Purpose: The Rotterdam Scoring System (RSS) attempts to prognosticate early mortality and early functional outcome in patients with traumatic brain injury (TBI) based on non-contrast head computed tomography (CT) imaging findings. The purpose of this study was to identify the relationship between RSS scores and long-term outcomes in patients with severe TBI.
Methods: Consecutively treated patients with severe TBI enrolled between 2008 and 2011, in the prospective, observational, Brain Trauma Research Center database were included. The Glasgow Outcome Scale (GOS) was used to measure long-term functional outcomes at three, six, 12, and 24 months. GOS scores were categorized into favorable (GOS = 4-5) and unfavorable (GOS = 1-3) outcomes. RSS scores were calculated at the time of image acquisition.
Results: Of the 89 patients included, 74 (83.4%) were male, 81 (91.0%) were Caucasian, and the mean age of the cohort was 41.9 ± 18.5 years old. Patients with an RSS score of 3 and lower were more likely to have a favorable outcome with increased survival rates than patients with RSS scores greater than 3.
Conclusions: The RSS score determined on the head CT scan acquired at admission in a cohort of patients with severe TBI correlated with long-term survival and functional outcomes up to two years following injury.
Although glioblastoma is the commonest primary brain tumour in adults, its location in the cerebellum is extremely rare. We present thirteen cases (3 female, 10 male; median age at presentation 56 [age range 21-77]) of surgically managed, histologically confirmed, primary cerebellar glioblastoma (cGB) over a 17 year period (2005-2022). Pre-operative radiological diagnosis was challenging given cGB rarity, although MRI demonstrated ring enhancement in all cases. Surgical management included posterior fossa craniectomy and debulking in 11 cases and burr hole biopsy in two. CSF diversion was necessary in four cases. No evidence of IDH or ATRX gene mutations was found when tested. Survival ranged from 1 to 22 months after diagnosis (mean 10.9 months). We also seek to understand why glioblastoma is rare in this location and discuss potential reasons for this. We hypothesise that increasing anatomical distance from germinal regions and decreased local endogenous neural stem cell activity (which has been associated with glioblastoma) may explain why glioblastoma is rare in the cerebellum. We hereby seek to add to the limited literature on cGB as this is the largest UK cGB series to date.
Background: After a mild traumatic brain injury (mild TBI,) a significant number of patients may experience persistent symptoms and disabilities for months to years. Early identification and timely management of persistent symptoms may help to reduce the long-term impacts of mild TBIs. There is currently no formalised method for identifying patients with persistent symptoms after mild TBI once they are discharged from emergency department.
Objective: Assess the feasibility of a remote monitoring tool for early identification of persistent symptoms after mild TBI in the outpatient setting using digital tools.
Methods: Electronic surveys were sent to patients with mild TBI who presented to the emergency department at a Major Trauma Centre in England. The surveys were completed at three different timepoints (within days of injury (S1), 1 month (S2), and 3 months (S3) after injury). The indicators used to assess feasibility were engagement, number of eligible patients for follow-up evidence of need for the intervention, and consistency with the literature. Feedback was sought from participants.
Results: Of the 200 people invited to participate, 134 (67.0%) completed S1, 115 (57.5%) completed S2, and 95 (47.5%) completed S3. The rates of persistent symptoms ranged from 17.9%-62.6% depending on the criteria used, and we found a significant proportion of the participants experienced morbidity 1 and 3 months after injury. The electronic follow-up tool was deemed an acceptable and user-friendly method for service delivery by participants.
Conclusion: Using digital tools to monitor and screen mild TBI patients for persistent symptoms is feasible. This could be a scalable, cost-effective, and convenient solution which could improve access to healthcare and reduce healthcare inequalities. This could enable early identification of patients with further medical needs and facilitate timely intervention to improve the clinical workflows, patient satisfaction, and health outcomes for people with persistent morbidities after mild TBIs.