首页 > 最新文献

Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )最新文献

英文 中文
Towards Segmentation and Spatial Alignment of the Human Embryonic Brain Using Deep Learning for Atlas-Based Registration 基于地图集的深度学习配准对人类胚胎大脑的分割和空间对齐
Pub Date : 2020-05-13 DOI: 10.1007/978-3-030-50120-4_4
W. Bastiaansen, M. Rousian, R. Steegers-Theunissen, W. Niessen, A. Koning, S. Klein
{"title":"Towards Segmentation and Spatial Alignment of the Human Embryonic Brain Using Deep Learning for Atlas-Based Registration","authors":"W. Bastiaansen, M. Rousian, R. Steegers-Theunissen, W. Niessen, A. Koning, S. Klein","doi":"10.1007/978-3-030-50120-4_4","DOIUrl":"https://doi.org/10.1007/978-3-030-50120-4_4","url":null,"abstract":"","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"22 1","pages":"34 - 43"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86579721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Learning Deformable Image Registration with Structure Guidance Constraints for Adaptive Radiotherapy 基于结构导向约束的自适应放疗形变图像配准学习
Pub Date : 2020-05-13 DOI: 10.1007/978-3-030-50120-4_5
Sven Kuckertz, N. Papenberg, J. Honegger, T. Morgas, B. Haas, S. Heldmann
{"title":"Learning Deformable Image Registration with Structure Guidance Constraints for Adaptive Radiotherapy","authors":"Sven Kuckertz, N. Papenberg, J. Honegger, T. Morgas, B. Haas, S. Heldmann","doi":"10.1007/978-3-030-50120-4_5","DOIUrl":"https://doi.org/10.1007/978-3-030-50120-4_5","url":null,"abstract":"","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"5 1","pages":"44 - 53"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79173035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Deep Volumetric Feature Encoding for Biomedical Images 生物医学图像的深度体积特征编码
Pub Date : 2020-05-13 DOI: 10.1007/978-3-030-50120-4_9
B. Avants, E. Greenblatt, J. Hesterman, N. Tustison
{"title":"Deep Volumetric Feature Encoding for Biomedical Images","authors":"B. Avants, E. Greenblatt, J. Hesterman, N. Tustison","doi":"10.1007/978-3-030-50120-4_9","DOIUrl":"https://doi.org/10.1007/978-3-030-50120-4_9","url":null,"abstract":"","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"24 1","pages":"91 - 100"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86942893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An Image Registration Framework for Discontinuous Mappings Along Cracks 一种沿裂纹不连续映射的图像配准框架
Pub Date : 2020-05-13 DOI: 10.1007/978-3-030-50120-4_16
H. Aggrawal, M. S. Andersen, J. Modersitzki
{"title":"An Image Registration Framework for Discontinuous Mappings Along Cracks","authors":"H. Aggrawal, M. S. Andersen, J. Modersitzki","doi":"10.1007/978-3-030-50120-4_16","DOIUrl":"https://doi.org/10.1007/978-3-030-50120-4_16","url":null,"abstract":"","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"89 1","pages":"163 - 173"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83648212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Multi-channel Image Registration of Cardiac MR Using Supervised Feature Learning with Convolutional Encoder-Decoder Network 基于监督特征学习和卷积编码器-解码器网络的心脏MR多通道图像配准
Pub Date : 2020-05-13 DOI: 10.1007/978-3-030-50120-4_10
Xuesong Lu, Y. Qiao
{"title":"Multi-channel Image Registration of Cardiac MR Using Supervised Feature Learning with Convolutional Encoder-Decoder Network","authors":"Xuesong Lu, Y. Qiao","doi":"10.1007/978-3-030-50120-4_10","DOIUrl":"https://doi.org/10.1007/978-3-030-50120-4_10","url":null,"abstract":"","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"5 1","pages":"103 - 110"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77004003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning-Based Affine Registration of Histological Images 基于学习的组织图像仿射配准
Pub Date : 2020-05-13 DOI: 10.1007/978-3-030-50120-4_2
Marek Wodzinski, H. Müller
{"title":"Learning-Based Affine Registration of Histological Images","authors":"Marek Wodzinski, H. Müller","doi":"10.1007/978-3-030-50120-4_2","DOIUrl":"https://doi.org/10.1007/978-3-030-50120-4_2","url":null,"abstract":"","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"114 1","pages":"12 - 22"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77567172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Enabling Manual Intervention for Otherwise Automated Registration of Large Image Series 启用手动干预,否则自动注册大图像系列
Pub Date : 2020-05-13 DOI: 10.1007/978-3-030-50120-4_3
R. Grothausmann, Dženan Zukić, Matt McCormick, C. Mühlfeld, L. Knudsen
{"title":"Enabling Manual Intervention for Otherwise Automated Registration of Large Image Series","authors":"R. Grothausmann, Dženan Zukić, Matt McCormick, C. Mühlfeld, L. Knudsen","doi":"10.1007/978-3-030-50120-4_3","DOIUrl":"https://doi.org/10.1007/978-3-030-50120-4_3","url":null,"abstract":"","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"86 2 1","pages":"23 - 33"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83590685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Biomedical Image Registration: 9th International Workshop, WBIR 2020, Portorož, Slovenia, December 1–2, 2020, Proceedings 生物医学图像配准:第九届国际研讨会,WBIR 2020, portororov,斯洛文尼亚,12月1-2日,2020,Proceedings
Pub Date : 2020-01-01 DOI: 10.1007/978-3-030-50120-4
J. McClelland, J. Kybic, O. Goksel, E. Bertino
{"title":"Biomedical Image Registration: 9th International Workshop, WBIR 2020, Portorož, Slovenia, December 1–2, 2020, Proceedings","authors":"J. McClelland, J. Kybic, O. Goksel, E. Bertino","doi":"10.1007/978-3-030-50120-4","DOIUrl":"https://doi.org/10.1007/978-3-030-50120-4","url":null,"abstract":"","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"101 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76858203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation of DRAMMS among 12 Popular Methods in Cross-Subject Cardiac MRI Registration. 12种常用心脏MRI配准方法的DRAMMS验证。
Pub Date : 2012-07-01 DOI: 10.1007/978-3-642-31340-0_22
Yangming Ou, Dong Hye Ye, Kilian M Pohl, Christos Davatzikos

Cross-subject image registration is the building block for many cardiac studies. In the literature, it is often handled by voxel-wise registration methods. However, studies are lacking to show which methods are more accurate and stable in this context. Aiming at answering this question, this paper evaluates 12 popular registration methods and validates a recently developed method DRAMMS [16] in the context of cross-subject cardiac registration. Our dataset consists of short-axis end-diastole cardiac MR images from 24 subjects, in which non-cardiac structures are removed. Each registration method was applied to all 552 image pairs. Registration accuracy is approximated by Jaccard overlap between deformed expert annotation of source image and the corresponding expert annotation of target image. This accuracy surrogate is further correlated with deformation aggressiveness, which is reflected by minimum, maximum and range of Jacobian determinants. Our study shows that DRAMMS [16] scores high in accuracy and well balances accuracy and aggressiveness in this dataset, followed by ANTs [13], MI-FFD [14], Demons [15], and ART [12]. Our findings in cross-subject cardiac registrations echo those findings in brain image registrations [7].

跨学科图像配准是许多心脏研究的基础。在文献中,它通常由体素级配准方法处理。然而,缺乏研究表明哪种方法在这种情况下更准确和稳定。针对这一问题,本文对12种流行的配准方法进行了评估,并在交叉学科心脏配准的背景下对最近发展起来的方法DRAMMS[16]进行了验证。我们的数据集包括24名受试者的短轴舒张末期心脏MR图像,其中非心脏结构被删除。每种配准方法应用于所有552对图像。通过源图像的变形专家标注与目标图像的相应专家标注之间的Jaccard重叠来逼近配准精度。该精度代理进一步与变形侵袭性相关,变形侵袭性通过雅可比行列式的最小值、最大值和范围反映出来。我们的研究表明,在该数据集中,DRAMMS[16]在准确性方面得分较高,并且很好地平衡了准确性和攻击性,其次是ANTs[13]、MI-FFD[14]、Demons[15]和ART[12]。我们在跨受试者心脏配准中的发现与脑图像配准的发现相呼应[7]。
{"title":"Validation of DRAMMS among 12 Popular Methods in Cross-Subject Cardiac MRI Registration.","authors":"Yangming Ou,&nbsp;Dong Hye Ye,&nbsp;Kilian M Pohl,&nbsp;Christos Davatzikos","doi":"10.1007/978-3-642-31340-0_22","DOIUrl":"https://doi.org/10.1007/978-3-642-31340-0_22","url":null,"abstract":"<p><p>Cross-subject image registration is the building block for many cardiac studies. In the literature, it is often handled by voxel-wise registration methods. However, studies are lacking to show which methods are more accurate and stable in this context. Aiming at answering this question, this paper evaluates 12 popular registration methods and validates a recently developed method DRAMMS [16] in the context of cross-subject cardiac registration. Our dataset consists of short-axis end-diastole cardiac MR images from 24 subjects, in which non-cardiac structures are removed. Each registration method was applied to all 552 image pairs. Registration accuracy is approximated by Jaccard overlap between deformed expert annotation of source image and the corresponding expert annotation of target image. This accuracy surrogate is further correlated with deformation aggressiveness, which is reflected by minimum, maximum and range of Jacobian determinants. Our study shows that DRAMMS [16] scores high in accuracy and well balances accuracy and aggressiveness in this dataset, followed by ANTs [13], MI-FFD [14], Demons [15], and ART [12]. Our findings in cross-subject cardiac registrations echo those findings in brain image registrations [7].</p>","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"7359 ","pages":"209-219"},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462118/pdf/nihms861246.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35080509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
A Method for Automated Cortical Surface Registration and Labeling. 一种皮质表面自动配准与标记方法。
Pub Date : 2012-07-01 DOI: 10.1007/978-3-642-31340-0_19
Anand A Joshi, David W Shattuck, Richard M Leahy

Registration and delineation of anatomical features in MRI of the human brain play an important role in the investigation of brain development and disease. Accurate, automatic and computationally efficient cortical surface registration and delineation of surface-based landmarks, including regions of interest (ROIs) and sulcal curves (sulci), remain challenging problems due to substantial variation in the shapes of these features across populations. We present a method that performs a fast and accurate registration, labeling and sulcal delineation of brain images. The new method presented in this paper uses a multiresolution, curvature based approach to perform a registration of a subject brain surface model to a delineated atlas surface model; the atlas ROIs and sulcal curves are then mapped to the subject brain surface. A geodesic curvature flow on the cortical surface is then used to refine the locations of the sulcal curves sulci and label boundaries further, such that they follow the true sulcal fundi more closely. The flow is formulated using a level set based method on the cortical surface, which represents the curves as zero level sets. We also incorporate a curvature based weighting that drives the curves to the bottoms of the sulcal valleys in the cortical folds. Finally, we validate our new approach by comparing sets of automatically delineated sulcal curves it produced to corresponding sets of manually delineated sulcal curves. Our results indicate that the proposed method is able to find these landmarks accurately.

人脑MRI解剖特征的登记和描绘在脑发育和疾病的研究中起着重要的作用。准确、自动和计算效率高的皮质表面配准和基于表面的地标的描绘,包括感兴趣区域(roi)和沟曲线(sulci),仍然是具有挑战性的问题,因为这些特征的形状在人群中存在很大差异。我们提出了一种快速准确的脑图像配准、标记和脑沟描绘方法。本文提出的新方法采用多分辨率、基于曲率的方法将受试者脑表面模型配准到描绘的图谱表面模型;然后将地图集roi和脑沟曲线映射到受试者的大脑表面。然后使用皮质表面的测地线曲率流来细化沟曲线的位置,并进一步标记边界,使它们更紧密地遵循真正的沟底。在皮质表面上使用基于水平集的方法来制定流,该方法将曲线表示为零水平集。我们还结合了基于曲率的加权,将曲线驱动到皮质褶皱的沟谷底部。最后,我们通过将自动绘制的沟曲线集与相应的手动绘制的沟曲线集进行比较来验证我们的新方法。结果表明,该方法能够准确地找到这些地标。
{"title":"A Method for Automated Cortical Surface Registration and Labeling.","authors":"Anand A Joshi,&nbsp;David W Shattuck,&nbsp;Richard M Leahy","doi":"10.1007/978-3-642-31340-0_19","DOIUrl":"https://doi.org/10.1007/978-3-642-31340-0_19","url":null,"abstract":"<p><p>Registration and delineation of anatomical features in MRI of the human brain play an important role in the investigation of brain development and disease. Accurate, automatic and computationally efficient cortical surface registration and delineation of surface-based landmarks, including regions of interest (ROIs) and sulcal curves (sulci), remain challenging problems due to substantial variation in the shapes of these features across populations. We present a method that performs a fast and accurate registration, labeling and sulcal delineation of brain images. The new method presented in this paper uses a multiresolution, curvature based approach to perform a registration of a subject brain surface model to a delineated atlas surface model; the atlas ROIs and sulcal curves are then mapped to the subject brain surface. A geodesic curvature flow on the cortical surface is then used to refine the locations of the sulcal curves sulci and label boundaries further, such that they follow the true sulcal fundi more closely. The flow is formulated using a level set based method on the cortical surface, which represents the curves as zero level sets. We also incorporate a curvature based weighting that drives the curves to the bottoms of the sulcal valleys in the cortical folds. Finally, we validate our new approach by comparing sets of automatically delineated sulcal curves it produced to corresponding sets of manually delineated sulcal curves. Our results indicate that the proposed method is able to find these landmarks accurately.</p>","PeriodicalId":90799,"journal":{"name":"Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )","volume":"7359 ","pages":"180-189"},"PeriodicalIF":0.0,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-642-31340-0_19","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33869977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 52
期刊
Biomedical image registration, ... proceedings. WBIR (Workshop : 2006- )
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1