ESR investigations on lyophilized systems have shown that the signal at g = 2.005 can be explained by an interaction between Na+ or K+ and the anionic ascorbyl radical. The unpaired electron is probably localized near the C(4) region and is produced by a cleavage of an H atom belonging to a water molecule bound tightly to C(4). Experiments on aqueous samples revealed that ascorbic acid in its radical configuration and in its highest concentration exists only at physiological pH and temperature. An additional splitting is obtained by the ring formation between C(3) and C(6)-OH. The coupling constants of the triplets produced by the CH2-6 protons differ between ascorbic acid and isoascorbic acid. Thus, the ESR technique can be applied for an easy distinction between these two epimers.