Clinical studies have shown that the androgen receptor (AR) is ubiquitously expressed in breast cancers and this could provide prognostic implication in the diagnosis and treatment of breast cancers. Data from Nurse's Health Study on women with invasive breast cancer suggest that a significant number of tumors were AR-positive as defined by immunohistochemistry. In addition, the distribution of AR among different breast cancer subtypes varies significantly, and the biological reasons for this variation are not well understood. Despite strong histochemical evidence, the AR status is not applied for assessing pathological findings and disease outcome in clinical practice. AR antagonists are not currently used as therapy in breast cancer. This is in part due to conflicting results from early clinical trials with first generation of AR antagonists together with the complexity in breast cancer heterogeneity. In addition, role of AR in breast cancer is not fully understood. Here we will review the role of AR in different subtypes of breast cancers and elucidate its mechanisms. We will also discuss some recent interesting findings on the second generation of AR antagonists for treatment of breast cancer.
Adipocytes, apart from their critical role as the energy storage depots, contribute to the composition of the tumor microenvironment. Our previous studies based on a single hematopoietic stem cell (HSC) transplantation model, have revealed a novel source of adipocytes from HSCs via monocyte/macrophage progenitors. Herein, we extend these studies to examine the role of HSC-derived adipocytes (HSC-Ad) in tumor progression. When cultured under adipogenic conditions, bone marrow-derived monocytic progenitors differentiated into adipocytes that accumulated oil droplets containing triglyceride. The adipokine array and ELISAs confirmed secretion of multiple adipokines by HSC-Ad. These adipocytes underwent further development in vivo when injected subcutaneously into C57Bl/6 mice. When co-injected with melanoma B16F1 cells or breast cancer E0771 cells into syngeneic C57Bl/6 mice, HSC-Ad not only accelerated both melanoma and breast tumor growth, but also enhanced vascularization in both tumors. Conditioned media from HSC-Ad supported B16F1 and E0771 cell proliferation and enhanced cell migration in vitro. Among the HSC-Ad secreted adipokines, insulin-like growth factor 1 (IGF-1) played an important role in E0771 cell proliferation. Hepatocyte growth factor (HGF) was indispensable for B16F1 cell migration, whereas HGF and platelet-derived growth factor BB (PDGF-BB) collectively contributed to E0771 cell migration. Expression levels of receptors for IGF-1, HGF, and PDGF-BB correlated with their differential roles in B16F1 and E0771 cell proliferation and migration. Our data suggest that HSC-Ad differentially regulate tumor behavior through distinct mechanisms.
Background: gC1qR is a multifunctional cellular protein that has been linked to inflammation and cancer. gC1qR is highly upregulated in adenocarcinomas as compared to normal tissue counterparts, and soluble gC1qR (sgC1qR) has been detected in vitro in the pericellular milieu of proliferating malignant cells.
Aim: The present study explored the tissue expression of gC1qR in pancreatic cancer by immunohistochemistry, and the presence of sgC1qR in vivo, by examining blood and malignant effusions from patients with metastatic pancreatic adenocarcinoma.
Methods: Tissue expression of gC1qR by pancreatic adenocarcinoma was visualized by immunohistochemistry. SgC1qR was quantified in serum from healthy volunteers (n=20) and pancreatic cancer patients (n=34), as well as in malignant pleural (n=23) and peritoneal effusions (n=27), using a newly developed, sensitive immunocapture sandwich ELISA.
Results: Overexpression of gC1qR was confirmed in pancreatic adenocarcinoma compared to nonmalignant pancreatic tissue. Moreover, increased serum levels of sgC1qR (0.29 ± 0.22 ng/ml) were noted in patients with metastatic pancreatic cancer compared to healthy controls (0.15 ± 0.10 ng/ml) (mean ± S.D.) (p=0.035). In 11 of 16 patients for whom sequential samples were available, serum sgC1qR levels rose with disease progression, and paralleled changes in tumor biomarkers, CEA and CA19.9. In addition to blood, sgC1qR was detected in malignant pleural (0.55 ± 0.47 ng/ml) and peritoneal effusions (0.57 ± 0.38 ng/ml).
Conclusion: This study provides the first evidence for the presence of sgC1qR in vivo. The ability to detect sgC1qR in blood and body fluids will enable further studies to elucidate its pathophysiology in malignancy.