首页 > 最新文献

Journal of interdisciplinary nanomedicine最新文献

英文 中文
Abstract 摘要
Pub Date : 2016-08-10 DOI: 10.1002/jin2.14

Shahd Abuhelal ([email protected])*

King's College London/Institute of Pharmaceutical Science

siRNA treatment can result in decreased protein expression and could be used to treat cancer or other diseases. Successful application depends on efficient delivery inside target cells. Here, we aim to design and optimise a nano-carrier suitable for siRNA delivery, with high encapsulation efficiency and stability for use in vitro and in vivo to target cancer.

Liposomes and pH-sensitive peptides assembled as ternary complex were investigated as siRNA delivery systems. Physicochemical characteristics (size, zeta potential, siRNA maintenance, release and aggregation) were tested. Cell uptake and luciferase knock down were evaluated in vitro, and some complexes tested for biodistribution in vivo.

Hydrodynamic size and zeta potential of the lipoplex, peptide complexes and ternary complexs were similar. Although lipoplexes showed better encapsulation, they were less stable in serum. Ternary complexes offered better protection for the siRNA. Improved cell uptake was seen for ternary complexes in comparison with peptide complex and lipoplex. Knock down studies revealed optimal effects ternary complexes, and preliminary in vivo experiments showed tumour accumulation of lipoplex.

These siRNA delivery vehicles appear promising for in vivo applications, and work is now focused on the improvement of cell targeting, in vitro and in vivo PK/PD.

Chris Adams ([email protected])*

Keele University

Magnetic nanoparticles (MNPs) are key translational platforms with the ability to label cells for non-invasive imaging and genetically engineer cells for release of therapeutic biomolecules. We show for the first time that application of magnetic fields can safely enhance MNP mediated labelling and genetic engineering of autologous canine olfactory mucosal cells (cOMCs), a key veterinary cell population for treatment of spinal injury in companion dogs. Crucially, the developed protocols were successfully combined with advanced minicircle DNA vectors to deliver brain derived neurotrophic factor (important in promoting nerve fibre outgrowth) to cOMCs. Minicircles have distinct advantages for clinical gene delivery due to their small size, lack of bacterial backbone and duration of transgene expression. Finally, we also show that MNP labelling can facilitate imaging of cOMCs encapsulated in implantable collagen hydrogels using non-invasive magnetic resonance imaging. A combination of these methodologies could enable translation of safe and effective cOMC transplantation strategies.

Mohammad Ahmad Abdallah Al-Natour ([email protected])*

University and Institution: University of Nottingham

Abstract

Recent years have witnessed unexpected growth of research on the medical applications of nanotechnology (nanomedicine), especially the

*伦敦国王学院/制药科学研究所irna治疗可导致蛋白表达降低,可用于治疗癌症或其他疾病。成功的应用取决于靶细胞内的有效递送。在这里,我们的目标是设计和优化一种适合siRNA递送的纳米载体,具有高封装效率和稳定性,可用于体外和体内靶向癌症。脂质体和ph敏感肽组装成三元配合物作为siRNA递送系统进行了研究。测试了其理化特性(大小、zeta电位、siRNA维持、释放和聚集)。体外评估了细胞摄取和荧光素酶敲除,并测试了一些复合物在体内的生物分布。脂质体、肽络合物和三元络合物的流体动力学尺寸和zeta电位相似。脂质体虽表现出较好的包封性,但在血清中的稳定性较差。三元配合物对siRNA具有较好的保护作用。与肽复合物和脂复合物相比,三元复合物的细胞摄取得到了改善。敲除研究揭示了最佳效果三元复合物,初步体内实验显示肿瘤堆积脂质体。这些siRNA递送载体在体内应用前景广阔,目前的工作重点是提高细胞靶向性、体外和体内PK/PD。磁性纳米颗粒(MNPs)是关键的转化平台,具有标记细胞进行非侵入性成像和基因工程细胞释放治疗性生物分子的能力。我们首次表明,应用磁场可以安全地增强MNP介导的自体犬嗅粘膜细胞(cOMCs)的标记和基因工程,cOMCs是治疗伴侣犬脊髓损伤的关键兽医细胞群。至关重要的是,开发的方案成功地与先进的微环DNA载体结合,将脑源性神经营养因子(对促进神经纤维生长很重要)递送到cOMCs。由于其体积小、缺乏细菌骨干和转基因表达时间长,在临床基因传递中具有明显的优势。最后,我们还发现MNP标记可以促进可植入胶原水凝胶中包裹的cOMCs的无创磁共振成像。这些方法的结合可以翻译出安全有效的cOMC移植策略。摘要近年来,纳米技术(纳米医学)在医学应用方面的研究取得了意想不到的增长,特别是纳米颗粒(NPs)在疾病诊断和治疗方面的应用。在这些聚合物NPs中有许多优点;它们可以由FDA批准的生物相容性聚合物制备,很容易用智能配体功能化,并且可以定制以控制封装药物的释放。然而,这些NPs在分子和细胞水平上的影响尚未得到充分研究。我们应用细胞代谢组学方法研究了暴露于五种不同聚乳酸-羟基乙酸(PLGA) NPs后类人巨噬细胞的细胞代谢变化。研究表明,所有NPs均诱导氧化应激,并使能量代谢从柠檬酸循环转向糖酵解。然而,它们都没有毒性。代谢物折叠变化表明PEG-PLGA NPs对细胞代谢的影响较小。Keele大学医学科学与技术研究所【摘要】肝细胞癌占肝癌的85%。这种类型的肿瘤的特征是有缺陷或无效的细胞凋亡,这被认为是癌症进展的主要原因。细胞色素c(血红素蛋白)触发线粒体凋亡,并在肿瘤细胞死亡过程中负责下游caspase凋亡途径的激活。然而,通过细胞膜传递蛋白质有一个很大的困难。铁金混合纳米颗粒(HNP-C)的应用为细胞色素c递送到肿瘤细胞提供了一个有前途的工具,并增强了治疗颗粒对其作用部位的特异性靶向。采用不同作用机制的抗癌药物(多柔比星、紫杉醇、奥沙利铂、长春花碱和长春新碱)以特定浓度处理HepG2细胞,评估其IC50值,随后将这些药物分别与hnp -细胞色素C联合处理HepG2细胞,结果显示HepG2细胞单独生长抑制10%。 利用混合氧化铁金纳米颗粒成功递送促凋亡蛋白(细胞色素c),通过与抗癌药物协同作用,显著降低每种药物联合对HepG2细胞活力的IC50,可以被认为是肝癌治疗的一个有希望的步骤。*诺丁汉大学/药学院非病毒基因传递系统已经研究多年;然而,由于需要克服几个生物学和技术障碍才能制备成功的载体,这种方法的成功临床翻译仍然受到限制。高支化和易于功能化的聚合物已成为解决这些障碍的一种有吸引力的解决方案。在这种情况下,超支化聚合物代表了树状大分子的一个有前途的替代品,因为它们在成本方面的优势使合成更可行,适用于规模化和制造。在这里,我们研究了组氨酸对热聚合超支化聚赖氨酸的结构和基因传递应用的影响。结构分析表明,组氨酸的掺入调节了超支化聚赖氨酸的结构,产生了具有更少柔性分支的枝状聚合物。此外,结果显示,组氨酸的含量与聚合和传递核酸的能力呈负相关。Keele大学医学科学技术研究所(ISTM)胰腺癌是西方世界第四大癌症。吉西他滨治疗仅对23.8%的胰腺癌患者有效。纳米技术在将抗癌药物靶向递送到恶性细胞中发挥着至关重要的作用,在这一部分的研究中,我们研究了前药通过共轭共价键附着在杂化纳米颗粒表面。合成了高通量纳米粒子,并包覆了PEI和金。吉西他滨前药按既定程序合成。采用反相高效液相色谱法定量前药在HNP表面的附着。在不同温度下进行体外药物释放研究。分离并鉴定了吉西他滨的新型前药。成功合成了70 nm大小的HNPs。药前附着HNP成功,最多可检测到5 mg mL-1。药物释放研究表明,该制剂在测试温度范围内是稳定的。英国基尔大学医学科学技术研究所,Keele ST5 5BG摘要癌症治疗的局限性主要来自于将高细胞毒性药物引导到病变组织的问题、在水介质中的溶解度低以及生物利用度差。许多药物输送系统已经被设计来解决这个问题,包括热响应聚合物。本研究制备了一种新型HPMA-CO-AMPA-R热敏共聚物,通过棕榈酰、丹酰、胆固醇酰和5-(4-氯苯)-1,3,4-恶二唑在APMA单体的伯胺基上接枝疏水性基团,作为给药系统,提高了难溶性药物的溶解度。通过FTIR、NMR和Zeta浆料对产物进行了表征。采用高效液相色谱法测定了HPMA-CO-AMPA-R共聚物的载药和释药能力。牛津大学材料系在过去的十年里,光学谐振器由于其低模式体积和/或高精细度,已经成为分离和测量单个纳米颗粒(如病毒或金纳米颗粒)实时特性的有前途的途径。这种具有传感能力的捕获装置即将在跨学科科学中得到强有力的应用。然而,寻找一种将原位探测、捕获和多种粒子特性定量测量结合在一起的候选粒子仍然是难以捉摸的。定向酶前药治疗(DEPT)是一种癌症化疗形式,在给患者使用前药之前,将前药激活酶输送到肿瘤中,导致比当前化疗策略更高的局部毒性。研究了细菌硝基还原酶NfnB与CB1954前药联合用于DEPT的可能性,该组合甚至已进入临床试验阶段。该技术的一个主要限制是CB1954前药的剂量限制毒性,因此需要探索其他产品用于DEPT策略。 新西兰奥克兰大学开发的两种新型芥菜前药PR-104A和SN27686是最有前途的前药,目前正在使用威尔士班戈大学开发的新型涂有金的磁性纳米颗粒递送系统与NfnB酶结合进行测试。少层石墨烯(FLG),定义为拥有三个或更多的石墨烯原子层,是一种比金刚石更坚固,比铜更导电的革命性材料。本研究旨在评估700 m2/g FLG薄片(i)无特定功能,(ii)胺基或(iii)羧基的毒理学影响。然后将每个FLG暴露于具有代表性的人气道上皮16HBE14o-细胞单一培养物中。用扫描电子显微镜(SEM)和原子力显微镜(AFM)对薄片的尺寸和形貌进行了表征。采用相对群体倍增法(RPD)和胞质分裂阻断微核法(CBMN)评估细胞活力和染色体损伤。在任何测试浓度下,FLG均未引起显著的细胞毒性。相比之下,在亚致死浓度下,20 μ g/ml的非胺功能化FLG均可诱导显著的遗传毒性,而100 μ g/ml的羧基功能化FLG可诱导显著的遗传毒性。格拉斯哥大学骨骼转移在许多癌症中很普遍
{"title":"Abstract","authors":"","doi":"10.1002/jin2.14","DOIUrl":"10.1002/jin2.14","url":null,"abstract":"<p>Shahd Abuhelal (<span>[email protected]</span>)*</p><p><i>King's College London/Institute of Pharmaceutical Science</i></p><p>siRNA treatment can result in decreased protein expression and could be used to treat cancer or other diseases. Successful application depends on efficient delivery inside target cells. Here, we aim to design and optimise a nano-carrier suitable for siRNA delivery, with high encapsulation efficiency and stability for use in vitro and in vivo to target cancer.</p><p>Liposomes and pH-sensitive peptides assembled as ternary complex were investigated as siRNA delivery systems. Physicochemical characteristics (size, zeta potential, siRNA maintenance, release and aggregation) were tested. Cell uptake and luciferase knock down were evaluated in vitro, and some complexes tested for biodistribution <i>in vivo</i>.</p><p>Hydrodynamic size and zeta potential of the lipoplex, peptide complexes and ternary complexs were similar. Although lipoplexes showed better encapsulation, they were less stable in serum. Ternary complexes offered better protection for the siRNA. Improved cell uptake was seen for ternary complexes in comparison with peptide complex and lipoplex. Knock down studies revealed optimal effects ternary complexes, and preliminary <i>in vivo</i> experiments showed tumour accumulation of lipoplex.</p><p>These siRNA delivery vehicles appear promising for in vivo applications, and work is now focused on the improvement of cell targeting, in vitro and in vivo PK/PD.</p><p>Chris Adams (<span>[email protected]</span>)*</p><p><i>Keele University</i></p><p>Magnetic nanoparticles (MNPs) are key translational platforms with the ability to label cells for non-invasive imaging and genetically engineer cells for release of therapeutic biomolecules. We show for the first time that application of magnetic fields can safely enhance MNP mediated labelling and genetic engineering of autologous canine olfactory mucosal cells (cOMCs), a key veterinary cell population for treatment of spinal injury in companion dogs. Crucially, the developed protocols were successfully combined with advanced minicircle DNA vectors to deliver brain derived neurotrophic factor (important in promoting nerve fibre outgrowth) to cOMCs. Minicircles have distinct advantages for clinical gene delivery due to their small size, lack of bacterial backbone and duration of transgene expression. Finally, we also show that MNP labelling can facilitate imaging of cOMCs encapsulated in implantable collagen hydrogels using non-invasive magnetic resonance imaging. A combination of these methodologies could enable translation of safe and effective cOMC transplantation strategies.</p><p>Mohammad Ahmad Abdallah Al-Natour (<span>[email protected]</span>)*</p><p><i>University and Institution: University of Nottingham</i></p><p><b>Abstract</b></p><p>Recent years have witnessed unexpected growth of research on the medical applications of nanotechnology (nanomedicine), especially the ","PeriodicalId":91547,"journal":{"name":"Journal of interdisciplinary nanomedicine","volume":"1 2","pages":"35-82"},"PeriodicalIF":0.0,"publicationDate":"2016-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jin2.14","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50843753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Encapsulation of the p38 MAPK inhibitor GSK 678361A in nanoparticles for inflammatory-based disease states p38 MAPK抑制剂GSK 678361A在炎症性疾病状态的纳米颗粒包封
Pub Date : 2016-05-29 DOI: 10.1002/jin2.9
Baljinder K Bains, Michelle K Greene, Leona M McGirr, Jay Dorman, Stuart N Farrow, Christopher J Scott

Inhibitors of p38 mitogen-activated protein kinase (MAPK) are currently being pursued as therapeutics in inflammatory conditions, but many candidates have demonstrated limited efficacy or toxicity issues to date. Nanoformulation of p38 MAPK inhibitors may overcome these challenges, by enabling controlled release and targeted delivery. Thus, the aim of this study was to develop a nanoformulation of the p38 MAPK inhibitor GSK 678361A and subsequently validate its anti-inflammatory efficacy in vitro, versus the drug in its free format. Poly(lactic-co-glycolic acid) nanoparticles encapsulating GSK 678361A were prepared via a salting-out method and characterised by photon correlation spectroscopy, scanning electron microscopy and high-performance liquid chromatography. The anti-inflammatory effect of both free and nanoformulated GSK 678361A was evaluated in cultures of lipopolysaccharide-stimulated macrophages, with subsequent enzyme-linked immunosorbent assay analysis of TNF-α and IL-6 providing readouts of efficacy. A controlled release nanoformulation of GSK 678361A was successfully developed, with physicochemical characterisation revealing an average particle diameter of 115.5 ± 3.5 nm and polydispersity index of 0.13 ± 0.03, indicative of a homogeneous size distribution. GSK 678361A loading was quantified at 10.1 ± 0.4 µg per mg of poly(lactic-co-glycolic acid), equating to an entrapment efficiency of approximately 50%. When tested in cultures of lipopolysaccharide-stimulated macrophages, GSK 678361A nanoparticles inhibited the production of pro-inflammatory cytokines to an extent that was largely comparable with the free drug, although superior efficacy of the nanoformulation was observed at selected doses. These studies indicate that GSK 678361A may be successfully nanoformulated without loss of drug activity, warranting further evaluation in models of inflammation in vivo. © 2016 The Authors. Journal of Interdisciplinary Nanomedicine published by John Wiley & Sons Ltd and the British Society for Nanomedicine

p38丝裂原活化蛋白激酶(MAPK)抑制剂目前正被用作治疗炎症的药物,但迄今为止许多候选药物的疗效有限或存在毒性问题。p38 MAPK抑制剂的纳米制剂可以通过控制释放和靶向递送来克服这些挑战。因此,本研究的目的是开发p38 MAPK抑制剂GSK 678361A的纳米配方,并随后在体外验证其抗炎功效,与自由形式的药物相比。采用盐析法制备了包封GSK 678361A的聚乳酸-羟基乙酸纳米颗粒,并用光子相关光谱、扫描电镜和高效液相色谱对其进行了表征。在脂多糖刺激的巨噬细胞培养中,对游离和纳米配方GSK 678361A的抗炎作用进行了评估,随后对TNF-α和IL-6进行酶联免疫吸附分析,得出疗效。成功制备了GSK 678361A控释纳米制剂,理化表征结果表明,该制剂的平均粒径为115.5±3.5 nm,多分散性指数为0.13±0.03,粒径分布均匀。GSK 678361A在10.1±0.4µg / mg聚(乳酸-共乙醇酸)下被定量,相当于约50%的包封效率。当在脂多糖刺激的巨噬细胞培养物中进行测试时,GSK 678361A纳米颗粒抑制促炎细胞因子的产生的程度与游离药物相当,尽管在选定剂量下观察到纳米制剂的优越疗效。这些研究表明,GSK 678361A可能在不丧失药物活性的情况下成功制成纳米配方,值得在体内炎症模型中进一步评估。©2016作者。跨学科纳米医学杂志,John Wiley &Sons有限公司和英国纳米医学协会
{"title":"Encapsulation of the p38 MAPK inhibitor GSK 678361A in nanoparticles for inflammatory-based disease states","authors":"Baljinder K Bains,&nbsp;Michelle K Greene,&nbsp;Leona M McGirr,&nbsp;Jay Dorman,&nbsp;Stuart N Farrow,&nbsp;Christopher J Scott","doi":"10.1002/jin2.9","DOIUrl":"10.1002/jin2.9","url":null,"abstract":"<div>\u0000 \u0000 <p>Inhibitors of p38 mitogen-activated protein kinase (MAPK) are currently being pursued as therapeutics in inflammatory conditions, but many candidates have demonstrated limited efficacy or toxicity issues to date. Nanoformulation of p38 MAPK inhibitors may overcome these challenges, by enabling controlled release and targeted delivery. Thus, the aim of this study was to develop a nanoformulation of the p38 MAPK inhibitor GSK 678361A and subsequently validate its anti-inflammatory efficacy in vitro, versus the drug in its free format. Poly(lactic-co-glycolic acid) nanoparticles encapsulating GSK 678361A were prepared via a salting-out method and characterised by photon correlation spectroscopy, scanning electron microscopy and high-performance liquid chromatography. The anti-inflammatory effect of both free and nanoformulated GSK 678361A was evaluated in cultures of lipopolysaccharide-stimulated macrophages, with subsequent enzyme-linked immunosorbent assay analysis of TNF-α and IL-6 providing readouts of efficacy. A controlled release nanoformulation of GSK 678361A was successfully developed, with physicochemical characterisation revealing an average particle diameter of 115.5 ± 3.5 nm and polydispersity index of 0.13 ± 0.03, indicative of a homogeneous size distribution. GSK 678361A loading was quantified at 10.1 ± 0.4 µg per mg of poly(lactic-co-glycolic acid), equating to an entrapment efficiency of approximately 50%. When tested in cultures of lipopolysaccharide-stimulated macrophages, GSK 678361A nanoparticles inhibited the production of pro-inflammatory cytokines to an extent that was largely comparable with the free drug, although superior efficacy of the nanoformulation was observed at selected doses. These studies indicate that GSK 678361A may be successfully nanoformulated without loss of drug activity, warranting further evaluation in models of inflammation in vivo. © 2016 The Authors. Journal of Interdisciplinary Nanomedicine published by John Wiley &amp; Sons Ltd and the British Society for Nanomedicine</p>\u0000 </div>","PeriodicalId":91547,"journal":{"name":"Journal of interdisciplinary nanomedicine","volume":"1 3","pages":"85-92"},"PeriodicalIF":0.0,"publicationDate":"2016-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jin2.9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50843539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Preparation, loading, and cytotoxicity analysis of polymer nanotubes from an ethylene glycol dimethacrylate homopolymer in comparison to multi-walled carbon nanotubes 乙二醇二甲基丙烯酸酯均聚物与多壁碳纳米管的制备、负载和细胞毒性分析
Pub Date : 2016-04-21 DOI: 10.1002/jin2.7
Ben Newland, Laurent Thomas, Yu Zheng, Martin Steinhart, Carsten Werner, Wenxin Wang

Despite concerns over toxicity, carbon nanotubes have been extensively investigated for potential applications in nanomedicine because of their small size, unique properties, and ability to carry cargo such as small molecules and nucleic acids. Herein, we show that polymer nanotubes can be synthesized quickly and easily from a homopolymer of ethylene glycol dimethacrylate (EGDMA). The nanotubes formed via photo-initiated polymerization of the highly functional prepolymer, inside an anodized aluminium oxide template, have a regular structure and large internal pore and can be loaded with a fluorescent dye within minutes representing a simple alternative to multi-walled carbon nanotubes for biomedical applications.

尽管存在毒性方面的担忧,但碳纳米管由于其体积小、独特的性质以及携带小分子和核酸等货物的能力,已被广泛研究用于纳米医学的潜在应用。在此,我们证明了聚合物纳米管可以由乙二醇二甲基丙烯酸酯(EGDMA)的均聚物快速而容易地合成。通过光引发聚合的高功能预聚物形成的纳米管,在阳极氧化铝模板内,具有规则的结构和大的内部孔,可以在几分钟内装载荧光染料,代表了生物医学应用中多壁碳纳米管的简单替代方案。
{"title":"Preparation, loading, and cytotoxicity analysis of polymer nanotubes from an ethylene glycol dimethacrylate homopolymer in comparison to multi-walled carbon nanotubes","authors":"Ben Newland,&nbsp;Laurent Thomas,&nbsp;Yu Zheng,&nbsp;Martin Steinhart,&nbsp;Carsten Werner,&nbsp;Wenxin Wang","doi":"10.1002/jin2.7","DOIUrl":"10.1002/jin2.7","url":null,"abstract":"<div>\u0000 \u0000 <p>Despite concerns over toxicity, carbon nanotubes have been extensively investigated for potential applications in nanomedicine because of their small size, unique properties, and ability to carry cargo such as small molecules and nucleic acids. Herein, we show that polymer nanotubes can be synthesized quickly and easily from a homopolymer of ethylene glycol dimethacrylate (EGDMA). The nanotubes formed via photo-initiated polymerization of the highly functional prepolymer, inside an anodized aluminium oxide template, have a regular structure and large internal pore and can be loaded with a fluorescent dye within minutes representing a simple alternative to multi-walled carbon nanotubes for biomedical applications.</p>\u0000 </div>","PeriodicalId":91547,"journal":{"name":"Journal of interdisciplinary nanomedicine","volume":"1 1","pages":"9-18"},"PeriodicalIF":0.0,"publicationDate":"2016-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jin2.7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34641915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Polymer therapeutics in surgery: the next frontier 外科手术中的聚合物疗法:下一个前沿
Pub Date : 2016-04-18 DOI: 10.1002/jin2.6
Ernest A. Azzopardi, R. Steven Conlan, Iain S. Whitaker

Polymer therapeutics is a successful branch of nanomedicine, which is now established in several facets of everyday practice. However, to our knowledge, no literature regarding the application of the underpinning principles, general safety, and potential of this versatile class to the perioperative patient has been published. This study provides an overview of polymer therapeutics applied to clinical surgery, including the evolution of this demand-oriented scientific field, cutting-edge concepts, its implications, and limitations, illustrated by products already in clinical use and promising ones in development. In particular, the effect of design of polymer therapeutics on biophysical and biochemical properties, the potential for targeted delivery, smart release, and safety are addressed. Emphasis is made on principles, giving examples in salient areas of demand in current surgical practice. Exposure of the practising surgeon to this versatile class is crucial to evaluate and maximise the benefits that this established field presents and to attract a new generation of clinician–scientists with the necessary knowledge mix to drive highly successful innovation.

聚合物疗法是纳米医学的一个成功分支,现已在日常实践的几个方面建立起来。然而,据我们所知,目前还没有关于这种多用途分类在围手术期患者中应用的基本原则、一般安全性和潜力的文献发表。本研究概述了聚合物疗法在临床手术中的应用,包括需求导向科学领域的发展、前沿概念、其影响和局限性,并通过临床使用的产品和正在开发的有前途的产品进行了说明。特别是,聚合物疗法的设计对生物物理和生化特性的影响,靶向递送,智能释放和安全性的潜力被解决。强调原则,并举例说明当前外科实践中突出的需求领域。让执业外科医生接触这门多用途课程,对于评估和最大化这一既定领域所带来的好处,以及吸引具有必要知识组合的新一代临床医生和科学家,以推动高度成功的创新,至关重要。
{"title":"Polymer therapeutics in surgery: the next frontier","authors":"Ernest A. Azzopardi,&nbsp;R. Steven Conlan,&nbsp;Iain S. Whitaker","doi":"10.1002/jin2.6","DOIUrl":"10.1002/jin2.6","url":null,"abstract":"<div>\u0000 \u0000 <p>Polymer therapeutics is a successful branch of nanomedicine, which is now established in several facets of everyday practice. However, to our knowledge, no literature regarding the application of the underpinning principles, general safety, and potential of this versatile class to the perioperative patient has been published. This study provides an overview of polymer therapeutics applied to clinical surgery, including the evolution of this demand-oriented scientific field, cutting-edge concepts, its implications, and limitations, illustrated by products already in clinical use and promising ones in development. In particular, the effect of design of polymer therapeutics on biophysical and biochemical properties, the potential for targeted delivery, smart release, and safety are addressed. Emphasis is made on principles, giving examples in salient areas of demand in current surgical practice. Exposure of the practising surgeon to this versatile class is crucial to evaluate and maximise the benefits that this established field presents and to attract a new generation of clinician–scientists with the necessary knowledge mix to drive highly successful innovation.</p>\u0000 </div>","PeriodicalId":91547,"journal":{"name":"Journal of interdisciplinary nanomedicine","volume":"1 1","pages":"19-29"},"PeriodicalIF":0.0,"publicationDate":"2016-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jin2.6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34412460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Interdisciplinary nanomedicine publications through interdisciplinary peer-review 通过跨学科同行评审的跨学科纳米医学出版物
Pub Date : 2015-06-23 DOI: 10.1002/jin2.1
Andrew Owen, Steve Rannard, Raj Bawa, Si-Shen Feng

Nanomedicine aims to apply and further develop nanotechnology to solve problems in medicine, related to diagnosis, treatment and/or disease prevention at the cellular and molecular level (Feng, 2006; Feng and Chien, 2003). Nanomedicine by nature is interdisciplinary, with benefits being realized at the interface of science and engineering, physical science and engineering, chemical science and engineering, cellular and molecular biology, pharmacology and pharmaceutics, medical sciences and technology and combinations thereof. The difference in perspective between disciplines may be partly responsible for the lack of nomenclature or universally-accepted definition for various “nano” terms, which causes issues with respect to publication consistency, regulatory agencies, patent offices, industry and the business community (Rannard & Owen, 2009; Tinkle et al., 2014; Bawa, 2013; Bawa, 2016). Regulatory agencies such as the US Food and Drug Administration (FDA; http://www.fda.gov/) and European Medicines Agency (EMA; http://www.ema.europa.eu/ema/) have generally failed to employ an interdisciplinary approach to regulate nanoscale technologies in the same manner as they apply to drugs because they do not fully appreciate the interdisciplinary nature or novel characteristics of many submissions that disclose nanomedicines (e.g., as a result of high-surface-area to-volume ratio, inherent reactivity due to a greater proportion of exposed surface atoms, unpredictable properties, or toxicity profiles as compared to bulk). Currently, these agencies instead rely upon established laws and regulations validated through experience with conventional small molecule medicines. Synthesis and characterization of molecular biomaterials forms the material basis for nanomedicines. Molecular biomaterials may include synthesized biocompatible polymers such as currently accepted biodegradable polymers including polylactic acid (PLA), polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA), or molecularly engineered macromolecules such as lipids, DNAs, RNAs, proteins and peptides. Such biomaterials are either used to stabilize nanosized particles of drug or to form nano-carrier technologies for sustained, controlled or targeted release of diagnostic and therapeutic agents to enhance their biological effects and to reduce their side effects (Feng et al., 2007; Owen, 2014; Bawa, 2016).

Similarly, patent offices also often fail to recognize that an interdisciplinary approach needs to be applied by patent examiners while reviewing nanotechnology-based patent applications, since the technologies reflected in these patent applications often involve a combination of disciplines. In fact, non-uniform or improper patent prosecution is the major reason for the issuance of patents of dubious scope and breadth where the patent holder is u

从宏观到微观,材料可以小型化许多数量级,而物理或生物特性几乎没有变化。然而,随着材料小型化到纳米尺度,通常会观察到光学、电学、机械和导电性能的深刻变化,特别是在无机材料中。这些变化源于某些材料在纳米尺度上的量子力学性质,在那里经典的宏观物理定律不起作用。电学、光学、物理、磁性、表面性质和反应性在纳米尺度上可能都不同于相应的块状材料。最终,重要的是材料的物理或生物特性的差异,而不是与小于1000纳米或小于100纳米的尺寸或直径有关的任何固定定义。此外,应该指出的是,当涉及到医学、药物输送、药物配方甚至许多纳米检测时,许多量子效应是无关紧要的(Bawa, 2016)。虽然美国国家纳米技术倡议(NNI)提出的低于100纳米的尺寸范围;http://www.nano.gov)可能对纳米光子公司很重要(即,量子点的大小决定了发射光的颜色),从配方、递送或功效的角度来看,这种任意的尺寸限制对临床科学家或制药公司并不重要,因为所需的治疗特性(例如,Vmax、药代动力学或PK、曲线下面积或AUC、zeta电位等)可以在大于100 nm的尺寸范围内实现(Bawa, 2016)。事实上,有许多fda批准和上市的纳米药物的粒径不符合100 nm以下的规格:Abraxane (~120 nm)、心肌(~190 nm)、DepoCyt(10-20µm)、Amphotec (~130 nm)、Epaxal (~150 nm)、DepoDur(10-20µm)、Inflexal (~150 nm)、lipoo - dox (180 nm)、Oncaspar (50-200 nm)等(Bawa, 2016)。材料化学和胶体科学对纳米医学的基础科学及其在规模化和商业化/临床转化方面的成功做出了巨大贡献。各种各样的纳米粒子载体,包括无机和有机材料、自组装聚合物、脂质体/脂质囊泡、药物-聚合物偶联物和纳米沉淀物,往往源于合成化学和材料生成的探索性(有时是优雅的)解决方案(Horn &Rieger, 2001)。固体药物纳米颗粒技术的生产源于浆液、悬浮液和液体的加工,通过研磨、均质和溶剂/反溶剂技术等技术(Pawar等,2014年)。最初被称为胶体科学,悬浮在液体中的亚微米材料的形成,以及对它们的稳定性和形成的理解,对于创造新的纳米治疗和诊断选择至关重要。此外,最近在微细加工、电子和廉价制造方面的重大进展对诊断学也很重要。但最重要的是,这些技术所针对的未满足的临床需求是指导集体进步的主要驱动力,当直接与疾病和患者特定需求相结合时,就会产生改善结果或量化疾病状态的相关选择。很明显,材料化学本身不能判断目标的临床重要性或特定溶液的适当性。作为一门单一学科,如果没有与相关生物学、药理学、安全性、免疫学和临床观点和投入的直接互动,它就无法优化或扩大解决方案。同样明显的是,可能会开发出许多信息贫乏的技术,这些技术可能没有临床或疾病相关性,但在科学上却令人兴奋。许多学科的重叠是纳米医学的真正本质,材料化学和胶体科学要继续影响未来的挑战,需要更大的整合。在不考虑目标应用的整体需求的情况下,进入实验室产生新的材料结构的诱惑导致了许多技术进步,但对临床应用的转化有限(Venditto &Szoka, 2013)。材料化学与临床需求的整合,本身就与生物和疾病相关的智能相结合,应该成为未来纳米医学中化学和胶体科学干预的主要驱动力。这种方法还将起到过滤作用,防止学术好奇心被标榜为重大突破,使努力和资金远离具有临床相关性的产出。由于新材料的开发明确侧重于未满足的临床需求,因此存在证明风险的考虑方法的挑战,例如固有的材料毒性,脱靶效应,药物的生物分布或清除的改变。 这些挑战只能通过来自众多互补学科的专家科学家的集体努力来解决。在这方面,决定最终医疗性能的一些因素可能包括大小或大小分布、表面形态和表面电荷、药物负载、药物释放特征、细胞粘附和内化,或细胞内自噬的抑制(Zhao et al., 2013)。在过去的十年中,纳米载体系统在向患病细胞输送生物活性分子方面的优势已经在体外和体内得到了深入的研究,尽管临床试验似乎处于早期阶段,一些结果不如预期。纳米载体系统可以保护生物活性分子免受酶降解和免疫识别。此外,纳米载体系统可以通过内吞作用等机制将药物有效载荷作为储存库传递,在内吞作用中,纳米载体牺牲其表面能量来分离细胞膜的一小块并触发内化。其传递效率远高于单分子通过各种其他机制如促进扩散转运、主动转运和受体介导转运等穿越细胞膜的方式。纳米载体系统可以进一步缀合到配体上,以靶定相关靶细胞膜上相应的生物标志物。这种纳米载体材料,如果具有适当的尺寸和表面功能,可以逃避网状内皮系统的排泄,从而实现持续递送,延长药物的半衰期,并具有更理想的生物分布。此外,设计良好的纳米药物可以通过胃肠道内的各种生物药物屏障进行口服给药(Hatton et al., 2015;McDonald et al., 2014)和治疗脑部疾病的血脑屏障(Nunes et al., 2012),仅举两个例子。siRNA与生物活性分子的共递送可以克服患病细胞的多药耐药,适当修饰的材料可以抑制细胞内自噬(Mei et al., 2014)。然而,应该注意的是,在体外、体内和临床试验中获得的结果往往不一致,对于任何药物,在评估临床应用之前,必须彻底调查其安全性。纳米药物在给药方面的一个经常被追求的好处与它们的药代动力学性能有关,许多应用旨在改善生物利用度、分布或在体循环中的停留时间。决定药代动力学的机制是多种多样的,其复杂性是由许多有助于吸收、分布、代谢和消除(ADME)的分子、细胞和生理过程支撑的(Owen等,2006)。通过基于生理的药代动力学(PBPK)建模的数学算法整合机制ADME数据,可以实现理解ADME的整体方法。PBPK模型现在几乎常规地用于支持美国FDA(药物评价和研究中心)和欧洲EMA(人用医药产品委员会)对常规药物的监管提交。该方法也已成功应用于评估药物遗传变异性(Siccardi等人,2012年)和药物-药物相互作用(Siccardi等人,2013年)。支持纳米药物ADME的许多机制可能与传统药物不同,与纳米药物相关的第一个PBPK模型现在开始出现(Bachler等人,2014;Li et al., 2014;Li et al., 2010;Li et al., 2012;McDonald et al., 2014;Moss and Siccardi, 2014;Rajoli et al., 2015;Yang等人,2010)。因此,有必要在数学上整合跨学科的知识,以提高这种建模方法的性能。很明显,为了有效地描述、转化和应用纳米医学领域的进展,需要一种整体的方法,根据定义,它涉及来自多个学科的科学家的综合贡献。英国纳米医学协会(http://www.britishsocietynanomedicine.org/)是一个注册慈善机构(慈善机构编号1151497),成立于2012年,旨在将不同背景的人聚集在一起,推动纳米医学领域的发展。从那时起,来自该学会许多成员的反馈是,现有纳米医学期刊的同行评议系统经常存在困难和不一致。这个问题的核心是,许多研究者经常觉得他们主要基
{"title":"Interdisciplinary nanomedicine publications through interdisciplinary peer-review","authors":"Andrew Owen,&nbsp;Steve Rannard,&nbsp;Raj Bawa,&nbsp;Si-Shen Feng","doi":"10.1002/jin2.1","DOIUrl":"10.1002/jin2.1","url":null,"abstract":"<p>Nanomedicine aims to apply and further develop nanotechnology to solve problems in medicine, related to diagnosis, treatment and/or disease prevention at the cellular and molecular level (Feng, <span>2006</span>; Feng and Chien, <span>2003</span>). Nanomedicine by nature is interdisciplinary, with benefits being realized at the interface of science and engineering, physical science and engineering, chemical science and engineering, cellular and molecular biology, pharmacology and pharmaceutics, medical sciences and technology and combinations thereof. The difference in perspective between disciplines may be partly responsible for the lack of nomenclature or universally-accepted definition for various “nano” terms, which causes issues with respect to publication consistency, regulatory agencies, patent offices, industry and the business community (Rannard &amp; Owen, <span>2009</span>; Tinkle <i>et al</i>., <span>2014</span>; Bawa, <span>2013</span>; Bawa, <span>2016</span>). Regulatory agencies such as the US Food and Drug Administration (FDA; http://www.fda.gov/) and European Medicines Agency (EMA; http://www.ema.europa.eu/ema/) have generally failed to employ an interdisciplinary approach to regulate nanoscale technologies in the same manner as they apply to drugs because they do not fully appreciate the interdisciplinary nature or novel characteristics of many submissions that disclose nanomedicines (e.g., as a result of high-surface-area to-volume ratio, inherent reactivity due to a greater proportion of exposed surface atoms, unpredictable properties, or toxicity profiles as compared to bulk). Currently, these agencies instead rely upon established laws and regulations validated through experience with conventional small molecule medicines. Synthesis and characterization of molecular biomaterials forms the material basis for nanomedicines. Molecular biomaterials may include synthesized biocompatible polymers such as currently accepted biodegradable polymers including polylactic acid (PLA), polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA), or molecularly engineered macromolecules such as lipids, DNAs, RNAs, proteins and peptides. Such biomaterials are either used to stabilize nanosized particles of drug or to form nano-carrier technologies for sustained, controlled or targeted release of diagnostic and therapeutic agents to enhance their biological effects and to reduce their side effects (Feng <i>et al.</i>, <span>2007</span>; Owen, <span>2014</span>; Bawa, <span>2016</span>).</p><p>Similarly, patent offices also often fail to recognize that an interdisciplinary approach needs to be applied by patent examiners while reviewing nanotechnology-based patent applications, since the technologies reflected in these patent applications often involve a combination of disciplines. In fact, non-uniform or improper patent prosecution is the major reason for the issuance of patents of dubious scope and breadth where the patent holder is u","PeriodicalId":91547,"journal":{"name":"Journal of interdisciplinary nanomedicine","volume":"1 1","pages":"4-8"},"PeriodicalIF":0.0,"publicationDate":"2015-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/jin2.1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50843695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Journal of interdisciplinary nanomedicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1