名早衰性卵巢功能不全女性、3名正常女性和3名高龄产妇。对每位受试者的第一个不含积层细胞的穿刺卵泡进行单细胞RNA测序,以探讨POI、正常和AMA受试者卵泡微环境的特征:共分离出 87323 个细胞,并将其分为六组:结果:共分离出 87323 个细胞,并将其分为六组:T 细胞、B 细胞、中性粒细胞、嗜碱性粒细胞、单核吞噬细胞和颗粒细胞。进一步的分析表明,在 AMA 和 POI 患者中,第 6 组颗粒细胞的数量增加,而γ δ T 细胞(GDT)的数量减少。我们还发现,GDT 细胞和单核细胞之间差异表达的基因富集于核糖体和内质网(ER)相关通路。此外,研究还表明,与正常组相比,AMA 和 POI 患者单核细胞与颗粒细胞之间的 VEGFA-FLT1 相互作用可能消失:结论:单核细胞和颗粒细胞中 VEGFA-FLT1 相互作用的丧失,以及 ER 和核糖体相关通路的丰富,可能会驱动过度炎症,加速颗粒细胞衰老并导致不孕。这项研究为 POI 和衰老的发病机制提供了新的见解,并强调了 VEGFA/FLT1 相互作用可能是减少炎症和治疗 POI 的潜在治疗靶点。
{"title":"Single-cell RNA sequencing reveals common interactions between follicle immune cells and granulosa cells in premature ovarian insufficiency patients.","authors":"Ying Han, Junrong Diao, Xinyan Wang, Shuai Zhang, Lina Yuan, Yaqiong Ping, Ge Gao, Yunshan Zhang, Haining Luo","doi":"10.1093/biolre/ioae157","DOIUrl":"https://doi.org/10.1093/biolre/ioae157","url":null,"abstract":"<p><strong>Objective: </strong>To investigate the follicle microenvironment of individuals with premature ovarian insufficiency (POI), normal ovarian reserve (normal) and advanced maternal age (AMA), and identify potential therapeutic targets.</p><p><strong>Methods: </strong>A total of 9 women, including 3 POI, 3 normal and 3 AMA women, underwent in vitro fertilization or intracytoplasmic sperm injection were included in this study. For each participant, the first punctured follicle not containing cumulus cells were submitted to single-cell RNA sequencing to explore the characteristics of the follicle microenvironment of POI, normal and AMA individuals.</p><p><strong>Result(s): </strong>A total of 87,323 cells were isolated and grouped into six clusters: T cells, B cells, neutrophils, basophils, mononuclear phagocytes, and granulosa cells. Further analysis demonstrated that the population of granulosa cells in cluster 6 was increased in AMA and POI patients, whereas the population of gamma delta T (GDT)-cells was decreased. We also found that the genes that were differentially expressed between GDT cells and monocytes were enriched in ribosome- and endoplasmic reticulum (ER)-related pathways. In addition, it showed that VEGFA-FLT1 interaction between the monocytes and granulosa cells may be lost in the AMA and POI patients as compared with the normal group.</p><p><strong>Conclusion(s): </strong>Loss of the VEGFA-FLT1 interaction in monocytes and granulosa cells, along with enriched ER- and ribosome-related pathways, may drive excess inflammation, accelerating granulosa cell senility and contributing to infertility. This study provides new insights into the pathogenesis of POI and aging and highlights the VEGFA/FLT1 interaction may be a potential therapeutic target for reducing inflammation and treating POI.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adele Frau, David Edache, Sebastiano Sale, Antonio Gallo, Vincenzo Miragliotta, Giulia Lazzarini, Andrea Corda, Francesca Corda, Olimpia Barbato, Sara Succu, Daniela Bebbere, Federica Franciosi, Alberto S Atzori, Francesca Mossa
We hypothesized that in dairy cattle maternal energy restriction applied during two gestational windows (up to day 80 or 120 of gestation) impairs ovarian and cardiovascular development in juvenile female offspring. We also investigated the role of maternal leptin and testosterone in developmental programming in calves. Holstein-Friesian heifers were randomly assigned to one of three experimental groups; starting 10 days before artificial insemination, they were individually fed at: (i) 0.6 of their maintenance energy requirements (M) up to day 80 (Nutrient Restricted, NR80) or (ii) day 120 of gestation (NR120); (iii) 1.8 M until day 120 of pregnancy (Control, CTR). Plasma leptin concentrations increased transiently in nutritionally restricted heifers pregnant with a single female calf, but maternal testosterone concentrations were not influenced by diet. Calves had similar body growth, but daughters of NR80 and NR120 had impaired ovarian development, as assessed by reduced gonadal weight, fewer surface antral & primary follicles and recovered COCs, as well as lower circulating AMH concentrations. Cardiovascular morphology and function in the offspring were not influenced by maternal diet, as determined by peripheral arterial blood pressure, echocardiography, post-mortem heart weight and aortic circumference. Regardless of its duration (until day 80 or 120 of gestation), nutritional restriction resulted in a similar alteration of ovarian development in juvenile progeny, but cardiovascular development was unaltered. Evidence suggests that the window of development that encompasses the peri-ovulatory period to the first 2.6 months of gestation is critical in ovarian programming and that maternal leptin may be involved.
{"title":"Maternal undernutrition in the first eighty days of gestation negatively programs ovarian development in dairy calves.","authors":"Adele Frau, David Edache, Sebastiano Sale, Antonio Gallo, Vincenzo Miragliotta, Giulia Lazzarini, Andrea Corda, Francesca Corda, Olimpia Barbato, Sara Succu, Daniela Bebbere, Federica Franciosi, Alberto S Atzori, Francesca Mossa","doi":"10.1093/biolre/ioae158","DOIUrl":"https://doi.org/10.1093/biolre/ioae158","url":null,"abstract":"<p><p>We hypothesized that in dairy cattle maternal energy restriction applied during two gestational windows (up to day 80 or 120 of gestation) impairs ovarian and cardiovascular development in juvenile female offspring. We also investigated the role of maternal leptin and testosterone in developmental programming in calves. Holstein-Friesian heifers were randomly assigned to one of three experimental groups; starting 10 days before artificial insemination, they were individually fed at: (i) 0.6 of their maintenance energy requirements (M) up to day 80 (Nutrient Restricted, NR80) or (ii) day 120 of gestation (NR120); (iii) 1.8 M until day 120 of pregnancy (Control, CTR). Plasma leptin concentrations increased transiently in nutritionally restricted heifers pregnant with a single female calf, but maternal testosterone concentrations were not influenced by diet. Calves had similar body growth, but daughters of NR80 and NR120 had impaired ovarian development, as assessed by reduced gonadal weight, fewer surface antral & primary follicles and recovered COCs, as well as lower circulating AMH concentrations. Cardiovascular morphology and function in the offspring were not influenced by maternal diet, as determined by peripheral arterial blood pressure, echocardiography, post-mortem heart weight and aortic circumference. Regardless of its duration (until day 80 or 120 of gestation), nutritional restriction resulted in a similar alteration of ovarian development in juvenile progeny, but cardiovascular development was unaltered. Evidence suggests that the window of development that encompasses the peri-ovulatory period to the first 2.6 months of gestation is critical in ovarian programming and that maternal leptin may be involved.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eliza Winek, Lidia Wolińska-Nizioł, Katarzyna Szczepańska, Anna Szpakowska, Olga Gewartowska, Izabela Wysocka, Magdalena Grzesiak, Aneta Suwińska
In this work, we aimed to determine the role of activin A during crucial events of mouse embryogenesis and distinguish the function of the protein of zygotic origin and the one secreted by the maternal reproductive tract. To this end, we recorded the progression of development and phenotype of Inhba knockout embryos and compared them with the heterozygotes and wild-type embryos using time-lapse imaging and detection of lineage-specific markers. We revealed that the zygotic activin A deficiency does not impair the course and rate of development of embryos to the blastocyst stage. Inhba knockout embryos form functional epiblast, as evidenced by their ability to give rise to embryonic stem cells. Our study is the first to show that derivation, maintenance in culture, and pluripotency of embryo-derived embryonic stem cells are exogenous and endogenous activin A-independent. However, the implantation competence of activin A-deficient embryos may be compromised as indicated in the outgrowth assay.
在这项工作中,我们旨在确定激活蛋白 A 在小鼠胚胎发生的关键事件中的作用,并区分源于子代的蛋白和母体生殖道分泌的蛋白的功能。为此,我们记录了Inhba基因敲除胚胎的发育过程和表型,并通过延时成像和检测系特异性标记物,将其与杂合子和野生型胚胎进行了比较。我们发现,子代活化素 A 缺乏不会影响胚胎发育到囊胚期的过程和速度。Inhba 基因敲除的胚胎会形成功能性的上胚层,其产生胚胎干细胞的能力就证明了这一点。我们的研究首次表明,胚胎衍生的胚胎干细胞的衍生、培养维持和多能性与外源性和内源性活化素 A 无关。然而,正如胚胎生长试验所显示的那样,缺乏活化素A的胚胎的植入能力可能会受到影响。
{"title":"Zygotic activin a is dispensable for the mouse preimplantation embryo development and for the derivation and pluripotency of embryonic stem cells†.","authors":"Eliza Winek, Lidia Wolińska-Nizioł, Katarzyna Szczepańska, Anna Szpakowska, Olga Gewartowska, Izabela Wysocka, Magdalena Grzesiak, Aneta Suwińska","doi":"10.1093/biolre/ioae156","DOIUrl":"https://doi.org/10.1093/biolre/ioae156","url":null,"abstract":"<p><p>In this work, we aimed to determine the role of activin A during crucial events of mouse embryogenesis and distinguish the function of the protein of zygotic origin and the one secreted by the maternal reproductive tract. To this end, we recorded the progression of development and phenotype of Inhba knockout embryos and compared them with the heterozygotes and wild-type embryos using time-lapse imaging and detection of lineage-specific markers. We revealed that the zygotic activin A deficiency does not impair the course and rate of development of embryos to the blastocyst stage. Inhba knockout embryos form functional epiblast, as evidenced by their ability to give rise to embryonic stem cells. Our study is the first to show that derivation, maintenance in culture, and pluripotency of embryo-derived embryonic stem cells are exogenous and endogenous activin A-independent. However, the implantation competence of activin A-deficient embryos may be compromised as indicated in the outgrowth assay.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Successful pregnancy is dependent on a number of essential events, including embryo implantation, decidualization and placentation. Failure of the above process may lead to pregnancy-related complications, including preeclampsia (PE), gestational diabetes mellitus (GDM), preterm birth, fetal growth restriction (FGR), etc., may affect 15% of pregnancies, and lead to increased mortality and morbidity of pregnant women and perinatal infants, as well as the occurrence of short-term and long-term diseases. These complications have distinct etiology and pathogenesis, and the present comprehension is still lacking. Post-translational modifications (PTMs) are important events in epigenetics, altering the properties of proteins through protein hydrolysis or the addition of modification groups to one or more amino acids, with different modification states regulating subcellular localization, protein degradation, protein-protein interaction, signal transduction and gene transcription. In this review, we focus on the impact of various PTMs on the progress of embryo and placenta development and pregnancy-related complications, which will provide important experimental bases for exploring new insights into the physiology of pregnancy and pathogenesis associated with pregnancy complications.
{"title":"Insight into the post-translational modifications in pregnancy and related complications.","authors":"Yangxue Yin, Lingyun Liao, Qin Xu, Shuangshuang Xie, Liming Yuan, Rong Zhou","doi":"10.1093/biolre/ioae149","DOIUrl":"https://doi.org/10.1093/biolre/ioae149","url":null,"abstract":"<p><p>Successful pregnancy is dependent on a number of essential events, including embryo implantation, decidualization and placentation. Failure of the above process may lead to pregnancy-related complications, including preeclampsia (PE), gestational diabetes mellitus (GDM), preterm birth, fetal growth restriction (FGR), etc., may affect 15% of pregnancies, and lead to increased mortality and morbidity of pregnant women and perinatal infants, as well as the occurrence of short-term and long-term diseases. These complications have distinct etiology and pathogenesis, and the present comprehension is still lacking. Post-translational modifications (PTMs) are important events in epigenetics, altering the properties of proteins through protein hydrolysis or the addition of modification groups to one or more amino acids, with different modification states regulating subcellular localization, protein degradation, protein-protein interaction, signal transduction and gene transcription. In this review, we focus on the impact of various PTMs on the progress of embryo and placenta development and pregnancy-related complications, which will provide important experimental bases for exploring new insights into the physiology of pregnancy and pathogenesis associated with pregnancy complications.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: In vitro production of viable eggs from undeveloped oocytes in mouse preantral follicles by reconstructing granulosa cell-oocyte complexes.","authors":"","doi":"10.1093/biolre/ioae155","DOIUrl":"10.1093/biolre/ioae155","url":null,"abstract":"","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergio Gómez-Olarte, Verena Mailänder, Júlia Castro-Neves, Violeta Stojanovska, Anne Schumacher, Nicole Meyer, Ana C Zenclussen
Endocrine disruptor chemicals (EDCs) are natural and synthetic compounds found ubiquitously in the environment that interfere with the hormonal-immune axis, potentially impacting human health and reproduction. Exposure to EDCs has been associated with numerous health risks, such as neurodevelopmental disorders, metabolic syndrome, thyroid dysfunction, infertility, and cancers. Nevertheless, the current approach to establishing causality between EDCs and disease outcomes has limitations. Epidemiological and experimental research on EDCs faces challenges in accurately assessing chemical exposure and interpreting non-monotonic dose response curves. In addition, most studies have focused on single chemicals or simple mixtures, overlooking complex real-life exposures and EDC mechanistic insights, in particular regarding their impact on the immune system. The ENDOMIX project, funded by the EU's Horizon Health Program, addresses these challenges by integrating epidemiological, risk assessment, and immunotoxicology methodologies. This systemic approach comprises the triangulation of human cohort, in vitro, and in vivo data to determine the combined effects of EDC mixtures. The present review presents and discusses current literature regarding human reproduction in the context of immunotolerance and EDC mode of action. It further underscores the ENDOMIX perspective to elucidate the impact of EDCs on immune-reproductive health.
内分泌干扰化学物(EDCs)是环境中普遍存在的天然和合成化合物,会干扰荷尔蒙-免疫轴,从而对人类健康和生殖产生潜在影响。暴露于 EDCs 与许多健康风险有关,如神经发育障碍、代谢综合征、甲状腺功能障碍、不孕症和癌症。然而,目前确定 EDC 与疾病结果之间因果关系的方法存在局限性。有关 EDC 的流行病学和实验研究在准确评估化学品暴露和解释非单调剂量反应曲线方面面临挑战。此外,大多数研究都集中在单一化学品或简单混合物上,忽略了现实生活中的复杂暴露和 EDC 机理研究,特别是其对免疫系统的影响。由欧盟地平线健康计划资助的ENDOMIX项目通过整合流行病学、风险评估和免疫毒理学方法来应对这些挑战。这种系统方法包括对人类队列、体外和体内数据进行三角测量,以确定 EDC 混合物的综合影响。本综述从免疫耐受和 EDC 作用模式的角度介绍和讨论了有关人类生殖的现有文献。它进一步强调了从 ENDOMIX 的角度来阐明 EDC 对免疫-生殖健康的影响。
{"title":"The ENDOMIX perspective: how everyday chemical mixtures impact human health and reproduction by targeting the immune system†.","authors":"Sergio Gómez-Olarte, Verena Mailänder, Júlia Castro-Neves, Violeta Stojanovska, Anne Schumacher, Nicole Meyer, Ana C Zenclussen","doi":"10.1093/biolre/ioae142","DOIUrl":"https://doi.org/10.1093/biolre/ioae142","url":null,"abstract":"<p><p>Endocrine disruptor chemicals (EDCs) are natural and synthetic compounds found ubiquitously in the environment that interfere with the hormonal-immune axis, potentially impacting human health and reproduction. Exposure to EDCs has been associated with numerous health risks, such as neurodevelopmental disorders, metabolic syndrome, thyroid dysfunction, infertility, and cancers. Nevertheless, the current approach to establishing causality between EDCs and disease outcomes has limitations. Epidemiological and experimental research on EDCs faces challenges in accurately assessing chemical exposure and interpreting non-monotonic dose response curves. In addition, most studies have focused on single chemicals or simple mixtures, overlooking complex real-life exposures and EDC mechanistic insights, in particular regarding their impact on the immune system. The ENDOMIX project, funded by the EU's Horizon Health Program, addresses these challenges by integrating epidemiological, risk assessment, and immunotoxicology methodologies. This systemic approach comprises the triangulation of human cohort, in vitro, and in vivo data to determine the combined effects of EDC mixtures. The present review presents and discusses current literature regarding human reproduction in the context of immunotolerance and EDC mode of action. It further underscores the ENDOMIX perspective to elucidate the impact of EDCs on immune-reproductive health.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N Grechi, G A Ferronato, S Devkota, M A M M Ferraz
An increase in global infertility has coincided with the accumulation of microplastics (MPs) in the environment. This trend is particularly troubling because only 10% of male infertility cases can be attributed to identifiable causes, leaving a knowledge gap in our understanding of their underlying factors. To bridge this, it is important to explore the connection between the accumulation of MPs and the observed decline in male fertility. We assessed the presence of microplastics in epididymal sperm from bulls and used it as baseline concentrations for sperm exposure. MPs were detected in all epidydimal sperm (ES) samples, with a mean concentration of 0.37 μg mL-1. Next, to investigate the effects of MPs on fertility, bovine sperm was exposed to three different concentrations of a mixture of 1.1, 0.5, and 0.3 μm polystyrene (PS) beads: (1) 0.7 μg mL-1, blood concentration of PS in cows (bPS); (2) 0.37 μg mL-1, based on the concentration of total MPs found in ES (esMP); and (3) 0.026 μg mL-1, based on the concentration of PS found in ES (esPS). All sperm samples incubated with PS exhibited reduced motility compared with the control at 0.5 h. However, PS exposure did not affect acrosome integrity or induced oxidative stress. Embryos produced from sperm exposed to PS had reduced blastocyst rates, in addition to increased ROS formation and apoptosis. By employing physiological exposure, this research provided evidence of MPs in bovine epididymal sperm and demonstrated the detrimental effect of PS on sperm functionality.
{"title":"Microplastics are detected in bull epididymal sperm and polystyrene microparticles impair sperm fertilization.","authors":"N Grechi, G A Ferronato, S Devkota, M A M M Ferraz","doi":"10.1093/biolre/ioae154","DOIUrl":"https://doi.org/10.1093/biolre/ioae154","url":null,"abstract":"<p><p>An increase in global infertility has coincided with the accumulation of microplastics (MPs) in the environment. This trend is particularly troubling because only 10% of male infertility cases can be attributed to identifiable causes, leaving a knowledge gap in our understanding of their underlying factors. To bridge this, it is important to explore the connection between the accumulation of MPs and the observed decline in male fertility. We assessed the presence of microplastics in epididymal sperm from bulls and used it as baseline concentrations for sperm exposure. MPs were detected in all epidydimal sperm (ES) samples, with a mean concentration of 0.37 μg mL-1. Next, to investigate the effects of MPs on fertility, bovine sperm was exposed to three different concentrations of a mixture of 1.1, 0.5, and 0.3 μm polystyrene (PS) beads: (1) 0.7 μg mL-1, blood concentration of PS in cows (bPS); (2) 0.37 μg mL-1, based on the concentration of total MPs found in ES (esMP); and (3) 0.026 μg mL-1, based on the concentration of PS found in ES (esPS). All sperm samples incubated with PS exhibited reduced motility compared with the control at 0.5 h. However, PS exposure did not affect acrosome integrity or induced oxidative stress. Embryos produced from sperm exposed to PS had reduced blastocyst rates, in addition to increased ROS formation and apoptosis. By employing physiological exposure, this research provided evidence of MPs in bovine epididymal sperm and demonstrated the detrimental effect of PS on sperm functionality.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uterine fluid homeostasis during peri-implantation is crucial for successful embryo implantation. Taurine (Tau) plays a crucial role in regulating osmotic pressure and ion transport. However, the precise mechanisms underlying Tau-mediated regulation of uterine fluid homeostasis during peri-implantation in mice remain unclear. In this study, we generated a Tau-deficient mouse model by administering Tau-free diet to Csad knockout (Csad-/-) mice to block endogenous Tau synthesis and exogenous Tau absorption (Csad-/--Tau free). Our findings demonstrated that Csad-/-Tau free mice with diminished level of Tau exhibited decreased rates of embryo implantation and impaired fertility. Further analysis revealed that the expression of Scnn1a was down-regulated during the implantation window, while Aqp8 was upregulated in Csad-/-Tau free mice, leading to uterine luminal fluid retention and defects in luminal closure, resulting in failed embryo implantation. Additionally, it was also found that E2 inhibited uterine Csad expression and Tau synthesis, while P4 promoted them. Therefore, our findings suggest that ovarian steroid hormones regulate Csad expression and Tau synthesis, thereby affecting release and resorption of uterine luminal fluid, ultimately impacting embryo implantation success.
围植入期的子宫液平衡对胚胎的成功植入至关重要。牛磺酸(Tau)在调节渗透压和离子转运方面起着至关重要的作用。然而,Tau 介导的小鼠围植入期子宫液稳态调节的确切机制仍不清楚。在这项研究中,我们通过给Csad基因敲除(Csad-/-)小鼠注射无Tau饮食来阻断内源性Tau的合成和外源性Tau的吸收(Csad-/-无Tau),从而建立了一个Tau缺陷小鼠模型。我们的研究结果表明,Tau水平降低的无Csad-/-Tau小鼠表现出胚胎着床率下降和生育能力受损。进一步分析发现,在无Csad-/-Tau小鼠中,Scnn1a在植入窗口期表达下调,而Aqp8表达上调,导致子宫腔积液和子宫腔闭合缺陷,从而导致胚胎植入失败。此外,研究还发现 E2 可抑制子宫 Csad 的表达和 Tau 的合成,而 P4 则可促进它们。因此,我们的研究结果表明,卵巢类固醇激素会调节 Csad 的表达和 Tau 的合成,从而影响子宫腔液的释放和吸收,最终影响胚胎植入的成功率。
{"title":"Taurine is essential for mouse uterine luminal fluid resorption during implantation window via the SCNN1A and AQP8 signaling.","authors":"Yewen Zhou, Shaona Pei, Guobin Qiu, Jinglin Zhang, Hongzhou Guo, Sheng Cui, Zongping Liu, Di Zhang","doi":"10.1093/biolre/ioae152","DOIUrl":"https://doi.org/10.1093/biolre/ioae152","url":null,"abstract":"<p><p>Uterine fluid homeostasis during peri-implantation is crucial for successful embryo implantation. Taurine (Tau) plays a crucial role in regulating osmotic pressure and ion transport. However, the precise mechanisms underlying Tau-mediated regulation of uterine fluid homeostasis during peri-implantation in mice remain unclear. In this study, we generated a Tau-deficient mouse model by administering Tau-free diet to Csad knockout (Csad-/-) mice to block endogenous Tau synthesis and exogenous Tau absorption (Csad-/--Tau free). Our findings demonstrated that Csad-/-Tau free mice with diminished level of Tau exhibited decreased rates of embryo implantation and impaired fertility. Further analysis revealed that the expression of Scnn1a was down-regulated during the implantation window, while Aqp8 was upregulated in Csad-/-Tau free mice, leading to uterine luminal fluid retention and defects in luminal closure, resulting in failed embryo implantation. Additionally, it was also found that E2 inhibited uterine Csad expression and Tau synthesis, while P4 promoted them. Therefore, our findings suggest that ovarian steroid hormones regulate Csad expression and Tau synthesis, thereby affecting release and resorption of uterine luminal fluid, ultimately impacting embryo implantation success.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coral Y Jorge-Cruz, Ana L Roa-Espitia, Enrique O Hernández-González
Isthmus is the region of the oviduct considered a reservoir for spermatozoa, where they are retained and then released synchronously with ovulation. Integrins mediate this interaction, and it is suggested that they regulate the viability and capacitation of spermatozoa. Spermatozoa retained in the oviductal epithelial cells show specific characteristics: normal morphology, intact acrosome and plasma membrane, no DNA fragmentation, and low levels of intracellular Ca2+ and protein phosphorylation at Tyr. This work aimed to define spermatozoa's ability to adhere to an immobilized fibronectin matrix and its effects on their viability and capacitation. We found that guinea pig spermatozoa showed a high affinity for adhering to an immobilized fibronectin matrix but not to those made up of type 1 collagen or laminin. This interaction was mediated by integrins that recognize the RGD domain. Spermatozoa adhered to an immobilized fibronectin matrix were maintained in a state of low capacitation: low levels of intracellular concentration of Ca2+, protein phosphorylation in Tyr and F-actin. Also, spermatozoa kept their plasma membrane and acrosome intact, flagellum beating, and showed low activation of caspases 3/7. The spermatozoa adhered to the immobilized fibronectin matrix, gradually detached, forming rosettes and did not undergo a spontaneous acrosomal reaction but were capable of experiencing a progesterone-induced acrosomal reaction. In conclusion, the adhesion of spermatozoa to an immobilized fibronectin matrix alters the physiology of the spermatozoa, keeping them in a steady state of capacitation, increasing their viability in a similar way to what was reported for spermatozoa adhered to oviductal epithelial cells.
{"title":"Guinea pig spermatozoa adhesion to an immobilized fibronectin matrix alters their physiology and increases their survival.","authors":"Coral Y Jorge-Cruz, Ana L Roa-Espitia, Enrique O Hernández-González","doi":"10.1093/biolre/ioae150","DOIUrl":"https://doi.org/10.1093/biolre/ioae150","url":null,"abstract":"<p><p>Isthmus is the region of the oviduct considered a reservoir for spermatozoa, where they are retained and then released synchronously with ovulation. Integrins mediate this interaction, and it is suggested that they regulate the viability and capacitation of spermatozoa. Spermatozoa retained in the oviductal epithelial cells show specific characteristics: normal morphology, intact acrosome and plasma membrane, no DNA fragmentation, and low levels of intracellular Ca2+ and protein phosphorylation at Tyr. This work aimed to define spermatozoa's ability to adhere to an immobilized fibronectin matrix and its effects on their viability and capacitation. We found that guinea pig spermatozoa showed a high affinity for adhering to an immobilized fibronectin matrix but not to those made up of type 1 collagen or laminin. This interaction was mediated by integrins that recognize the RGD domain. Spermatozoa adhered to an immobilized fibronectin matrix were maintained in a state of low capacitation: low levels of intracellular concentration of Ca2+, protein phosphorylation in Tyr and F-actin. Also, spermatozoa kept their plasma membrane and acrosome intact, flagellum beating, and showed low activation of caspases 3/7. The spermatozoa adhered to the immobilized fibronectin matrix, gradually detached, forming rosettes and did not undergo a spontaneous acrosomal reaction but were capable of experiencing a progesterone-induced acrosomal reaction. In conclusion, the adhesion of spermatozoa to an immobilized fibronectin matrix alters the physiology of the spermatozoa, keeping them in a steady state of capacitation, increasing their viability in a similar way to what was reported for spermatozoa adhered to oviductal epithelial cells.</p>","PeriodicalId":8965,"journal":{"name":"Biology of Reproduction","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}