Malignant peripheral nerve sheath tumors (MPNSTs) arising from the trigeminal nerves are extremely rare (only 45 cases, including the present case, have been published) and have been reported to develop de novo from the peripheral nerve sheath and are not transformed from a schwannoma or neurofibroma. Here, we report a case of MPNSTs of the trigeminal nerve caused by the malignant transformation of a trigeminal schwannoma, with a particular focus on genetic considerations. After undergoing a near-total resection of a histologically typical benign schwannoma, the patient presented with regrowth of the tumor 10 years after the primary excision. Histopathologic and immunochemical examinations confirmed the recurrent tumor to be an MPNST. Comprehensive genomic analyses (FoundationOne panel-based gene assay) showed that only the recurrent MPNST sample, not the initial diagnosis of schwannoma, harbored genetic mutations, including NF1-p.R2637* and TP53-p.Y234H, candidate gene mutations associated with malignant transformation. Moreover, the results of reverse transcription polymerase chain reaction showed that the fusion of SH3PXD2A and HTRA1, which has been reported as one of the responsible genetic aberrations of schwannoma, was detected in the recurrent tumor. Taken together, we could illustrate the accumulation process of gene abnormalities for developing MPNSTs from normal cells via schwannomas.
{"title":"Spontaneous malignant transformation of trigeminal schwannoma: consideration of responsible gene alterations for tumorigenesis-a case report.","authors":"Natsuki Ogasawara, Shinji Yamashita, Koji Yamasaki, Tomoki Kawano, Tomohiro Kawano, Junichiro Muta, Fumitaka Matsumoto, Takashi Watanabe, Hajime Ohta, Kiyotaka Yokogami, Tsuyoshi Fukushima, Yuichiro Sato, Hideo Takeshima","doi":"10.1007/s10014-023-00466-5","DOIUrl":"10.1007/s10014-023-00466-5","url":null,"abstract":"<p><p>Malignant peripheral nerve sheath tumors (MPNSTs) arising from the trigeminal nerves are extremely rare (only 45 cases, including the present case, have been published) and have been reported to develop de novo from the peripheral nerve sheath and are not transformed from a schwannoma or neurofibroma. Here, we report a case of MPNSTs of the trigeminal nerve caused by the malignant transformation of a trigeminal schwannoma, with a particular focus on genetic considerations. After undergoing a near-total resection of a histologically typical benign schwannoma, the patient presented with regrowth of the tumor 10 years after the primary excision. Histopathologic and immunochemical examinations confirmed the recurrent tumor to be an MPNST. Comprehensive genomic analyses (FoundationOne panel-based gene assay) showed that only the recurrent MPNST sample, not the initial diagnosis of schwannoma, harbored genetic mutations, including NF1-p.R2637* and TP53-p.Y234H, candidate gene mutations associated with malignant transformation. Moreover, the results of reverse transcription polymerase chain reaction showed that the fusion of SH3PXD2A and HTRA1, which has been reported as one of the responsible genetic aberrations of schwannoma, was detected in the recurrent tumor. Taken together, we could illustrate the accumulation process of gene abnormalities for developing MPNSTs from normal cells via schwannomas.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":" ","pages":"222-229"},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9891974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Touch imprint cytology (TIC) and frozen section (FS) procedures are essential for intraoperative pathological diagnosis (IPD). They are invaluable tools for therapeutic decision-making, helping surgeons avoid under or overtreatment of patients. Pituitary neuroendocrine tumors (PitNETs) are generally small, slow-growing tumors with low-grade malignancy located at the base of the skull where it is impossible to maintain a wide tumor margin. Therefore, transsphenoidal surgery (TSS) should be performed with necessary caution, and with sufficient and minimal resection. Thus, this study aimed to evaluate the diagnostic accuracy of TIC for the diagnosis of PitNET and determine its ability to accurately evaluate the surgical margin compared to the FS procedure. A total of 104 fresh specimens from 28 patients who underwent TSS for PitNETs were examined using TIC and FS. TIC specimens were categorized according to the cell imprinting pattern. All specimens with a large number of neuroendocrine cells diffusely attached to the glass surfaces had PitNET components. Contrarily, no rich or diffuse cell attachments were observed in any non-tumoral endocrine cells. In conclusion, recognizing a pattern of endocrine cell adherence to glass is highly effective in IPD to certify the existence of a PitNET component.
{"title":"Touch imprint cytology is useful for the intraoperative pathological diagnosis of PitNETs' surgical margins.","authors":"Noriaki Tanabe, Naoko Inoshita, Atsushi Ishida, Masataka Kato, Haruko Yoshimoto, Hideki Shiramizu, Hidetaka Suga, Toru Tateno, Kenichi Ohashi, Shozo Yamada","doi":"10.1007/s10014-023-00470-9","DOIUrl":"10.1007/s10014-023-00470-9","url":null,"abstract":"<p><p>Touch imprint cytology (TIC) and frozen section (FS) procedures are essential for intraoperative pathological diagnosis (IPD). They are invaluable tools for therapeutic decision-making, helping surgeons avoid under or overtreatment of patients. Pituitary neuroendocrine tumors (PitNETs) are generally small, slow-growing tumors with low-grade malignancy located at the base of the skull where it is impossible to maintain a wide tumor margin. Therefore, transsphenoidal surgery (TSS) should be performed with necessary caution, and with sufficient and minimal resection. Thus, this study aimed to evaluate the diagnostic accuracy of TIC for the diagnosis of PitNET and determine its ability to accurately evaluate the surgical margin compared to the FS procedure. A total of 104 fresh specimens from 28 patients who underwent TSS for PitNETs were examined using TIC and FS. TIC specimens were categorized according to the cell imprinting pattern. All specimens with a large number of neuroendocrine cells diffusely attached to the glass surfaces had PitNET components. Contrarily, no rich or diffuse cell attachments were observed in any non-tumoral endocrine cells. In conclusion, recognizing a pattern of endocrine cell adherence to glass is highly effective in IPD to certify the existence of a PitNET component.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":" ","pages":"215-221"},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575803/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41178087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-09DOI: 10.1007/s10014-023-00467-4
Kaiyu Fan, Yifan Wei, Yunwei Ou, Jian Gong
To explore the characteristics of the immune microenvironment (IME) of medulloblastoma (MB) by four methods: flow cytometry (FCM), immunohistochemical (IHC), bulk RNA expression and single cell RNA sequencing (scRNA-seq), we collected the intraoperative specimens of MB, ependymoma (EPN), high-grade glioma (HGG), and low-grade glioma (LGG) to make a cross-cancer comparison. The specimens were subjected to FCM and IHC respectively, and deconvolution from bulk RNA expression data and scRNA-seq analysis were performed in MB from the GEO database. FCM and IHC analysis found that the proportion of lymphocytes (LC) and T cells between MB and other brain tumors were significantly different. The deconvolution of bulk RNA expression data showed that only the proportion of cell types in MCPCOUNTER changed greatly. scRNA-seq found that the proportion of various immune cells in the IME of MB differed between different subtypes. Techniques such as FCM, IHC, bulk RNA expression, and scRNA-seq can sort out different immune cell subsets to a certain extent and quantify their proportions. The four methods have their own strengthens and limitations, but for highly heterogeneous tumor such as MB, integrated analysis of multiple methods is a better choice.
{"title":"Integrated analysis of multiple methods reveals characteristics of the immune microenvironment in medulloblastoma.","authors":"Kaiyu Fan, Yifan Wei, Yunwei Ou, Jian Gong","doi":"10.1007/s10014-023-00467-4","DOIUrl":"10.1007/s10014-023-00467-4","url":null,"abstract":"<p><p>To explore the characteristics of the immune microenvironment (IME) of medulloblastoma (MB) by four methods: flow cytometry (FCM), immunohistochemical (IHC), bulk RNA expression and single cell RNA sequencing (scRNA-seq), we collected the intraoperative specimens of MB, ependymoma (EPN), high-grade glioma (HGG), and low-grade glioma (LGG) to make a cross-cancer comparison. The specimens were subjected to FCM and IHC respectively, and deconvolution from bulk RNA expression data and scRNA-seq analysis were performed in MB from the GEO database. FCM and IHC analysis found that the proportion of lymphocytes (LC) and T cells between MB and other brain tumors were significantly different. The deconvolution of bulk RNA expression data showed that only the proportion of cell types in MCPCOUNTER changed greatly. scRNA-seq found that the proportion of various immune cells in the IME of MB differed between different subtypes. Techniques such as FCM, IHC, bulk RNA expression, and scRNA-seq can sort out different immune cell subsets to a certain extent and quantify their proportions. The four methods have their own strengthens and limitations, but for highly heterogeneous tumor such as MB, integrated analysis of multiple methods is a better choice.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":" ","pages":"191-203"},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9966881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01Epub Date: 2023-08-10DOI: 10.1007/s10014-023-00468-3
Katja Bender, Johannes Kahn, Eilís Perez, Felix Ehret, Siyer Roohani, David Capper, Simone Schmid, David Kaul
Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (pHGG) is a rare and aggressive brain tumor characterized by a specific DNA methylation profile. It was recently introduced in the 5th World Health Organization classification of central nervous system tumors of 2021. Clinical data on this tumor is scarce. This is a case series, which presents the first clinical experience with this entity. We compiled a retrospective case series on pHGG patients treated between 2015 and 2022 at our institution. Data collected include patients' clinical course, surgical procedure, histopathology, genome-wide DNA methylation analysis, imaging and adjuvant therapy. Eight pHGG were identified, ranging in age from 8 to 71 years. On MRI tumors presented with an unspecific intensity profile, T1w hypo- to isointense and T2w hyperintense, with inhomogeneous contrast enhancement, often with rim enhancement. Three patients died of the disease, with overall survival of 19, 28 and 30 months. Four patients were alive at the time of the last follow-up, 4, 5, 6 and 79 months after the initial surgery. One patient was lost to follow-up. Findings indicate that pHGG prevalence might be underestimated in the elderly population.
{"title":"Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype: case series of a new entity.","authors":"Katja Bender, Johannes Kahn, Eilís Perez, Felix Ehret, Siyer Roohani, David Capper, Simone Schmid, David Kaul","doi":"10.1007/s10014-023-00468-3","DOIUrl":"10.1007/s10014-023-00468-3","url":null,"abstract":"<p><p>Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (pHGG) is a rare and aggressive brain tumor characterized by a specific DNA methylation profile. It was recently introduced in the 5th World Health Organization classification of central nervous system tumors of 2021. Clinical data on this tumor is scarce. This is a case series, which presents the first clinical experience with this entity. We compiled a retrospective case series on pHGG patients treated between 2015 and 2022 at our institution. Data collected include patients' clinical course, surgical procedure, histopathology, genome-wide DNA methylation analysis, imaging and adjuvant therapy. Eight pHGG were identified, ranging in age from 8 to 71 years. On MRI tumors presented with an unspecific intensity profile, T1w hypo- to isointense and T2w hyperintense, with inhomogeneous contrast enhancement, often with rim enhancement. Three patients died of the disease, with overall survival of 19, 28 and 30 months. Four patients were alive at the time of the last follow-up, 4, 5, 6 and 79 months after the initial surgery. One patient was lost to follow-up. Findings indicate that pHGG prevalence might be underestimated in the elderly population.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":" ","pages":"204-214"},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9969830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Central neurocytoma (CN) is classically defined by its intraventricular location, neuronal/neurocytic differentiation, and histological resemblance to oligodendroglioma. Extraventricular neurocytoma (EVN) shares similar histological features with CN, while it distributes any site without contact with the ventricular system. CN and EVN have distinct methylation landscapes, and EVN has a signature fusion gene, FGFR1-TACC1. These characteristics distinguish between CN and EVN. A 30-year-old female underwent craniotomy and resection of a left intraventricular tumor at our institution. The histopathology demonstrated the classical findings of CN. Adjuvant irradiation with 60 Gy followed. No recurrence has been recorded for 25 years postoperatively. RNA sequencing revealed FGFR1-TACC1 fusion and methylation profile was discrepant with CN but compatible with EVN. We experienced a case of anatomically and histologically proven CN in the lateral ventricle. However, the FGFR1-TACC1 fusion gene and methylation profiling suggested the molecular diagnosis of EVN. The representative case was an "intraventricular" neurocytoma displaying molecular features of an "extraventricular" neurocytoma. Clinicopathological and molecular definitions have collided in our case and raised questions about the current definition of CN and EVN.
{"title":"Intraventricular central neurocytoma molecularly defined as extraventricular neurocytoma: a case representing the discrepancy between clinicopathological and molecular classifications.","authors":"Daisuke Sato, Hirokazu Takami, Shunsaku Takayanagi, Masako Ikemura, Reiko Matsuura, Shota Tanaka, Nobuhito Saito","doi":"10.1007/s10014-023-00469-2","DOIUrl":"10.1007/s10014-023-00469-2","url":null,"abstract":"<p><p>Central neurocytoma (CN) is classically defined by its intraventricular location, neuronal/neurocytic differentiation, and histological resemblance to oligodendroglioma. Extraventricular neurocytoma (EVN) shares similar histological features with CN, while it distributes any site without contact with the ventricular system. CN and EVN have distinct methylation landscapes, and EVN has a signature fusion gene, FGFR1-TACC1. These characteristics distinguish between CN and EVN. A 30-year-old female underwent craniotomy and resection of a left intraventricular tumor at our institution. The histopathology demonstrated the classical findings of CN. Adjuvant irradiation with 60 Gy followed. No recurrence has been recorded for 25 years postoperatively. RNA sequencing revealed FGFR1-TACC1 fusion and methylation profile was discrepant with CN but compatible with EVN. We experienced a case of anatomically and histologically proven CN in the lateral ventricle. However, the FGFR1-TACC1 fusion gene and methylation profiling suggested the molecular diagnosis of EVN. The representative case was an \"intraventricular\" neurocytoma displaying molecular features of an \"extraventricular\" neurocytoma. Clinicopathological and molecular definitions have collided in our case and raised questions about the current definition of CN and EVN.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":" ","pages":"230-234"},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10206488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01Epub Date: 2023-05-22DOI: 10.1007/s10014-023-00463-8
Satoshi Nakasu, Shoichi Deguchi, Yoko Nakasu
The WHO 2021 classification defines IDH wild type (IDHw) histologically lower-grade glioma (hLGG) as molecular glioblastoma (mGBM) if TERT promoter mutation (pTERTm), EGFR amplification or chromosome seven gain and ten loss aberrations are indicated. We systematically reviewed articles of IDHw hLGGs studies (49 studies, N = 3748) and meta-analyzed mGBM prevalence and overall survival (OS) according to the PRISMA statement. mGBM rates in IDHw hLGG were significantly lower in Asian regions (43.7%, 95% confidence interval [CI: 35.8-52.0]) when compared to non-Asian regions (65.0%, [CI: 52.9-75.4]) (P = 0.005) and were significantly lower in fresh-frozen specimen when compared to formalin-fixed paraffin-embedded samples (P = 0.015). IDHw hLGGs without pTERTm rarely expressed other molecular markers in Asian studies when compared to non-Asian studies. Patients with mGBM had significantly longer OS times when compared to histological GBM (hGBM) (pooled hazard ratio (pHR) 0.824, [CI: 0.694-0.98], P = 0.03)). In patients with mGBM, histological grade was a significant prognostic factor (pHR 1.633, [CI: 1.09-2.447], P = 0.018), as was age (P = 0.001) and surgical extent (P = 0.018). Although bias risk across studies was moderate, mGBM with grade II histology showed better OS rates when compared to hGBM.
WHO 2021分类将IDH野生型(IDHw)组织学级别较低的胶质瘤(hLGG)定义为分子胶质母细胞瘤(mGBM),如果有TERT启动子突变(pTERTm)、EGFR扩增或7号染色体获得和10号染色体丢失畸变。我们系统地回顾了IDHw hLGGs研究的文章(49项研究,N = 3748),并根据PRISMA声明对mGBM患病率和总生存率(OS)进行了meta分析。与非亚洲地区(65.0%,[CI: 52.9-75.4])相比,亚洲地区IDHw hLGG的mGBM率(43.7%,95%可信区间[CI: 35.8-52.0])显著低于亚洲地区(65.0%,[CI: 52.9-75.4]) (P = 0.005),新鲜冷冻标本与福尔马林固定石蜡包埋标本相比显著低于(P = 0.015)。与非亚洲研究相比,没有pTERTm的IDHw hLGGs在亚洲研究中很少表达其他分子标记。与组织学GBM (hGBM)相比,mGBM患者的OS时间明显更长(合并风险比(pHR) 0.824, [CI: 0.694-0.98], P = 0.03)。在mGBM患者中,组织学分级是影响预后的重要因素(pHR为1.633,[CI: 1.09-2.447], P = 0.018),年龄(P = 0.001)和手术范围(P = 0.018)也是影响预后的重要因素。虽然各研究的偏倚风险中等,但与hGBM相比,组织学为II级的mGBM表现出更好的OS率。
{"title":"IDH wild-type lower-grade gliomas with glioblastoma molecular features: a systematic review and meta-analysis.","authors":"Satoshi Nakasu, Shoichi Deguchi, Yoko Nakasu","doi":"10.1007/s10014-023-00463-8","DOIUrl":"10.1007/s10014-023-00463-8","url":null,"abstract":"<p><p>The WHO 2021 classification defines IDH wild type (IDHw) histologically lower-grade glioma (hLGG) as molecular glioblastoma (mGBM) if TERT promoter mutation (pTERTm), EGFR amplification or chromosome seven gain and ten loss aberrations are indicated. We systematically reviewed articles of IDHw hLGGs studies (49 studies, N = 3748) and meta-analyzed mGBM prevalence and overall survival (OS) according to the PRISMA statement. mGBM rates in IDHw hLGG were significantly lower in Asian regions (43.7%, 95% confidence interval [CI: 35.8-52.0]) when compared to non-Asian regions (65.0%, [CI: 52.9-75.4]) (P = 0.005) and were significantly lower in fresh-frozen specimen when compared to formalin-fixed paraffin-embedded samples (P = 0.015). IDHw hLGGs without pTERTm rarely expressed other molecular markers in Asian studies when compared to non-Asian studies. Patients with mGBM had significantly longer OS times when compared to histological GBM (hGBM) (pooled hazard ratio (pHR) 0.824, [CI: 0.694-0.98], P = 0.03)). In patients with mGBM, histological grade was a significant prognostic factor (pHR 1.633, [CI: 1.09-2.447], P = 0.018), as was age (P = 0.001) and surgical extent (P = 0.018). Although bias risk across studies was moderate, mGBM with grade II histology showed better OS rates when compared to hGBM.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 3","pages":"143-157"},"PeriodicalIF":2.7,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10111349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chordoma is a rare malignant bone tumor arising from notochordal tissue. Conventional treatments, such as radical resection and high-dose irradiation, frequently fail to control the tumor, resulting in recurrence and re-growth. In this study, genetic analysis of the tumor in a 72-year-old male patient with refractory conventional chordoma of the skull base revealed a high tumor mutational burden (TMB) and mutations in the MSH6 and MLH1 genes, which are found in Lynch syndrome. The patient and his family had a dense cancer history, and subsequent germline genetic testing revealed Lynch syndrome. This is the first report of a chordoma that has been genetically proven to be Lynch syndrome. Chordomas usually have low TMB; however, this is an unusual case, because the TMB was high, and immune checkpoint inhibitors effectively controlled the tumor. This case provides a basis for determining the indications for immunotherapy of chordoma based on the genetic analysis. Therefore, further extensive genetic analysis in the future will help to stratify the treatment of chordoma.
{"title":"Lynch syndrome-associated chordoma with high tumor mutational burden and significant response to immune checkpoint inhibitors.","authors":"Naoki Shinojima, Kazutaka Ozono, Haruaki Yamamoto, Sakiko Abe, Rumi Sasaki, Yusuke Tomita, Azusa Kai, Ryosuke Mori, Takahiro Yamamoto, Ken Uekawa, Hirotaka Matsui, Kisato Nosaka, Hiroaki Matsuzaki, Yoshihiro Komohara, Yoshiki Mikami, Akitake Mukasa","doi":"10.1007/s10014-023-00461-w","DOIUrl":"https://doi.org/10.1007/s10014-023-00461-w","url":null,"abstract":"<p><p>Chordoma is a rare malignant bone tumor arising from notochordal tissue. Conventional treatments, such as radical resection and high-dose irradiation, frequently fail to control the tumor, resulting in recurrence and re-growth. In this study, genetic analysis of the tumor in a 72-year-old male patient with refractory conventional chordoma of the skull base revealed a high tumor mutational burden (TMB) and mutations in the MSH6 and MLH1 genes, which are found in Lynch syndrome. The patient and his family had a dense cancer history, and subsequent germline genetic testing revealed Lynch syndrome. This is the first report of a chordoma that has been genetically proven to be Lynch syndrome. Chordomas usually have low TMB; however, this is an unusual case, because the TMB was high, and immune checkpoint inhibitors effectively controlled the tumor. This case provides a basis for determining the indications for immunotherapy of chordoma based on the genetic analysis. Therefore, further extensive genetic analysis in the future will help to stratify the treatment of chordoma.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 3","pages":"185-190"},"PeriodicalIF":3.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314830/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9744997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Approximately 60% of hemangioblastomas (HBs) have peritumoral cysts adjacent to the tumor, which can cause neurological deficits due to the mass effect, and the management of cyst formation is a clinical challenge. Vascular mural cells surrounding endothelial cells consist of vascular smooth muscle cells (vSMCs) and pericytes, which are essential elements that support blood vessels and regulate permeability. This study investigated the involvement of mural cells in cyst formation. We analyzed the expression of α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor-beta (PDGFRB), and CD31 in 39 consecutive human cerebellar HBs, 20 of cystic and 19 of solid type. Solid type HBs showed stronger diffuse expression of α-SMA in precapillary arterioles and capillaries within the tumor than cystic type HBs (p = 0.001), whereas there was no difference in PDGFRB and CD31 expression. Detailed observation with immunofluorescence demonstrated that α-SMA was expressed in vascular mural cells surrounding capillaries in the solid rather than in the cystic type. Multivariate analysis including various clinical and pathological factors showed that lower α-SMA expression was significantly correlated with cyst formation (p < 0.001). Our data suggested that vascular mural cells from precapillary arterioles to capillaries expressing α-SMA may be pericytes and play a crucial role in HB cystogenesis.
{"title":"α-SMA positive vascular mural cells suppress cyst formation in hemangioblastoma.","authors":"Maki Sakaguchi, Riho Nakajima, Toshiya Ichinose, Shingo Tanaka, Ryouken Kimura, Hemragul Sabit, Satoko Nakada, Mitsutoshi Nakada","doi":"10.1007/s10014-023-00465-6","DOIUrl":"https://doi.org/10.1007/s10014-023-00465-6","url":null,"abstract":"<p><p>Approximately 60% of hemangioblastomas (HBs) have peritumoral cysts adjacent to the tumor, which can cause neurological deficits due to the mass effect, and the management of cyst formation is a clinical challenge. Vascular mural cells surrounding endothelial cells consist of vascular smooth muscle cells (vSMCs) and pericytes, which are essential elements that support blood vessels and regulate permeability. This study investigated the involvement of mural cells in cyst formation. We analyzed the expression of α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor-beta (PDGFRB), and CD31 in 39 consecutive human cerebellar HBs, 20 of cystic and 19 of solid type. Solid type HBs showed stronger diffuse expression of α-SMA in precapillary arterioles and capillaries within the tumor than cystic type HBs (p = 0.001), whereas there was no difference in PDGFRB and CD31 expression. Detailed observation with immunofluorescence demonstrated that α-SMA was expressed in vascular mural cells surrounding capillaries in the solid rather than in the cystic type. Multivariate analysis including various clinical and pathological factors showed that lower α-SMA expression was significantly correlated with cyst formation (p < 0.001). Our data suggested that vascular mural cells from precapillary arterioles to capillaries expressing α-SMA may be pericytes and play a crucial role in HB cystogenesis.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 3","pages":"176-184"},"PeriodicalIF":3.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10111401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
EPN-ZFTA is a rare brain tumor where prognostic factors remain unclear and no effective immunotherapy or chemotherapy is currently available. Therefore, this study investigated its clinicopathological features, evaluated the utility of MTAP and p16 IHC as surrogate markers of CDKN2A alterations, and characterized the immune microenvironment of EPN-ZFTA. Thirty surgically removed brain tumors, including 10 EPN-ZFTA, were subjected to IHC. MLPA was performed for CDKN2A HD in 20 ependymal tumors, including EPN-ZFTA. The 5-years OS and PFS of EPN-ZFTA were 90% and 60%, respectively. CDKN2A HD was detected in two cases of EPN-ZFTA; these cases were immunohistochemically negative for both MTAP and p16 and recurred earlier after surgery. As for the immune microenvironment of EPN-ZFTA, B7-H3, but not PD-L1, was positive in all cases of EPN-ZFTA; Iba-1-positive or CD204-positive macrophages were large, while infiltrating lymphocytes were small, in number in EPN-ZFTA. Collectively, these results indicate the potential of MTAP and p16 IHC as useful surrogate markers of CDKN2A HD in EPN-ZFTA, and tumor-associated macrophages, including the M2 type, may contribute to its immune microenvironment. Furthermore, the expression of B7-H3 in EPN-ZFTA may indicate the usefulness of B7-H3 as a target of immune checkpoint chemotherapy for EPN-ZFTA via B7-H3 pathway.
EPN-ZFTA是一种罕见的脑肿瘤,其预后因素尚不清楚,目前没有有效的免疫治疗或化疗。因此,本研究探讨了其临床病理特征,评估了MTAP和p16 IHC作为CDKN2A改变的替代标志物的效用,并对EPN-ZFTA的免疫微环境进行了表征。30例手术切除的脑肿瘤,包括10例EPN-ZFTA,进行免疫组化。对包括EPN-ZFTA在内的20例室管膜肿瘤行CDKN2A HD MLPA。EPN-ZFTA 5年OS为90%,PFS为60%。2例EPN-ZFTA中检测到CDKN2A HD;这些病例均为MTAP和p16免疫组化阴性,术后复发较早。EPN-ZFTA的免疫微环境中,B7-H3阳性,PD-L1不阳性;EPN-ZFTA中iba -1阳性或cd204阳性的巨噬细胞较多,浸润淋巴细胞较少。总的来说,这些结果表明MTAP和p16 IHC作为EPN-ZFTA中CDKN2A HD的有用替代标记物的潜力,以及肿瘤相关巨噬细胞,包括M2型,可能有助于其免疫微环境。此外,B7-H3在EPN-ZFTA中的表达可能表明B7-H3可作为免疫检查点化疗通过B7-H3途径治疗EPN-ZFTA的靶点。
{"title":"A clinicopathological analysis of supratentorial ependymoma, ZFTA fusion-positive: utility of immunohistochemical detection of CDKN2A alterations and characteristics of the immune microenvironment.","authors":"Naohito Hashimoto, Tomonari Suzuki, Keisuke Ishizawa, Sumihito Nobusawa, Hideaki Yokoo, Ryo Nishikawa, Masanori Yasuda, Atsushi Sasaki","doi":"10.1007/s10014-023-00464-7","DOIUrl":"https://doi.org/10.1007/s10014-023-00464-7","url":null,"abstract":"<p><p>EPN-ZFTA is a rare brain tumor where prognostic factors remain unclear and no effective immunotherapy or chemotherapy is currently available. Therefore, this study investigated its clinicopathological features, evaluated the utility of MTAP and p16 IHC as surrogate markers of CDKN2A alterations, and characterized the immune microenvironment of EPN-ZFTA. Thirty surgically removed brain tumors, including 10 EPN-ZFTA, were subjected to IHC. MLPA was performed for CDKN2A HD in 20 ependymal tumors, including EPN-ZFTA. The 5-years OS and PFS of EPN-ZFTA were 90% and 60%, respectively. CDKN2A HD was detected in two cases of EPN-ZFTA; these cases were immunohistochemically negative for both MTAP and p16 and recurred earlier after surgery. As for the immune microenvironment of EPN-ZFTA, B7-H3, but not PD-L1, was positive in all cases of EPN-ZFTA; Iba-1-positive or CD204-positive macrophages were large, while infiltrating lymphocytes were small, in number in EPN-ZFTA. Collectively, these results indicate the potential of MTAP and p16 IHC as useful surrogate markers of CDKN2A HD in EPN-ZFTA, and tumor-associated macrophages, including the M2 type, may contribute to its immune microenvironment. Furthermore, the expression of B7-H3 in EPN-ZFTA may indicate the usefulness of B7-H3 as a target of immune checkpoint chemotherapy for EPN-ZFTA via B7-H3 pathway.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 3","pages":"163-175"},"PeriodicalIF":3.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9743582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pituitary neuroendocrine tumors (PitNETs) lacking lineage affiliation are termed "null cell" PitNETs (NCTs). NCTs are characterized as being immunonegative for pituitary hormones as well as transcription factors. We analyzed the ultrastructure and immunohistochemistry of six hormone-negative and transcription factor (TPIT, PIT1, SF1)-negative PitNETs, with less than 1% immunoreactive cells. Histologically, three cases presented a perivascular pattern and pseudorosettes; the other three showed a solid pattern with oncocytic changes. Electron microscopic examination revealed poorly differentiated tumor cells with sparsely scattered secretory granules and intracellular organelles in all null cell tumors when compared with hormone-positive PitNETs. Two cases harbored a honeycomb Golgi (HG) structure, and three oncocytic tumors showed mitochondrial accumulation. The two HG cases were immunopositive for newly obtained TPIT (CL6251) and showed some adrenocorticotropic hormone-positive cells, while the remaining four were diffusely immunopositive for GATA3, with two SF1-positive cases identified in subsequent immunostaining. Thus, these six cases may be classified as two sparsely granulated corticotroph PitNETs, two gonadotroph PitNETs with SF1 re-staining, and two likely gonadotroph PitNETs with GATA3 immunostaining. No "true NCT" was detected among 1071 PitNETs, demonstrating the importance of precise diagnosis following the most recent criteria to improve therapeutic success.
{"title":"Immunohistochemical and ultrastructural review of six cases previously diagnosed as null cell PitNETs.","authors":"Naoko Inoshita, Toyoki Yoshimoto, Yutaka Takazawa, Noriaki Fukuhara, Mitsuo Okada, Hiroshi Nishioka, Shozo Yamada","doi":"10.1007/s10014-023-00462-9","DOIUrl":"https://doi.org/10.1007/s10014-023-00462-9","url":null,"abstract":"<p><p>Pituitary neuroendocrine tumors (PitNETs) lacking lineage affiliation are termed \"null cell\" PitNETs (NCTs). NCTs are characterized as being immunonegative for pituitary hormones as well as transcription factors. We analyzed the ultrastructure and immunohistochemistry of six hormone-negative and transcription factor (TPIT, PIT1, SF1)-negative PitNETs, with less than 1% immunoreactive cells. Histologically, three cases presented a perivascular pattern and pseudorosettes; the other three showed a solid pattern with oncocytic changes. Electron microscopic examination revealed poorly differentiated tumor cells with sparsely scattered secretory granules and intracellular organelles in all null cell tumors when compared with hormone-positive PitNETs. Two cases harbored a honeycomb Golgi (HG) structure, and three oncocytic tumors showed mitochondrial accumulation. The two HG cases were immunopositive for newly obtained TPIT (CL6251) and showed some adrenocorticotropic hormone-positive cells, while the remaining four were diffusely immunopositive for GATA3, with two SF1-positive cases identified in subsequent immunostaining. Thus, these six cases may be classified as two sparsely granulated corticotroph PitNETs, two gonadotroph PitNETs with SF1 re-staining, and two likely gonadotroph PitNETs with GATA3 immunostaining. No \"true NCT\" was detected among 1071 PitNETs, demonstrating the importance of precise diagnosis following the most recent criteria to improve therapeutic success.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 3","pages":"158-162"},"PeriodicalIF":3.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9731280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}