Obesity, the metabolic syndrome, and metabolic dysfunction-associated fatty liver disease (MAFLD) can be portrayed as transmissible diseases. Indeed, they can be induced, in animal models, by cohabitation or by transplantation of fecal microbiota from other animals or humans with those diseases. As such, to get a 10,000-foot view, we need to see under the lens the microbes that populate our gut. Gut microbiota participates in the harvesting of energy from nutrients, it allows the digestion of otherwise indigestible nutrients such as fibers, and it also produces short chain fatty acids and some vitamins while emitting different compounds that can regulate whole-body metabolism and elicit proinflammatory responses. The metabolic syndrome and MAFLD share physiopathology and also patterns of gut dysbiota. Moreover, MAFLD also correlates with dysbiota patterns that are associated with direct steatogenic or fibrogenic effects. In the last decade, a tremendous effort has allowed a fair understanding of the dysbiota patterns associated with MAFLD. More recently, research is moving towards the delineation of microbiota-targeted therapies to manage metabolic dysfunction and MAFLD. This review provides in-depth insight into the state-of-the-art of gut dysbiosis in MAFLD, targeting clinical hepatologists.
{"title":"MAFLD under the lens: the role of gut microbiota","authors":"Patrícia Sousa, M. Machado","doi":"10.20517/mtod.2022.15","DOIUrl":"https://doi.org/10.20517/mtod.2022.15","url":null,"abstract":"Obesity, the metabolic syndrome, and metabolic dysfunction-associated fatty liver disease (MAFLD) can be portrayed as transmissible diseases. Indeed, they can be induced, in animal models, by cohabitation or by transplantation of fecal microbiota from other animals or humans with those diseases. As such, to get a 10,000-foot view, we need to see under the lens the microbes that populate our gut. Gut microbiota participates in the harvesting of energy from nutrients, it allows the digestion of otherwise indigestible nutrients such as fibers, and it also produces short chain fatty acids and some vitamins while emitting different compounds that can regulate whole-body metabolism and elicit proinflammatory responses. The metabolic syndrome and MAFLD share physiopathology and also patterns of gut dysbiota. Moreover, MAFLD also correlates with dysbiota patterns that are associated with direct steatogenic or fibrogenic effects. In the last decade, a tremendous effort has allowed a fair understanding of the dysbiota patterns associated with MAFLD. More recently, research is moving towards the delineation of microbiota-targeted therapies to manage metabolic dysfunction and MAFLD. This review provides in-depth insight into the state-of-the-art of gut dysbiosis in MAFLD, targeting clinical hepatologists.","PeriodicalId":91001,"journal":{"name":"Metabolism and target organ damage","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Greco, F. Passerini, Silvia Coluccia, M. Bondi, F. Mecheri, V. Trapani, A. Volpe, P. Toschi, F. Carubbi, M. Simoni, D. Santi
Aim: Obesity and co-existing metabolic comorbidities are associated with increased cardiovascular (CV) morbidity and mortality risks, generally clustered to risk factors such as dyslipidemia. The aim of this study was to evaluate the lipid profile changes in subjects with severe obesity undergoing different procedures of bariatric and metabolic surgery (BMS), sleeve gastrectomy (SG), and Roux-en-Y gastric bypass (RYGB) in a real-world, clinical setting. Methods: A single-center, retrospective, observational clinical study was performed enrolling patients undergoing BMS. The primary outcome was the change in total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL) cholesterol, and triglycerides. Results: In total, 123 patients were enrolled (males 25.2% and females 74.8%) with a mean age of 48.2 ± 7.9 years and a mean BMI of 47.0 ± 9.1 kg/m2. All patients were evaluated until 16.9 ± 8.1 months after surgery. Total and HDL cholesterol did not change after surgery, while a significant reduction in triglyceride levels was recorded. Moreover, a rapid decline of both LDL and non-HDL cholesterol among follow-up visits was observed. In particular, significant inverse correlations were found between total cholesterol, LDL cholesterol, non-HDL cholesterol, and triglycerides and the number of months elapsed after bariatric surgery. Similarly, a direct correlation was found considering HDL cholesterol. Moreover, total cholesterol, LDL cholesterol, non-HDL cholesterol, and triglycerides significantly changed among visits after RYGB, while no changes were observed in the SG group. Finally, considering lipid-lowering therapies, the improvement in lipid asset was detected only in non-treated patients. Conclusion: This study corroborates the knowledge of the improvement in lipid profile with BMS in clinical practice. Together with sustained weight loss, the BMS approach efficiently corrects dyslipidemia, contributing to decreasing the CV risk.
{"title":"Effects of bariatric and metabolic surgical procedures on dyslipidemia: a retrospective, observational analysis","authors":"C. Greco, F. Passerini, Silvia Coluccia, M. Bondi, F. Mecheri, V. Trapani, A. Volpe, P. Toschi, F. Carubbi, M. Simoni, D. Santi","doi":"10.20517/mtod.2022.22","DOIUrl":"https://doi.org/10.20517/mtod.2022.22","url":null,"abstract":"Aim: Obesity and co-existing metabolic comorbidities are associated with increased cardiovascular (CV) morbidity and mortality risks, generally clustered to risk factors such as dyslipidemia. The aim of this study was to evaluate the lipid profile changes in subjects with severe obesity undergoing different procedures of bariatric and metabolic surgery (BMS), sleeve gastrectomy (SG), and Roux-en-Y gastric bypass (RYGB) in a real-world, clinical setting. Methods: A single-center, retrospective, observational clinical study was performed enrolling patients undergoing BMS. The primary outcome was the change in total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL) cholesterol, and triglycerides. Results: In total, 123 patients were enrolled (males 25.2% and females 74.8%) with a mean age of 48.2 ± 7.9 years and a mean BMI of 47.0 ± 9.1 kg/m2. All patients were evaluated until 16.9 ± 8.1 months after surgery. Total and HDL cholesterol did not change after surgery, while a significant reduction in triglyceride levels was recorded. Moreover, a rapid decline of both LDL and non-HDL cholesterol among follow-up visits was observed. In particular, significant inverse correlations were found between total cholesterol, LDL cholesterol, non-HDL cholesterol, and triglycerides and the number of months elapsed after bariatric surgery. Similarly, a direct correlation was found considering HDL cholesterol. Moreover, total cholesterol, LDL cholesterol, non-HDL cholesterol, and triglycerides significantly changed among visits after RYGB, while no changes were observed in the SG group. Finally, considering lipid-lowering therapies, the improvement in lipid asset was detected only in non-treated patients. Conclusion: This study corroborates the knowledge of the improvement in lipid profile with BMS in clinical practice. Together with sustained weight loss, the BMS approach efficiently corrects dyslipidemia, contributing to decreasing the CV risk.","PeriodicalId":91001,"journal":{"name":"Metabolism and target organ damage","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aim: The optimal screening strategy for advanced liver fibrosis in overweight and obese patients is unknown. The aim of this study is to compare the performance of different strategies to select patients at high risk of advanced liver fibrosis for screening using non-invasive tools.
Methods: All patients underwent: liver 1H-MRS and percutaneous liver biopsy (in those with nonalcoholic fatty liver disease [NAFLD]). Unique selection strategies were compared to determine the best screening algorithm: (A) A "metabolic approach": selecting patients based on HOMA-IR ≥ 3; (B) A "diabetes approach": selecting only patients with type 2 diabetes; (C) An "imaging approach": selecting patients with hepatic steatosis based on 1H-MRS; (D) A "liver biochemistry approach": selecting patients with elevated ALT (i.e., ≥ 30 IU/L for males and ≥ 19 IU/L for females); and (E) Universal screening of overweight and obese patients. FIB-4 index, NAFLD fibrosis score, and APRI were applied as screening strategies.
Results: A total of 275 patients were included in the study. Patients with advanced fibrosis (n = 29) were matched for age, gender, ethnicity, and BMI. Selecting patients by ALT elevation provided the most effective strategy, limiting the false positive rate while maintaining the sensitivity compared to universal screening. Selecting patients by any other strategy did not contribute to increasing the sensitivity of the approach and resulted in more false positive results.
Conclusion: Universal screening of overweight/obese patients for advanced fibrosis with non-invasive tools is unwarranted, as selection strategies based on elevated ALT levels lead to the same sensitivity with a lower false positive rate (i.e., fewer patients that would require a liver biopsy or referral to hepatology).
{"title":"Assessing strategies to target screening for advanced liver fibrosis among overweight and obese patients.","authors":"Fernando Bril, Eddison Godinez Leiva, Romina Lomonaco, Sulav Shrestha, Srilaxmi Kalavalapalli, Meagan Gray, Kenneth Cusi","doi":"10.20517/mtod.2022.08","DOIUrl":"https://doi.org/10.20517/mtod.2022.08","url":null,"abstract":"<p><strong>Aim: </strong>The optimal screening strategy for advanced liver fibrosis in overweight and obese patients is unknown. The aim of this study is to compare the performance of different strategies to select patients at high risk of advanced liver fibrosis for screening using non-invasive tools.</p><p><strong>Methods: </strong>All patients underwent: liver <sup>1</sup>H-MRS and percutaneous liver biopsy (in those with nonalcoholic fatty liver disease [NAFLD]). Unique selection strategies were compared to determine the best screening algorithm: (A) A \"metabolic approach\": selecting patients based on HOMA-IR ≥ 3; (B) A \"diabetes approach\": selecting only patients with type 2 diabetes; (C) An \"imaging approach\": selecting patients with hepatic steatosis based on <sup>1</sup>H-MRS; (D) A \"liver biochemistry approach\": selecting patients with elevated ALT (i.e., ≥ 30 IU/L for males and ≥ 19 IU/L for females); and (E) Universal screening of overweight and obese patients. FIB-4 index, NAFLD fibrosis score, and APRI were applied as screening strategies.</p><p><strong>Results: </strong>A total of 275 patients were included in the study. Patients with advanced fibrosis (<i>n</i> = 29) were matched for age, gender, ethnicity, and BMI. Selecting patients by ALT elevation provided the most effective strategy, limiting the false positive rate while maintaining the sensitivity compared to universal screening. Selecting patients by any other strategy did not contribute to increasing the sensitivity of the approach and resulted in more false positive results.</p><p><strong>Conclusion: </strong>Universal screening of overweight/obese patients for advanced fibrosis with non-invasive tools is unwarranted, as selection strategies based on elevated ALT levels lead to the same sensitivity with a lower false positive rate (i.e., fewer patients that would require a liver biopsy or referral to hepatology).</p>","PeriodicalId":91001,"journal":{"name":"Metabolism and target organ damage","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33438551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
More than 100 years after the discovery of insulin, the exact etiology and pathophysiology of type 1 diabetes (T1D) remains elusive, but our knowledge is growing. This leads to louder calls to initiate a risk screening for T1D in the general population. This risk screening could be based on the genetic risk (in the general population or targeted HLA genotyping in family members of persons with T1D) or on the screening for autoantibodies in blood (e.g., antibodies against insulin, GAD, IA2, or ZnT8). The presence of autoantibodies is known to convey a clearly increased risk of progressing to T1D, particularly when two or more antibody types are present. It remains a point of discussion whether screening efforts are cost-effective. At present, in the absence of interventions capable of delaying the onset of disease, the only benefit of screening is the earlier diagnosis of T1D, thus avoiding life-threatening diabetic ketoacidosis (DKA). Nevertheless, large consortia (e.g., INNODIA and TrialNet) are currently focusing on not only disease biomarkers but also biomarkers of therapeutic effect of interventions. All hope is thus focused on the arrival of intervention strategies that could arrest the ongoing immune destruction of the beta cell and thus delay clinical disease onset. Thus far, attempts have focused on either protecting the beta cell or arresting the immune response, but the future seems to be one of combination therapy. Here, we perform a scoping review on the pathogenesis of T1D, discuss screening strategies, and present promising intervention strategies.
{"title":"Arresting type 1 diabetes: are we there yet? Obstacles and opportunities","authors":"Chantal Mathieu, P. Martens","doi":"10.20517/mtod.2022.16","DOIUrl":"https://doi.org/10.20517/mtod.2022.16","url":null,"abstract":"More than 100 years after the discovery of insulin, the exact etiology and pathophysiology of type 1 diabetes (T1D) remains elusive, but our knowledge is growing. This leads to louder calls to initiate a risk screening for T1D in the general population. This risk screening could be based on the genetic risk (in the general population or targeted HLA genotyping in family members of persons with T1D) or on the screening for autoantibodies in blood (e.g., antibodies against insulin, GAD, IA2, or ZnT8). The presence of autoantibodies is known to convey a clearly increased risk of progressing to T1D, particularly when two or more antibody types are present. It remains a point of discussion whether screening efforts are cost-effective. At present, in the absence of interventions capable of delaying the onset of disease, the only benefit of screening is the earlier diagnosis of T1D, thus avoiding life-threatening diabetic ketoacidosis (DKA). Nevertheless, large consortia (e.g., INNODIA and TrialNet) are currently focusing on not only disease biomarkers but also biomarkers of therapeutic effect of interventions. All hope is thus focused on the arrival of intervention strategies that could arrest the ongoing immune destruction of the beta cell and thus delay clinical disease onset. Thus far, attempts have focused on either protecting the beta cell or arresting the immune response, but the future seems to be one of combination therapy. Here, we perform a scoping review on the pathogenesis of T1D, discuss screening strategies, and present promising intervention strategies.","PeriodicalId":91001,"journal":{"name":"Metabolism and target organ damage","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cancer in individuals with obesity and metabolic disorders. A preventable epidemic?","authors":"F. Lonardo","doi":"10.20517/mtod.2022.28","DOIUrl":"https://doi.org/10.20517/mtod.2022.28","url":null,"abstract":"","PeriodicalId":91001,"journal":{"name":"Metabolism and target organ damage","volume":"123 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Solís-Muñoz, Ángela Berlana, Elvira del Pozo-Maroto, Lucía Domínguez-Alcón, Liliam Elbouayadi, C. García-Monzón, Á. González-Rodríguez
Hepatitis C virus (HCV) is still considered as a major public health problem because in 2015 around 71 million people were chronically infected worldwide. It is important to note that chronic HCV infection is a systemic disease that is associated with diverse extrahepatic disorders including insulin resistance and type 2 diabetes mellitus. The discovery of new direct-acting antiviral agents (DAAs) has become a huge advance in the treatment of HCV infection. The complex interplay between HCV and glucose metabolic pathways remains to be fully elucidated, but it is becoming clearer that elimination of chronic HCV infection halts the progression of liver disease, but more evidence is still needed to better understand how successful antiviral treatment influences insulin resistance and other abnormalities of glucose metabolism linked to HCV infection. This review provides a comprehensive overview of the glucose metabolism disturbances related to chronic HCV infection, highlighting the new insights into the molecular basis of insulin resistance induced by HCV and the mechanisms underlying the reversion of this metabolic disorder by DAAs.
{"title":"Insights on the disruption of glucose metabolism and hepatic insulin resistance induced by hepatitis C virus","authors":"P. Solís-Muñoz, Ángela Berlana, Elvira del Pozo-Maroto, Lucía Domínguez-Alcón, Liliam Elbouayadi, C. García-Monzón, Á. González-Rodríguez","doi":"10.20517/mtod.2021.18","DOIUrl":"https://doi.org/10.20517/mtod.2021.18","url":null,"abstract":"Hepatitis C virus (HCV) is still considered as a major public health problem because in 2015 around 71 million people were chronically infected worldwide. It is important to note that chronic HCV infection is a systemic disease that is associated with diverse extrahepatic disorders including insulin resistance and type 2 diabetes mellitus. The discovery of new direct-acting antiviral agents (DAAs) has become a huge advance in the treatment of HCV infection. The complex interplay between HCV and glucose metabolic pathways remains to be fully elucidated, but it is becoming clearer that elimination of chronic HCV infection halts the progression of liver disease, but more evidence is still needed to better understand how successful antiviral treatment influences insulin resistance and other abnormalities of glucose metabolism linked to HCV infection. This review provides a comprehensive overview of the glucose metabolism disturbances related to chronic HCV infection, highlighting the new insights into the molecular basis of insulin resistance induced by HCV and the mechanisms underlying the reversion of this metabolic disorder by DAAs.","PeriodicalId":91001,"journal":{"name":"Metabolism and target organ damage","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Low density lipoproteins (LDL) reduction remains the key goal for reducing the risk of atherosclerotic cardiovascular diseases (CVD) in people with high residual risk and metabolic complications including liver disease. Notwithstanding, epidemiological projections support a key role of liver-derived apolipoprotein B (ApoB) containing lipoproteins, namely very low density lipoproteins (VLDL) and their “remnants” (TG), undergoing the activity of lipases, in eliciting atherosclerotic inflammatory sequelae of a comparable order of magnitude to that of LDL. Disparate experimental evidence supports that triglycerides (TG), residual cholesterol content, or the large apolipoprotein set on the surface of these lipoproteins can elicit a number of plausible immune-inflammatory mechanisms that foster the vascular atherosclerotic process. Therapeutic options that convincingly lowered the plasma levels of liver-derived ApoB containing lipoproteins, either by reducing the hepatic synthesis or by improving the peripheral lipolysis of the lipid content, did not exert robust CVD risk reduction, and the effect on inflammation was questionable. Understanding the mechanisms linking liver-derived lipoproteins with chronic inflammation will provide pathophysiological insights for the identification of new therapeutic targets for people at high CVD risk and with metabolic complications. In this perspective, this topic is of immediate interest for the prevention of CVD in patients affected by non-alcoholic fatty liver disease (NAFLD) and, even more, for NAFLD patients with diabetes, insulin resistance, or other comorbidities (metabolic-associated fatty liver disease). This review resumes the principal physio-pathological insights regarding the metabolism of liver-derived lipoproteins and provides an update on the current pharmacological options that can be considered for improving CVD prevention in metabolic liver diseases.
{"title":"Liver-derived lipoproteins and inflammation: from pathophysiology to pharmacological targets in metabolic liver disease","authors":"A. Baragetti","doi":"10.20517/mtod.2022.09","DOIUrl":"https://doi.org/10.20517/mtod.2022.09","url":null,"abstract":"Low density lipoproteins (LDL) reduction remains the key goal for reducing the risk of atherosclerotic cardiovascular diseases (CVD) in people with high residual risk and metabolic complications including liver disease. Notwithstanding, epidemiological projections support a key role of liver-derived apolipoprotein B (ApoB) containing lipoproteins, namely very low density lipoproteins (VLDL) and their “remnants” (TG), undergoing the activity of lipases, in eliciting atherosclerotic inflammatory sequelae of a comparable order of magnitude to that of LDL. Disparate experimental evidence supports that triglycerides (TG), residual cholesterol content, or the large apolipoprotein set on the surface of these lipoproteins can elicit a number of plausible immune-inflammatory mechanisms that foster the vascular atherosclerotic process. Therapeutic options that convincingly lowered the plasma levels of liver-derived ApoB containing lipoproteins, either by reducing the hepatic synthesis or by improving the peripheral lipolysis of the lipid content, did not exert robust CVD risk reduction, and the effect on inflammation was questionable. Understanding the mechanisms linking liver-derived lipoproteins with chronic inflammation will provide pathophysiological insights for the identification of new therapeutic targets for people at high CVD risk and with metabolic complications. In this perspective, this topic is of immediate interest for the prevention of CVD in patients affected by non-alcoholic fatty liver disease (NAFLD) and, even more, for NAFLD patients with diabetes, insulin resistance, or other comorbidities (metabolic-associated fatty liver disease). This review resumes the principal physio-pathological insights regarding the metabolism of liver-derived lipoproteins and provides an update on the current pharmacological options that can be considered for improving CVD prevention in metabolic liver diseases.","PeriodicalId":91001,"journal":{"name":"Metabolism and target organ damage","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Arrese, C. Cabello-Verrugio, J. Arab, F. Barrera, R. Baudrand, F. Guarda, I. Gul, D. Cabrera
Nonalcoholic fatty liver is a worldwide common problem with more prevalence in non-Asian populations that is closely correlated with the muscle-related disorder sarcopenia. The incidence of both health issues has been observed to be strongly interlinked where presence of one exacerbates the other. Nonalcoholic fatty liver disease (NAFLD) pathophysiology increases the muscle loss, while the onset of NAFLD in sarcopenic patients aggravates the liver problems as compared to non-sarcopenic patients. Scarcity of research on the subject provides very little evidence about the cause and effect of disorders. No FDA approved drugs are available to date for NAFLD and sarcopenia. Research is underway to understand the complex biochemical pathways involved in the development of both disorders. This review is a small contribution toward understanding sarcopenia in the setting of NAFLD that provides insight on the common pathophysiological profile of sarcopenia and NAFLD and portrays a novel way of delving into the subject by introducing the concept of cortisol crosstalk with the muscle-liver axis. Sarcopenia and NAFLD are considered metabolism-related problems, and cortisol, being a glucocorticoid, plays an important role in metabolism of fats, carbohydrates, and proteins. Cushing’s syndrome, characterized by abnormally elevated concentrations of blood cortisol/enhanced intracellular activity, shares many pathologic conditions (such as insulin resistance, metabolic syndrome, abnormal levels of specific cytokines, and obesity) with NAFLD and sarcopenia. Hence, cortisol can be a potential biomarker in sarcopenia and NAFLD. As cortisol activity at cellular level is controlled by 11β-hydroxysteroid dehydrogenase type 1 and 2 (11β-HSD1/2) enzymes that convert inactive steroid precursor into active cortisol, these enzymes can be targeted for the study of sarcopenia and NAFLD. Combined studies on NAFLD and sarcopenia with respect to cortisol open a new avenue of research in the understanding of both disorders.
{"title":"Sarcopenia in the setting of nonalcoholic fatty liver","authors":"M. Arrese, C. Cabello-Verrugio, J. Arab, F. Barrera, R. Baudrand, F. Guarda, I. Gul, D. Cabrera","doi":"10.20517/mtod.2021.16","DOIUrl":"https://doi.org/10.20517/mtod.2021.16","url":null,"abstract":"Nonalcoholic fatty liver is a worldwide common problem with more prevalence in non-Asian populations that is closely correlated with the muscle-related disorder sarcopenia. The incidence of both health issues has been observed to be strongly interlinked where presence of one exacerbates the other. Nonalcoholic fatty liver disease (NAFLD) pathophysiology increases the muscle loss, while the onset of NAFLD in sarcopenic patients aggravates the liver problems as compared to non-sarcopenic patients. Scarcity of research on the subject provides very little evidence about the cause and effect of disorders. No FDA approved drugs are available to date for NAFLD and sarcopenia. Research is underway to understand the complex biochemical pathways involved in the development of both disorders. This review is a small contribution toward understanding sarcopenia in the setting of NAFLD that provides insight on the common pathophysiological profile of sarcopenia and NAFLD and portrays a novel way of delving into the subject by introducing the concept of cortisol crosstalk with the muscle-liver axis. Sarcopenia and NAFLD are considered metabolism-related problems, and cortisol, being a glucocorticoid, plays an important role in metabolism of fats, carbohydrates, and proteins. Cushing’s syndrome, characterized by abnormally elevated concentrations of blood cortisol/enhanced intracellular activity, shares many pathologic conditions (such as insulin resistance, metabolic syndrome, abnormal levels of specific cytokines, and obesity) with NAFLD and sarcopenia. Hence, cortisol can be a potential biomarker in sarcopenia and NAFLD. As cortisol activity at cellular level is controlled by 11β-hydroxysteroid dehydrogenase type 1 and 2 (11β-HSD1/2) enzymes that convert inactive steroid precursor into active cortisol, these enzymes can be targeted for the study of sarcopenia and NAFLD. Combined studies on NAFLD and sarcopenia with respect to cortisol open a new avenue of research in the understanding of both disorders.","PeriodicalId":91001,"journal":{"name":"Metabolism and target organ damage","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Pedroni, M. P. Leòn, L. R. Bonetti, A. Viel, D. Noto, F. Nascimbeni, P. Sena, L. Roncucci
Colorectal cancer is usually considered a disease of the elderly; however, in a small fraction of patients (2%-3% of all affected individuals), colorectal malignancies may develop earlier. The reasons whereby some individuals develop colorectal cancer at a young age are poorly understood. In a 12-year-old girl, a malignancy was diagnosed in the ascending colon. There was no familial history of Lynch syndrome or familial adenomatous polyposis. The metabolic profile of the patient revealed hypertriglyceridemia and low high-density lipoprotein cholesterol levels at nine years, then diagnosed as familial hypertriglyceridemia due to a constitutional mutation in the APOA5 gene (c.427delC). Moreover, variants possibly increasing the risk of cancer were detected in MSH6 (c.3438+11_3438+14delCTTA, intron 5) and APC (I1307K). The patient showed a rather unusual dietary pattern, since her basic alimentation from weaning consisted almost exclusively of meat homogenates and, subsequently, roasted meat or cutlets. Other foods, including fish, vegetables, sweets, and pasta, were refused. In this case, genetic and environmental factors could have acted in a particularly accelerated manner. Indeed, the genetic background of the patient (familial hypertriglyceridemia and polymorphisms predisposing to colorectal cancer) may have favored a dietary-driven colorectal carcinogenesis, resulting in an extremely early onset development of malignancy.
{"title":"Colon cancer in a 12-year-old girl with hypertriglyceridemia","authors":"M. Pedroni, M. P. Leòn, L. R. Bonetti, A. Viel, D. Noto, F. Nascimbeni, P. Sena, L. Roncucci","doi":"10.20517/mtod.2021.12","DOIUrl":"https://doi.org/10.20517/mtod.2021.12","url":null,"abstract":"Colorectal cancer is usually considered a disease of the elderly; however, in a small fraction of patients (2%-3% of all affected individuals), colorectal malignancies may develop earlier. The reasons whereby some individuals develop colorectal cancer at a young age are poorly understood. In a 12-year-old girl, a malignancy was diagnosed in the ascending colon. There was no familial history of Lynch syndrome or familial adenomatous polyposis. The metabolic profile of the patient revealed hypertriglyceridemia and low high-density lipoprotein cholesterol levels at nine years, then diagnosed as familial hypertriglyceridemia due to a constitutional mutation in the APOA5 gene (c.427delC). Moreover, variants possibly increasing the risk of cancer were detected in MSH6 (c.3438+11_3438+14delCTTA, intron 5) and APC (I1307K). The patient showed a rather unusual dietary pattern, since her basic alimentation from weaning consisted almost exclusively of meat homogenates and, subsequently, roasted meat or cutlets. Other foods, including fish, vegetables, sweets, and pasta, were refused. In this case, genetic and environmental factors could have acted in a particularly accelerated manner. Indeed, the genetic background of the patient (familial hypertriglyceridemia and polymorphisms predisposing to colorectal cancer) may have favored a dietary-driven colorectal carcinogenesis, resulting in an extremely early onset development of malignancy.","PeriodicalId":91001,"journal":{"name":"Metabolism and target organ damage","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67658617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Gitto, Nicolò Mannelli, A. Tassi, F. Gabrielli, F. Nascimbeni, P. Andreone
Nonalcoholic fatty liver disease (NAFLD) represents one of the most diffuse liver diseases worldwide. It is a condition ranging from liver steatosis to non-alcoholic steatohepatitis (NASH) and NASH-related cirrhosis. Recently, the term metabolic dysfunction-associated fatty liver disease has been proposed in place of NAFLD, accenting the metabolic and cardiovascular risks that accompany hepatic disease. In the last decades, NASH and NASH-related cirrhosis have been the fastest growing indications for liver transplantation (LT), and they will probably overcome the other indications in next future. After LT, recipients show an important increase in body weight due to a greater caloric intake, partially because of the metabolic influence of immunosuppressant drugs, favoring the development of diabetes mellitus, dyslipidemias, and arterial hypertension. These metabolic complications will, in turn, elevate cardiovascular risk in this population. In this review, we analyze the main metabolic challenges of both pre-and post-LT periods.
{"title":"Liver transplantation and nonalcoholic steatohepatitis: the state of the art","authors":"S. Gitto, Nicolò Mannelli, A. Tassi, F. Gabrielli, F. Nascimbeni, P. Andreone","doi":"10.20517/mtod.2022.04","DOIUrl":"https://doi.org/10.20517/mtod.2022.04","url":null,"abstract":"Nonalcoholic fatty liver disease (NAFLD) represents one of the most diffuse liver diseases worldwide. It is a condition ranging from liver steatosis to non-alcoholic steatohepatitis (NASH) and NASH-related cirrhosis. Recently, the term metabolic dysfunction-associated fatty liver disease has been proposed in place of NAFLD, accenting the metabolic and cardiovascular risks that accompany hepatic disease. In the last decades, NASH and NASH-related cirrhosis have been the fastest growing indications for liver transplantation (LT), and they will probably overcome the other indications in next future. After LT, recipients show an important increase in body weight due to a greater caloric intake, partially because of the metabolic influence of immunosuppressant drugs, favoring the development of diabetes mellitus, dyslipidemias, and arterial hypertension. These metabolic complications will, in turn, elevate cardiovascular risk in this population. In this review, we analyze the main metabolic challenges of both pre-and post-LT periods.","PeriodicalId":91001,"journal":{"name":"Metabolism and target organ damage","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}