Shahd Abuhelal ([email protected])*
King's College London/Institute of Pharmaceutical Science
siRNA treatment can result in decreased protein expression and could be used to treat cancer or other diseases. Successful application depends on efficient delivery inside target cells. Here, we aim to design and optimise a nano-carrier suitable for siRNA delivery, with high encapsulation efficiency and stability for use in vitro and in vivo to target cancer.
Liposomes and pH-sensitive peptides assembled as ternary complex were investigated as siRNA delivery systems. Physicochemical characteristics (size, zeta potential, siRNA maintenance, release and aggregation) were tested. Cell uptake and luciferase knock down were evaluated in vitro, and some complexes tested for biodistribution in vivo.
Hydrodynamic size and zeta potential of the lipoplex, peptide complexes and ternary complexs were similar. Although lipoplexes showed better encapsulation, they were less stable in serum. Ternary complexes offered better protection for the siRNA. Improved cell uptake was seen for ternary complexes in comparison with peptide complex and lipoplex. Knock down studies revealed optimal effects ternary complexes, and preliminary in vivo experiments showed tumour accumulation of lipoplex.
These siRNA delivery vehicles appear promising for in vivo applications, and work is now focused on the improvement of cell targeting, in vitro and in vivo PK/PD.
Chris Adams ([email protected])*
Keele University
Magnetic nanoparticles (MNPs) are key translational platforms with the ability to label cells for non-invasive imaging and genetically engineer cells for release of therapeutic biomolecules. We show for the first time that application of magnetic fields can safely enhance MNP mediated labelling and genetic engineering of autologous canine olfactory mucosal cells (cOMCs), a key veterinary cell population for treatment of spinal injury in companion dogs. Crucially, the developed protocols were successfully combined with advanced minicircle DNA vectors to deliver brain derived neurotrophic factor (important in promoting nerve fibre outgrowth) to cOMCs. Minicircles have distinct advantages for clinical gene delivery due to their small size, lack of bacterial backbone and duration of transgene expression. Finally, we also show that MNP labelling can facilitate imaging of cOMCs encapsulated in implantable collagen hydrogels using non-invasive magnetic resonance imaging. A combination of these methodologies could enable translation of safe and effective cOMC transplantation strategies.
Mohammad Ahmad Abdallah Al-Natour ([email protected])*
University and Institution: University of Nottingham
Abstract
Recent years have witnessed unexpected growth of research on the medical applications of nanotechnology (nanomedicine), especially the