[This corrects the article DOI: 10.1136/bmjos-2021-100231.].
[This corrects the article DOI: 10.1136/bmjos-2021-100231.].
Objectives: The purpose of this preclinical study was to evaluate the safety, the local tissue effects and bone healing performance (osteoconduction, osseointegration) of nacre powder in a sheep intraosseous implantation model. This represents the first preclinical study to assess nacre safety and efficacy in supporting new bone formation in accordance with the ISO 10993 standard for biomedical devices.
Methods: The local tissue effects and the material performance were evaluated 8 weeks after implantation by qualitative macroscopic observation and qualitative as well as semiquantitative microscopic analyses of the bone sites. Histopathological characterisations were run to assess local tissue effects. In addition, microarchitectural, histomorphometric and histological characterisations were used to evaluate the effects of the implanted material.
Results: Nacre powder was shown to cause a moderate inflammatory response in the site where it was implanted compared with the sites left empty. The biomaterial implanted within the generated defects was almost entirely degraded over the investigated time span and resulted in the formation of new bone with a seamless connection with the surrounding tissue. On the contrary, in the empty defects, the formation of a thick compact band of sclerotic bone was observed by both microarchitectural and histological characterisation.
Conclusions: Nacre powder was confirmed to be a safe biomaterial for bone regeneration applications in vivo, while supporting bone formation.
Objective: Surgery is an integral part of many experimental studies. Aseptic and minimal invasive surgical technique and optimal perioperative and post-operative care are prerequisites to achieve surgical success and best possible animal welfare outcomes. Good surgical practice cannot only improve the animal's postoperative recovery, but also study outcome and validity. There seems to be a lack of implementation of good surgical practice during rodent surgery. The aim of this systematic review is to identify, critically evaluate and compare the currently recommended standards and underlying guidelines for rodent surgery-and finally to compile a comprehensive guideline of good surgical practice for rodent surgery.
Search strategy: PubMed, Embase and Web of Science were searched to identify guidelines published in peer-reviewed journals. To identify grey literature and unpublished guidelines, we will perform a Google search for published guidelines and search laboratory animal sciences books for relevant book chapters. Additionally, we will conduct a survey among animal researchers enquiring about the guidelines they use.
Screening and study selection: For publications retrieved by the systematic search, unique references are screened by two reviewers, first for eligibility based on title and abstract and subsequently for final inclusion based on full text. Eligibility of books is based on title and content, final inclusion based on chapter full text. Guidelines are either retrieved by Google searches or a survey. Google searches will be conducted by at least four of the authors. Thereafter, guidelines will be screened by two of the authors.
Data extraction and synthesis: We will extract data from publications, book chapters and guidelines. Based on the extracted data, we will perform a descriptive synthesis of the bibliographical details, guideline development and endorsement, and the prevalence of individual recommendations, including subgroup analysis of the guidance per continent or country and differences between peer-reviewed versus non-peer-reviewed guidance.
Introduction and objective: Neuropsychiatric disorders like schizophrenia are heterogeneous in that they occur because of the interaction of factors. These factors include but are not limited to genetic, epigenetic, neurobiological and environmental factors. Methylation of DNA, like other erpigenetic modifications, is risk factors for neuropsychiatric disorders. Candidate gene approach projects have produced contradictory results to find candidate gene methylation. The current genome-wide studies have limitations.
Search strategy: An exhaustive search strategy was designed to recover studies on genome-wide DNA methylation in schizophrenia patients or schizophrenia rat models. The Medline (PubMed), SCOPUS and Web of Science, databases were searched, giving 4077 references in total.
Screening and annotation: Studies will undergo two phases of screening, title and abstract screening and article screening, for inclusion by two reviewers. A third reviewer will resolve any disagreements in the article screening phase. Data will be collected using the Systematic Review Facility (http://syrf.org.uk/) tool. All included studies will undergo study quality and risk of bias assessment.
Data management and reporting: Data will be extracted and used to calculate effect sizes. For the purpose of this meta-analysis, a random effects model will be used to combine effect sizes. Heterogeneity will be assessed, and the sources identified. A risk-of-bias assessment will be carried out to assess the quality of the studies. An assessment of publication bias will also be carried out.
Ethics and dissemination: No ethical approval is required as there are no participants in the study. We will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines and disseminate the findings through publication and conference presentation.
Prospero registration number: CRD42021283159.
Objectives: Heterogeneity of results of exact same research experiments oppose a significant socioeconomic burden. Insufficient methodological reporting is likely to be one of the contributors to results heterogeneity; however, little knowledge on reporting habits of in vitro cancer research and their effects on results reproducibility is available. Exemplified by a commonly performed in vitro assay, we aim to fill this knowledge gap and to derive recommendations necessary for reproducible, robust and translational preclinical science.
Methods: Here, we use systematic review to describe reporting practices in in vitro glioblastoma research using the Uppsala-87 Malignant Glioma (U-87 MG) cell line and perform multilevel random-effects meta-analysis followed by meta-regression to explore sources of heterogeneity within that literature, and any associations between reporting characteristics and reported findings. Literature that includes experiments measuring the effect of temozolomide on the viability of U-87 MG cells is searched on three databases (Embase, PubMed and Web of Science).
Results: In 137 identified articles, the methodological reporting is incomplete, for example, medium glucose level and cell density are reported in only 21.2% and 16.8% of the articles. After adjustments for different drug concentrations and treatment durations, the results heterogeneity across the studies (I2=68.5%) is concerningly large. Differences in culture medium glucose level are a driver of this heterogeneity. However, infrequent reporting of most experimental parameters limits the analysis of reproducibility moderating parameters.
Conclusions: Our results further support the ongoing efforts of establishing consensus reporting practices to elevate durability of results. By doing so, this work can raise awareness of how stricter reporting may help to improve the frequency of successful translation of preclinical results into human application. The authors received no specific funding for this work. A preregistered protocol is available at the Open Science Framework (https://osf.io/9k3dq).
Chronic pain and its underlying biological mechanisms have been studied for many decades, with a myriad of molecules, receptors and cell types known to contribute to abnormal pain sensations. Besides an obvious role for neurons, immune cells like microglia, macrophages and T cells are also important drivers of persistent pain. While neuroinflammation has therefore been widely studied in pain research, there is one cell type that appears to be rather neglected in this context: the humble fibroblast. Fibroblasts may seem unassuming but actually play a major part in regulating immune cell function and driving chronic inflammation. Here, our aim was to determine the breadth and quality of research that implicates fibroblasts in chronic pain conditions and models.
Objectives: We set out to analyse the current literature on this topic-using systematic screening and data extraction methods to obtain a balanced view on what has been published.
Methods: We categorised the articles we included-stratifying them according to what was investigated, the estimated quality of results and any common conclusions.
Results: We found that there has been surprisingly little research in this area: 134 articles met our inclusion criteria, only a tiny minority of which directly investigated interactions between fibroblasts and peripheral neurons.
Conclusions: Fibroblasts are a ubiquitous cell type and a prominent source of many proalgesic mediators in a wide variety of tissues. We think that they deserve a more central role in pain research and propose a new, testable model of how fibroblasts might drive peripheral neuron sensitisation.