Pub Date : 2023-05-30DOI: 10.1186/s13058-023-01661-0
Herjan J T Coelingh Bennink, Iman J Schultz, Marcus Schmidt, V Craig Jordan, Paula Briggs, Jan F M Egberts, Kristina Gemzell-Danielsson, Ludwig Kiesel, Kirsten Kluivers, Jan Krijgh, Tommaso Simoncini, Frank Z Stanczyk, Robert D Langer
Many factors, including reproductive hormones, have been linked to a woman's risk of developing breast cancer (BC). We reviewed the literature regarding the relationship between ovulatory menstrual cycles (MCs) and BC risk. Physiological variations in the frequency of MCs and interference with MCs through genetic variations, pathological conditions and or pharmaceutical interventions revealed a strong link between BC risk and the lifetime number of MCs. A substantial reduction in BC risk is observed in situations without MCs. In genetic or transgender situations with normal female breasts and estrogens, but no progesterone (P4), the incidence of BC is very low, suggesting an essential role of P4. During the MC, P4 has a strong proliferative effect on normal breast epithelium, whereas estradiol (E2) has only a minimal effect. The origin of BC has been strongly linked to proliferation associated DNA replication errors, and the repeated stimulation of the breast epithelium by P4 with each MC is likely to impact the epithelial mutational burden. Long-lived cells, such as stem cells, present in the breast epithelium, can carry mutations forward for an extended period of time, and studies show that breast tumors tend to take decades to develop before detection. We therefore postulate that P4 is an important factor in a woman's lifetime risk of developing BC, and that breast tumors arising during hormonal contraception or after menopause, with or without menopausal hormone therapy, are the consequence of the outgrowth of pre-existing neoplastic lesions, eventually stimulated by estrogens and some progestins.
{"title":"Progesterone from ovulatory menstrual cycles is an important cause of breast cancer.","authors":"Herjan J T Coelingh Bennink, Iman J Schultz, Marcus Schmidt, V Craig Jordan, Paula Briggs, Jan F M Egberts, Kristina Gemzell-Danielsson, Ludwig Kiesel, Kirsten Kluivers, Jan Krijgh, Tommaso Simoncini, Frank Z Stanczyk, Robert D Langer","doi":"10.1186/s13058-023-01661-0","DOIUrl":"https://doi.org/10.1186/s13058-023-01661-0","url":null,"abstract":"<p><p>Many factors, including reproductive hormones, have been linked to a woman's risk of developing breast cancer (BC). We reviewed the literature regarding the relationship between ovulatory menstrual cycles (MCs) and BC risk. Physiological variations in the frequency of MCs and interference with MCs through genetic variations, pathological conditions and or pharmaceutical interventions revealed a strong link between BC risk and the lifetime number of MCs. A substantial reduction in BC risk is observed in situations without MCs. In genetic or transgender situations with normal female breasts and estrogens, but no progesterone (P4), the incidence of BC is very low, suggesting an essential role of P4. During the MC, P4 has a strong proliferative effect on normal breast epithelium, whereas estradiol (E2) has only a minimal effect. The origin of BC has been strongly linked to proliferation associated DNA replication errors, and the repeated stimulation of the breast epithelium by P4 with each MC is likely to impact the epithelial mutational burden. Long-lived cells, such as stem cells, present in the breast epithelium, can carry mutations forward for an extended period of time, and studies show that breast tumors tend to take decades to develop before detection. We therefore postulate that P4 is an important factor in a woman's lifetime risk of developing BC, and that breast tumors arising during hormonal contraception or after menopause, with or without menopausal hormone therapy, are the consequence of the outgrowth of pre-existing neoplastic lesions, eventually stimulated by estrogens and some progestins.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":"25 1","pages":"60"},"PeriodicalIF":0.0,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228093/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10028181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-25DOI: 10.1186/s13058-023-01627-2
Minoru Miyashita, Joshua S K Bell, Stephane Wenric, Ezgi Karaesmen, Brooke Rhead, Matthew Kase, Kristiyana Kaneva, Francisco M De La Vega, Yonglan Zheng, Toshio F Yoshimatsu, Galina Khramtsova, Fang Liu, Fangyuan Zhao, Frederick M Howard, Rita Nanda, Nike Beaubier, Kevin P White, Dezheng Huo, Olufunmilayo I Olopade
Background: Endocrine-resistant HR+/HER2- breast cancer (BC) and triple-negative BC (TNBC) are of interest for molecularly informed treatment due to their aggressive natures and limited treatment profiles. Patients of African Ancestry (AA) experience higher rates of TNBC and mortality than European Ancestry (EA) patients, despite lower overall BC incidence. Here, we compare the molecular landscapes of AA and EA patients with HR+/HER2- BC and TNBC in a real-world cohort to promote equity in precision oncology by illuminating the heterogeneity of potentially druggable genomic and transcriptomic pathways.
Methods: De-identified records from patients with TNBC or HR+/HER2- BC in the Tempus Database were randomly selected (N = 5000), with most having stage IV disease. Mutations, gene expression, and transcriptional signatures were evaluated from next-generation sequencing data. Genetic ancestry was estimated from DNA-seq. Differences in mutational prevalence, gene expression, and transcriptional signatures between AA and EA were compared. EA patients were used as the reference population for log fold-changes (logFC) in expression.
Results: After applying inclusion criteria, 3433 samples were evaluated (n = 623 AA and n = 2810 EA). Observed patterns of dysregulated pathways demonstrated significant heterogeneity among the two groups. Notably, PIK3CA mutations were significantly lower in AA HR+/HER2- tumors (AA = 34% vs. EA = 42%, P < 0.05) and the overall cohort (AA = 28% vs. EA = 37%, P = 2.08e-05). Conversely, KMT2C mutation was significantly more frequent in AA than EA TNBC (23% vs. 12%, P < 0.05) and HR+/HER2- (24% vs. 15%, P = 3e-03) tumors. Across all subtypes and stages, over 8000 genes were differentially expressed between the two ancestral groups including RPL10 (logFC = 2.26, P = 1.70e-162), HSPA1A (logFC = - 2.73, P = 2.43e-49), ATRX (logFC = - 1.93, P = 5.89e-83), and NUTM2F (logFC = 2.28, P = 3.22e-196). Ten differentially expressed gene sets were identified among stage IV HR+/HER2- tumors, of which four were considered relevant to BC treatment and were significantly enriched in EA: ERBB2_UP.V1_UP (P = 3.95e-06), LTE2_UP.V1_UP (P = 2.90e-05), HALLMARK_FATTY_ACID_METABOLISM (P = 0.0073), and HALLMARK_ANDROGEN_RESPONSE (P = 0.0074).
Conclusions: We observed significant differences in mutational spectra, gene expression, and relevant transcriptional signatures between patients with genetically determined African and European ancestries, particularly within the HR+/HER2- BC and TNBC subtypes. These findings could guide future development of treatment strategies by providing opportunities for biomarker-informed research and, ultimately, clinical decisions for precision oncology care in diverse populations.
背景:内分泌抵抗性HR+/HER2-乳腺癌(BC)和三阴性BC (TNBC)由于其侵袭性和有限的治疗方案而引起分子知情治疗的兴趣。非洲血统(AA)患者的TNBC发病率和死亡率高于欧洲血统(EA)患者,尽管总体BC发病率较低。在这里,我们在现实世界队列中比较了AA和EA患者的HR+/HER2- BC和TNBC的分子景观,通过阐明潜在药物基因组和转录组通路的异质性来促进精确肿瘤学的公平性。方法:随机选择Tempus数据库中TNBC或HR+/HER2- BC患者的去识别记录(N = 5000),其中大多数为IV期疾病。根据下一代测序数据评估突变、基因表达和转录特征。遗传祖先由DNA-seq估计。比较AA和EA在突变发生率、基因表达和转录特征方面的差异。以EA患者为参考人群,观察其表达的log fold-changes (logFC)。结果:应用纳入标准后,共纳入3433份样本(AA = 623份,EA = 2810份)。观察到的失调通路模式在两组之间显示出显著的异质性。值得注意的是,PIK3CA突变在AA HR+/HER2-肿瘤中显著降低(AA = 34% vs. EA = 42%)。结论:我们观察到遗传确定的非洲和欧洲血统患者在突变谱、基因表达和相关转录特征方面存在显著差异,特别是在HR+/HER2- BC和TNBC亚型中。这些发现可以指导未来治疗策略的发展,为生物标志物研究提供机会,并最终为不同人群的精确肿瘤治疗提供临床决策。
{"title":"Molecular profiling of a real-world breast cancer cohort with genetically inferred ancestries reveals actionable tumor biology differences between European ancestry and African ancestry patient populations.","authors":"Minoru Miyashita, Joshua S K Bell, Stephane Wenric, Ezgi Karaesmen, Brooke Rhead, Matthew Kase, Kristiyana Kaneva, Francisco M De La Vega, Yonglan Zheng, Toshio F Yoshimatsu, Galina Khramtsova, Fang Liu, Fangyuan Zhao, Frederick M Howard, Rita Nanda, Nike Beaubier, Kevin P White, Dezheng Huo, Olufunmilayo I Olopade","doi":"10.1186/s13058-023-01627-2","DOIUrl":"https://doi.org/10.1186/s13058-023-01627-2","url":null,"abstract":"<p><strong>Background: </strong>Endocrine-resistant HR+/HER2- breast cancer (BC) and triple-negative BC (TNBC) are of interest for molecularly informed treatment due to their aggressive natures and limited treatment profiles. Patients of African Ancestry (AA) experience higher rates of TNBC and mortality than European Ancestry (EA) patients, despite lower overall BC incidence. Here, we compare the molecular landscapes of AA and EA patients with HR+/HER2- BC and TNBC in a real-world cohort to promote equity in precision oncology by illuminating the heterogeneity of potentially druggable genomic and transcriptomic pathways.</p><p><strong>Methods: </strong>De-identified records from patients with TNBC or HR+/HER2- BC in the Tempus Database were randomly selected (N = 5000), with most having stage IV disease. Mutations, gene expression, and transcriptional signatures were evaluated from next-generation sequencing data. Genetic ancestry was estimated from DNA-seq. Differences in mutational prevalence, gene expression, and transcriptional signatures between AA and EA were compared. EA patients were used as the reference population for log fold-changes (logFC) in expression.</p><p><strong>Results: </strong>After applying inclusion criteria, 3433 samples were evaluated (n = 623 AA and n = 2810 EA). Observed patterns of dysregulated pathways demonstrated significant heterogeneity among the two groups. Notably, PIK3CA mutations were significantly lower in AA HR+/HER2- tumors (AA = 34% vs. EA = 42%, P < 0.05) and the overall cohort (AA = 28% vs. EA = 37%, P = 2.08e-05). Conversely, KMT2C mutation was significantly more frequent in AA than EA TNBC (23% vs. 12%, P < 0.05) and HR+/HER2- (24% vs. 15%, P = 3e-03) tumors. Across all subtypes and stages, over 8000 genes were differentially expressed between the two ancestral groups including RPL10 (logFC = 2.26, P = 1.70e-162), HSPA1A (logFC = - 2.73, P = 2.43e-49), ATRX (logFC = - 1.93, P = 5.89e-83), and NUTM2F (logFC = 2.28, P = 3.22e-196). Ten differentially expressed gene sets were identified among stage IV HR+/HER2- tumors, of which four were considered relevant to BC treatment and were significantly enriched in EA: ERBB2_UP.V1_UP (P = 3.95e-06), LTE2_UP.V1_UP (P = 2.90e-05), HALLMARK_FATTY_ACID_METABOLISM (P = 0.0073), and HALLMARK_ANDROGEN_RESPONSE (P = 0.0074).</p><p><strong>Conclusions: </strong>We observed significant differences in mutational spectra, gene expression, and relevant transcriptional signatures between patients with genetically determined African and European ancestries, particularly within the HR+/HER2- BC and TNBC subtypes. These findings could guide future development of treatment strategies by providing opportunities for biomarker-informed research and, ultimately, clinical decisions for precision oncology care in diverse populations.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":"25 1","pages":"58"},"PeriodicalIF":0.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10028160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24DOI: 10.1186/s13058-023-01656-x
Xiaojia Tang, Kevin J Thompson, Krishna R Kalari, Jason P Sinnwell, Vera J Suman, Peter T Vedell, Sarah A McLaughlin, Donald W Northfelt, Alvaro Moreno Aspitia, Richard J Gray, Jodi M Carter, Richard Weinshilboum, Liewei Wang, Judy C Boughey, Matthew P Goetz
Background: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Patients with TNBC are primarily treated with neoadjuvant chemotherapy (NAC). The response to NAC is prognostic, with reductions in overall survival and disease-free survival rates in those patients who do not achieve a pathological complete response (pCR). Based on this premise, we hypothesized that paired analysis of primary and residual TNBC tumors following NAC could identify unique biomarkers associated with post-NAC recurrence.
Methods and results: We investigated 24 samples from 12 non-LAR TNBC patients with paired pre- and post-NAC data, including four patients with recurrence shortly after surgery (< 24 months) and eight who remained recurrence-free (> 48 months). These tumors were collected from a prospective NAC breast cancer study (BEAUTY) conducted at the Mayo Clinic. Differential expression analysis of pre-NAC biopsies showed minimal gene expression differences between early recurrent and nonrecurrent TNBC tumors; however, post-NAC samples demonstrated significant alterations in expression patterns in response to intervention. Topological-level differences associated with early recurrence were implicated in 251 gene sets, and an independent assessment of microarray gene expression data from the 9 paired non-LAR samples available in the NAC I-SPY1 trial confirmed 56 gene sets. Within these 56 gene sets, 113 genes were observed to be differentially expressed in the I-SPY1 and BEAUTY post-NAC studies. An independent (n = 392) breast cancer dataset with relapse-free survival (RFS) data was used to refine our gene list to a 17-gene signature. A threefold cross-validation analysis of the gene signature with the combined BEAUTY and I-SPY1 data yielded an average AUC of 0.88 for six machine-learning models. Due to the limited number of studies with pre- and post-NAC TNBC tumor data, further validation of the signature is needed.
Conclusion: Analysis of multiomics data from post-NAC TNBC chemoresistant tumors showed down regulation of mismatch repair and tubulin pathways. Additionally, we identified a 17-gene signature in TNBC associated with post-NAC recurrence enriched with down-regulated immune genes.
{"title":"Integration of multiomics data shows down regulation of mismatch repair and tubulin pathways in triple-negative chemotherapy-resistant breast tumors.","authors":"Xiaojia Tang, Kevin J Thompson, Krishna R Kalari, Jason P Sinnwell, Vera J Suman, Peter T Vedell, Sarah A McLaughlin, Donald W Northfelt, Alvaro Moreno Aspitia, Richard J Gray, Jodi M Carter, Richard Weinshilboum, Liewei Wang, Judy C Boughey, Matthew P Goetz","doi":"10.1186/s13058-023-01656-x","DOIUrl":"10.1186/s13058-023-01656-x","url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Patients with TNBC are primarily treated with neoadjuvant chemotherapy (NAC). The response to NAC is prognostic, with reductions in overall survival and disease-free survival rates in those patients who do not achieve a pathological complete response (pCR). Based on this premise, we hypothesized that paired analysis of primary and residual TNBC tumors following NAC could identify unique biomarkers associated with post-NAC recurrence.</p><p><strong>Methods and results: </strong>We investigated 24 samples from 12 non-LAR TNBC patients with paired pre- and post-NAC data, including four patients with recurrence shortly after surgery (< 24 months) and eight who remained recurrence-free (> 48 months). These tumors were collected from a prospective NAC breast cancer study (BEAUTY) conducted at the Mayo Clinic. Differential expression analysis of pre-NAC biopsies showed minimal gene expression differences between early recurrent and nonrecurrent TNBC tumors; however, post-NAC samples demonstrated significant alterations in expression patterns in response to intervention. Topological-level differences associated with early recurrence were implicated in 251 gene sets, and an independent assessment of microarray gene expression data from the 9 paired non-LAR samples available in the NAC I-SPY1 trial confirmed 56 gene sets. Within these 56 gene sets, 113 genes were observed to be differentially expressed in the I-SPY1 and BEAUTY post-NAC studies. An independent (n = 392) breast cancer dataset with relapse-free survival (RFS) data was used to refine our gene list to a 17-gene signature. A threefold cross-validation analysis of the gene signature with the combined BEAUTY and I-SPY1 data yielded an average AUC of 0.88 for six machine-learning models. Due to the limited number of studies with pre- and post-NAC TNBC tumor data, further validation of the signature is needed.</p><p><strong>Conclusion: </strong>Analysis of multiomics data from post-NAC TNBC chemoresistant tumors showed down regulation of mismatch repair and tubulin pathways. Additionally, we identified a 17-gene signature in TNBC associated with post-NAC recurrence enriched with down-regulated immune genes.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":"25 1","pages":"57"},"PeriodicalIF":0.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9663533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-23DOI: 10.1186/s13058-023-01658-9
Emily Hoffmann, Mirjam Gerwing, Tobias Krähling, Uwe Hansen, Katharina Kronenberg, Max Masthoff, Christiane Geyer, Carsten Höltke, Lydia Wachsmuth, Regina Schinner, Verena Hoerr, Walter Heindel, Uwe Karst, Michel Eisenblätter, Bastian Maus, Anne Helfen, Cornelius Faber, Moritz Wildgruber
Background: Response assessment of targeted cancer therapies is becoming increasingly challenging, as it is not adequately assessable with conventional morphological and volumetric analyses of tumor lesions. The tumor microenvironment is particularly constituted by tumor vasculature which is altered by various targeted therapies. The aim of this study was to noninvasively assess changes in tumor perfusion and vessel permeability after targeted therapy in murine models of breast cancer with divergent degrees of malignancy.
Methods: Low malignant 67NR or highly malignant 4T1 tumor-bearing mice were treated with either the multi-kinase inhibitor sorafenib or immune checkpoint inhibitors (ICI, combination of anti-PD1 and anti-CTLA4). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with i.v. injection of albumin-binding gadofosveset was conducted on a 9.4 T small animal MRI. Ex vivo validation of MRI results was achieved by transmission electron microscopy, immunohistochemistry and laser ablation-inductively coupled plasma-mass spectrometry.
Results: Therapy-induced changes in tumor vasculature differed between low and highly malignant tumors. Sorafenib treatment led to decreased tumor perfusion and endothelial permeability in low malignant 67NR tumors. In contrast, highly malignant 4T1 tumors demonstrated characteristics of a transient window of vascular normalization with an increase in tumor perfusion and permeability early after therapy initiation, followed by decreased perfusion and permeability parameters. In the low malignant 67NR model, ICI treatment also mediated vessel-stabilizing effects with decreased tumor perfusion and permeability, while ICI-treated 4T1 tumors exhibited increasing tumor perfusion with excessive vascular leakage.
Conclusion: DCE-MRI enables noninvasive assessment of early changes in tumor vasculature after targeted therapies, revealing different response patterns between tumors with divergent degrees of malignancy. DCE-derived tumor perfusion and permeability parameters may serve as vascular biomarkers that allow for repetitive examination of response to antiangiogenic treatment or immunotherapy.
{"title":"Vascular response patterns to targeted therapies in murine breast cancer models with divergent degrees of malignancy.","authors":"Emily Hoffmann, Mirjam Gerwing, Tobias Krähling, Uwe Hansen, Katharina Kronenberg, Max Masthoff, Christiane Geyer, Carsten Höltke, Lydia Wachsmuth, Regina Schinner, Verena Hoerr, Walter Heindel, Uwe Karst, Michel Eisenblätter, Bastian Maus, Anne Helfen, Cornelius Faber, Moritz Wildgruber","doi":"10.1186/s13058-023-01658-9","DOIUrl":"https://doi.org/10.1186/s13058-023-01658-9","url":null,"abstract":"<p><strong>Background: </strong>Response assessment of targeted cancer therapies is becoming increasingly challenging, as it is not adequately assessable with conventional morphological and volumetric analyses of tumor lesions. The tumor microenvironment is particularly constituted by tumor vasculature which is altered by various targeted therapies. The aim of this study was to noninvasively assess changes in tumor perfusion and vessel permeability after targeted therapy in murine models of breast cancer with divergent degrees of malignancy.</p><p><strong>Methods: </strong>Low malignant 67NR or highly malignant 4T1 tumor-bearing mice were treated with either the multi-kinase inhibitor sorafenib or immune checkpoint inhibitors (ICI, combination of anti-PD1 and anti-CTLA4). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with i.v. injection of albumin-binding gadofosveset was conducted on a 9.4 T small animal MRI. Ex vivo validation of MRI results was achieved by transmission electron microscopy, immunohistochemistry and laser ablation-inductively coupled plasma-mass spectrometry.</p><p><strong>Results: </strong>Therapy-induced changes in tumor vasculature differed between low and highly malignant tumors. Sorafenib treatment led to decreased tumor perfusion and endothelial permeability in low malignant 67NR tumors. In contrast, highly malignant 4T1 tumors demonstrated characteristics of a transient window of vascular normalization with an increase in tumor perfusion and permeability early after therapy initiation, followed by decreased perfusion and permeability parameters. In the low malignant 67NR model, ICI treatment also mediated vessel-stabilizing effects with decreased tumor perfusion and permeability, while ICI-treated 4T1 tumors exhibited increasing tumor perfusion with excessive vascular leakage.</p><p><strong>Conclusion: </strong>DCE-MRI enables noninvasive assessment of early changes in tumor vasculature after targeted therapies, revealing different response patterns between tumors with divergent degrees of malignancy. DCE-derived tumor perfusion and permeability parameters may serve as vascular biomarkers that allow for repetitive examination of response to antiangiogenic treatment or immunotherapy.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":"25 1","pages":"56"},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10207609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10028154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: S100A6 and murine double minute 2 (MDM2) are important cancer-related molecules. A previous study identified an interaction between S100A6 and MDM2 by size exclusion chromatography and surface plasmon resonance experiments. The present study investigated whether S100A6 could bind to MDM2 in vivo and further explored its functional implication.
Methods: Co-immunoprecipitation, glutathione-S-transferase pull-down assay, and immunofluorescence were performed to determine the in vivo interaction between S100A6 and MDM2. Cycloheximide pulse-chase assay and ubiquitination assay were performed to clarify the mechanism by which S100A6 downregulated MDM2. In addition, clonogenic assay, WST-1 assay, and flow cytometry of apoptosis and the cell cycle were performed and a xenograft model was established to evaluate the effects of the S100A6/MDM2 interaction on growth and paclitaxel-induced chemosensitivity of breast cancer. The expressions of S100A6 and MDM2 in patients with invasive breast cancer were analyzed by immunohistochemistry. In addition, the correlation between the expression of S100A6 and the response to neoadjuvant chemotherapy was statistically analyzed.
Results: S100A6 promoted the MDM2 translocation from nucleus to cytoplasm, in which the S100A6 bound to the binding site of the herpesvirus-associated ubiquitin-specific protease (HAUSP) in MDM2, disrupted the MDM2-HAUSP-DAXX interactions, and induced the MDM2 self-ubiquitination and degradation. Furthermore, the S100A6-mediated MDM2 degradation suppressed the growth of breast cancer and enhanced its sensitivity to paclitaxel both in vitro and in vivo. For patients with invasive breast cancer who received epirubicin and cyclophosphamide followed by docetaxel (EC-T), expressions of S100A6 and MDM2 were negatively correlated, and high expression of S100A6 suggested a higher rate of pathologic complete response (pCR). Univariate and multivariate analyses showed that the high expression of S100A6 was an independent predictor of pCR.
Conclusion: These results reveal a novel function for S100A6 in downregulating MDM2, which directly enhances sensitivity to chemotherapy.
背景:S100A6和小鼠双分钟2 (MDM2)是重要的肿瘤相关分子。先前的研究通过尺寸排除色谱和表面等离子体共振实验确定了S100A6与MDM2之间的相互作用。本研究考察了S100A6能否在体内与MDM2结合,并进一步探讨其功能意义。方法:采用免疫共沉淀法、谷胱甘肽- s -转移酶下拉法、免疫荧光法测定S100A6与MDM2的体内相互作用。采用环己亚胺脉冲追踪法和泛素化法研究S100A6下调MDM2的机制。此外,通过克隆实验、WST-1实验、细胞凋亡和细胞周期流式细胞术,建立异种移植瘤模型,评估S100A6/MDM2相互作用对乳腺癌生长和紫杉醇诱导的化疗敏感性的影响。应用免疫组织化学方法分析S100A6和MDM2在浸润性乳腺癌患者中的表达。此外,统计分析S100A6表达与新辅助化疗反应的相关性。结果:S100A6促进MDM2从核向细胞质的易位,其中S100A6结合到MDM2中疱疹病毒相关泛素特异性蛋白酶(HAUSP)的结合位点,破坏MDM2-HAUSP- daxx相互作用,诱导MDM2自身泛素化和降解。此外,在体外和体内,s100a6介导的MDM2降解抑制了乳腺癌的生长,增强了其对紫杉醇的敏感性。浸润性乳腺癌患者在接受表柔比星、环磷酰胺和多西他赛(EC-T)治疗后,S100A6与MDM2的表达呈负相关,且S100A6的高表达提示更高的病理完全缓解率(pCR)。单因素和多因素分析表明,S100A6高表达是pCR的独立预测因子。结论:这些结果揭示了S100A6下调MDM2的新功能,直接增强化疗敏感性。
{"title":"S100A6 inhibits MDM2 to suppress breast cancer growth and enhance sensitivity to chemotherapy.","authors":"Mengxin Qi, Xianglan Yi, Baohui Yue, Mingxiang Huang, Sheng Zhou, Jing Xiong","doi":"10.1186/s13058-023-01657-w","DOIUrl":"https://doi.org/10.1186/s13058-023-01657-w","url":null,"abstract":"<p><strong>Background: </strong>S100A6 and murine double minute 2 (MDM2) are important cancer-related molecules. A previous study identified an interaction between S100A6 and MDM2 by size exclusion chromatography and surface plasmon resonance experiments. The present study investigated whether S100A6 could bind to MDM2 in vivo and further explored its functional implication.</p><p><strong>Methods: </strong>Co-immunoprecipitation, glutathione-S-transferase pull-down assay, and immunofluorescence were performed to determine the in vivo interaction between S100A6 and MDM2. Cycloheximide pulse-chase assay and ubiquitination assay were performed to clarify the mechanism by which S100A6 downregulated MDM2. In addition, clonogenic assay, WST-1 assay, and flow cytometry of apoptosis and the cell cycle were performed and a xenograft model was established to evaluate the effects of the S100A6/MDM2 interaction on growth and paclitaxel-induced chemosensitivity of breast cancer. The expressions of S100A6 and MDM2 in patients with invasive breast cancer were analyzed by immunohistochemistry. In addition, the correlation between the expression of S100A6 and the response to neoadjuvant chemotherapy was statistically analyzed.</p><p><strong>Results: </strong>S100A6 promoted the MDM2 translocation from nucleus to cytoplasm, in which the S100A6 bound to the binding site of the herpesvirus-associated ubiquitin-specific protease (HAUSP) in MDM2, disrupted the MDM2-HAUSP-DAXX interactions, and induced the MDM2 self-ubiquitination and degradation. Furthermore, the S100A6-mediated MDM2 degradation suppressed the growth of breast cancer and enhanced its sensitivity to paclitaxel both in vitro and in vivo. For patients with invasive breast cancer who received epirubicin and cyclophosphamide followed by docetaxel (EC-T), expressions of S100A6 and MDM2 were negatively correlated, and high expression of S100A6 suggested a higher rate of pathologic complete response (pCR). Univariate and multivariate analyses showed that the high expression of S100A6 was an independent predictor of pCR.</p><p><strong>Conclusion: </strong>These results reveal a novel function for S100A6 in downregulating MDM2, which directly enhances sensitivity to chemotherapy.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":"25 1","pages":"55"},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10204293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9671258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: 10.1186/s13058-023-01654-z
Joseph R Peterson, John A Cole, John R Pfeiffer, Gregory H Norris, Yuhan Zhang, Dorys Lopez-Ramos, Tushar Pandey, Matthew Biancalana, Hope R Esslinger, Anuja K Antony, Vinita Takiar
Background: Generalizable population-based studies are unable to account for individual tumor heterogeneity that contributes to variability in a patient's response to physician-chosen therapy. Although molecular characterization of tumors has advanced precision medicine, in early-stage and locally advanced breast cancer patients, predicting a patient's response to neoadjuvant therapy (NAT) remains a gap in current clinical practice. Here, we perform a study in an independent cohort of early-stage and locally advanced breast cancer patients to forecast tumor response to NAT and assess the stability of a previously validated biophysical simulation platform.
Methods: A single-blinded study was performed using a retrospective database from a single institution (9/2014-12/2020). Patients included: ≥ 18 years with breast cancer who completed NAT, with pre-treatment dynamic contrast enhanced magnetic resonance imaging. Demographics, chemotherapy, baseline (pre-treatment) MRI and pathologic data were input into the TumorScope Predict (TS) biophysical simulation platform to generate predictions. Primary outcomes included predictions of pathological complete response (pCR) versus residual disease (RD) and final volume for each tumor. For validation, post-NAT predicted pCR and tumor volumes were compared to actual pathological assessment and MRI-assessed volumes. Predicted pCR was pre-defined as residual tumor volume ≤ 0.01 cm3 (≥ 99.9% reduction).
Results: The cohort consisted of eighty patients; 36 Caucasian and 40 African American. Most tumors were high-grade (54.4% grade 3) invasive ductal carcinomas (90.0%). Receptor subtypes included hormone receptor positive (HR+)/human epidermal growth factor receptor 2 positive (HER2+, 30%), HR+/HER2- (35%), HR-/HER2+ (12.5%) and triple negative breast cancer (TNBC, 22.5%). Simulated tumor volume was significantly correlated with post-treatment radiographic MRI calculated volumes (r = 0.53, p = 1.3 × 10-7, mean absolute error of 6.57%). TS prediction of pCR compared favorably to pathological assessment (pCR: TS n = 28; Path n = 27; RD: TS n = 52; Path n = 53), for an overall accuracy of 91.2% (95% CI: 82.8% - 96.4%; Clopper-Pearson interval). Five-year risk of recurrence demonstrated similar prognostic performance between TS predictions (Hazard ratio (HR): - 1.99; 95% CI [- 3.96, - 0.02]; p = 0.043) and clinically assessed pCR (HR: - 1.76; 95% CI [- 3.75, 0.23]; p = 0.054).
Conclusion: We demonstrated TS ability to simulate and model tumor in vivo conditions in silico and forecast volume response to NAT across breast tumor subtypes.
背景:可推广的基于人群的研究无法解释个体肿瘤的异质性,这种异质性导致患者对医生选择的治疗反应的变异性。尽管肿瘤的分子表征已经有了先进的精准医学,但在早期和局部晚期乳腺癌患者中,预测患者对新辅助治疗(NAT)的反应在目前的临床实践中仍然存在差距。在这里,我们在早期和局部晚期乳腺癌患者的独立队列中进行了一项研究,以预测肿瘤对NAT的反应,并评估先前验证的生物物理模拟平台的稳定性。方法:采用单一机构(2014年9月- 2020年12月)的回顾性数据库进行单盲研究。患者包括:≥18岁完成NAT的乳腺癌患者,治疗前进行动态对比增强磁共振成像。将人口统计学、化疗、基线(治疗前)MRI和病理数据输入到TumorScope Predict (TS)生物物理模拟平台以生成预测。主要结果包括病理完全缓解(pCR)与残留疾病(RD)的预测和每个肿瘤的最终体积。为了验证,将nat后预测的pCR和肿瘤体积与实际病理评估和mri评估的体积进行比较。预测pCR预先定义为残余肿瘤体积≤0.01 cm3(≥99.9%)。结果:该队列包括80例患者;36个白种人,40个非裔美国人。大多数肿瘤为高级别(54.4%)浸润性导管癌(90.0%)。受体亚型包括激素受体阳性(HR+)/人表皮生长因子受体2阳性(HER2+, 30%)、HR+/HER2-(35%)、HR-/HER2+(12.5%)和三阴性乳腺癌(TNBC, 22.5%)。模拟肿瘤体积与放疗后MRI计算体积呈显著相关(r = 0.53, p = 1.3 × 10-7,平均绝对误差为6.57%)。TS预测与病理评估比较有利(pCR: TS n = 28;路径n = 27;RD: TS n = 52;路径n = 53),总体准确率为91.2% (95% CI: 82.8% - 96.4%;Clopper-Pearson间隔)。5年复发风险在TS预测之间表现出相似的预后表现(风险比(HR): - 1.99;95% ci [- 3.96, - 0.02];p = 0.043)和临床评估pCR (HR: - 1.76;95% ci [- 3.75, 0.23];p = 0.054)。结论:我们证明了TS在体内模拟和模拟肿瘤的能力,并预测了不同乳腺癌亚型对NAT的体积反应。
{"title":"Novel computational biology modeling system can accurately forecast response to neoadjuvant therapy in early breast cancer.","authors":"Joseph R Peterson, John A Cole, John R Pfeiffer, Gregory H Norris, Yuhan Zhang, Dorys Lopez-Ramos, Tushar Pandey, Matthew Biancalana, Hope R Esslinger, Anuja K Antony, Vinita Takiar","doi":"10.1186/s13058-023-01654-z","DOIUrl":"https://doi.org/10.1186/s13058-023-01654-z","url":null,"abstract":"<p><strong>Background: </strong>Generalizable population-based studies are unable to account for individual tumor heterogeneity that contributes to variability in a patient's response to physician-chosen therapy. Although molecular characterization of tumors has advanced precision medicine, in early-stage and locally advanced breast cancer patients, predicting a patient's response to neoadjuvant therapy (NAT) remains a gap in current clinical practice. Here, we perform a study in an independent cohort of early-stage and locally advanced breast cancer patients to forecast tumor response to NAT and assess the stability of a previously validated biophysical simulation platform.</p><p><strong>Methods: </strong>A single-blinded study was performed using a retrospective database from a single institution (9/2014-12/2020). Patients included: ≥ 18 years with breast cancer who completed NAT, with pre-treatment dynamic contrast enhanced magnetic resonance imaging. Demographics, chemotherapy, baseline (pre-treatment) MRI and pathologic data were input into the TumorScope Predict (TS) biophysical simulation platform to generate predictions. Primary outcomes included predictions of pathological complete response (pCR) versus residual disease (RD) and final volume for each tumor. For validation, post-NAT predicted pCR and tumor volumes were compared to actual pathological assessment and MRI-assessed volumes. Predicted pCR was pre-defined as residual tumor volume ≤ 0.01 cm<sup>3</sup> (≥ 99.9% reduction).</p><p><strong>Results: </strong>The cohort consisted of eighty patients; 36 Caucasian and 40 African American. Most tumors were high-grade (54.4% grade 3) invasive ductal carcinomas (90.0%). Receptor subtypes included hormone receptor positive (HR+)/human epidermal growth factor receptor 2 positive (HER2+, 30%), HR+/HER2- (35%), HR-/HER2+ (12.5%) and triple negative breast cancer (TNBC, 22.5%). Simulated tumor volume was significantly correlated with post-treatment radiographic MRI calculated volumes (r = 0.53, p = 1.3 × 10<sup>-7</sup>, mean absolute error of 6.57%). TS prediction of pCR compared favorably to pathological assessment (pCR: TS n = 28; Path n = 27; RD: TS n = 52; Path n = 53), for an overall accuracy of 91.2% (95% CI: 82.8% - 96.4%; Clopper-Pearson interval). Five-year risk of recurrence demonstrated similar prognostic performance between TS predictions (Hazard ratio (HR): - 1.99; 95% CI [- 3.96, - 0.02]; p = 0.043) and clinically assessed pCR (HR: - 1.76; 95% CI [- 3.75, 0.23]; p = 0.054).</p><p><strong>Conclusion: </strong>We demonstrated TS ability to simulate and model tumor in vivo conditions in silico and forecast volume response to NAT across breast tumor subtypes.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":"25 1","pages":"54"},"PeriodicalIF":0.0,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10170712/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9671981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-09DOI: 10.1186/s13058-023-01653-0
Marcel Smid, Marjanka K Schmidt, Wendy J C Prager-van der Smissen, Kirsten Ruigrok-Ritstier, Maartje A C Schreurs, Sten Cornelissen, Aida Marsal Garcia, Annegien Broeks, A Mieke Timmermans, Anita M A C Trapman-Jansen, J Margriet Collée, Muriel A Adank, Maartje J Hooning, John W M Martens, Antoinette Hollestelle
Background: CHEK2 c.1100delC was the first moderate-risk breast cancer (BC) susceptibility allele discovered. Despite several genomic, transcriptomic and functional studies, however, it is still unclear how exactly CHEK2 c.1100delC promotes tumorigenesis. Since the mutational landscape of a tumor reflects the processes that have operated on its development, the aim of this study was to uncover the somatic genomic landscape of CHEK2-associated BC.
Methods: We sequenced primary BC (pBC) and normal genomes of 20 CHEK2 c.1100delC mutation carriers as well as their pBC transcriptomes. Including pre-existing cohorts, we exhaustively compared CHEK2 pBC genomes to those from BRCA1/2 mutation carriers, those that displayed homologous recombination deficiency (HRD) and ER- and ER+ pBCs, totaling to 574 pBC genomes. Findings were validated in 517 metastatic BC genomes subdivided into the same subgroups. Transcriptome data from 168 ER+ pBCs were used to derive a TP53-mutant gene expression signature and perform cluster analysis with CHEK2 BC transcriptomes. Finally, clinical outcome of CHEK2 c.1100delC carriers was compared with BC patients displaying somatic TP53 mutations in two well-described retrospective cohorts totaling to 942 independent pBC cases.
Results: BC genomes from CHEK2 mutation carriers were most similar to ER+ BC genomes and least similar to those of BRCA1/2 mutation carriers in terms of tumor mutational burden as well as mutational signatures. Moreover, CHEK2 BC genomes did not show any evidence of HRD. Somatic TP53 mutation frequency and the size distribution of structural variants (SVs), however, were different compared to ER+ BC. Interestingly, BC genomes with bi-allelic CHEK2 inactivation lacked somatic TP53 mutations and transcriptomic analysis indicated a shared biology with TP53 mutant BC. Moreover, CHEK2 BC genomes had an increased frequency of > 1 Mb deletions, inversions and tandem duplications with peaks at specific sizes. The high chromothripsis frequency among CHEK2 BC genomes appeared, however, not associated with this unique SV size distribution profile.
Conclusions: CHEK2 BC genomes are most similar to ER+ BC genomes, but display unique features that may further unravel CHEK2-driven tumorigenesis. Increased insight into this mechanism could explain the shorter survival of CHEK2 mutation carriers that is likely driven by intrinsic tumor aggressiveness rather than endocrine resistance.
{"title":"Breast cancer genomes from CHEK2 c.1100delC mutation carriers lack somatic TP53 mutations and display a unique structural variant size distribution profile.","authors":"Marcel Smid, Marjanka K Schmidt, Wendy J C Prager-van der Smissen, Kirsten Ruigrok-Ritstier, Maartje A C Schreurs, Sten Cornelissen, Aida Marsal Garcia, Annegien Broeks, A Mieke Timmermans, Anita M A C Trapman-Jansen, J Margriet Collée, Muriel A Adank, Maartje J Hooning, John W M Martens, Antoinette Hollestelle","doi":"10.1186/s13058-023-01653-0","DOIUrl":"https://doi.org/10.1186/s13058-023-01653-0","url":null,"abstract":"<p><strong>Background: </strong>CHEK2 c.1100delC was the first moderate-risk breast cancer (BC) susceptibility allele discovered. Despite several genomic, transcriptomic and functional studies, however, it is still unclear how exactly CHEK2 c.1100delC promotes tumorigenesis. Since the mutational landscape of a tumor reflects the processes that have operated on its development, the aim of this study was to uncover the somatic genomic landscape of CHEK2-associated BC.</p><p><strong>Methods: </strong>We sequenced primary BC (pBC) and normal genomes of 20 CHEK2 c.1100delC mutation carriers as well as their pBC transcriptomes. Including pre-existing cohorts, we exhaustively compared CHEK2 pBC genomes to those from BRCA1/2 mutation carriers, those that displayed homologous recombination deficiency (HRD) and ER- and ER+ pBCs, totaling to 574 pBC genomes. Findings were validated in 517 metastatic BC genomes subdivided into the same subgroups. Transcriptome data from 168 ER+ pBCs were used to derive a TP53-mutant gene expression signature and perform cluster analysis with CHEK2 BC transcriptomes. Finally, clinical outcome of CHEK2 c.1100delC carriers was compared with BC patients displaying somatic TP53 mutations in two well-described retrospective cohorts totaling to 942 independent pBC cases.</p><p><strong>Results: </strong>BC genomes from CHEK2 mutation carriers were most similar to ER+ BC genomes and least similar to those of BRCA1/2 mutation carriers in terms of tumor mutational burden as well as mutational signatures. Moreover, CHEK2 BC genomes did not show any evidence of HRD. Somatic TP53 mutation frequency and the size distribution of structural variants (SVs), however, were different compared to ER+ BC. Interestingly, BC genomes with bi-allelic CHEK2 inactivation lacked somatic TP53 mutations and transcriptomic analysis indicated a shared biology with TP53 mutant BC. Moreover, CHEK2 BC genomes had an increased frequency of > 1 Mb deletions, inversions and tandem duplications with peaks at specific sizes. The high chromothripsis frequency among CHEK2 BC genomes appeared, however, not associated with this unique SV size distribution profile.</p><p><strong>Conclusions: </strong>CHEK2 BC genomes are most similar to ER+ BC genomes, but display unique features that may further unravel CHEK2-driven tumorigenesis. Increased insight into this mechanism could explain the shorter survival of CHEK2 mutation carriers that is likely driven by intrinsic tumor aggressiveness rather than endocrine resistance.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":"25 1","pages":"53"},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9725145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-05DOI: 10.1186/s13058-023-01648-x
Vera E van der Noord, Wanda van der Stel, Gijs Louwerens, Danielle Verhoeven, Hendrik J Kuiken, Cor Lieftink, Melanie Grandits, Gerhard F Ecker, Roderick L Beijersbergen, Peter Bouwman, Sylvia E Le Dévédec, Bob van de Water
Background: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with limited treatment options and poor clinical prognosis. Inhibitors of transcriptional CDKs are currently under thorough investigation for application in the treatment of multiple cancer types, including breast cancer. These studies have raised interest in combining these inhibitors, including CDK12/13 inhibitor THZ531, with a variety of other anti-cancer agents. However, the full scope of these potential synergistic interactions of transcriptional CDK inhibitors with kinase inhibitors has not been systematically investigated. Moreover, the mechanisms behind these previously described synergistic interactions remain largely elusive.
Methods: Kinase inhibitor combination screenings were performed to identify kinase inhibitors that synergize with CDK7 inhibitor THZ1 and CDK12/13 inhibitor THZ531 in TNBC cell lines. CRISPR-Cas9 knockout screening and transcriptomic evaluation of resistant versus sensitive cell lines were performed to identify genes critical for THZ531 resistance. RNA sequencing analysis after treatment with individual and combined synergistic treatments was performed to gain further insights into the mechanism of this synergy. Kinase inhibitor screening in combination with visualization of ABCG2-substrate pheophorbide A was used to identify kinase inhibitors that inhibit ABCG2. Multiple transcriptional CDK inhibitors were evaluated to extend the significance of the found mechanism to other transcriptional CDK inhibitors.
Results: We show that a very high number of tyrosine kinase inhibitors synergize with the CDK12/13 inhibitor THZ531. Yet, we identified the multidrug transporter ABCG2 as key determinant of THZ531 resistance in TNBC cells. Mechanistically, we demonstrate that most synergistic kinase inhibitors block ABCG2 function, thereby sensitizing cells to transcriptional CDK inhibitors, including THZ531. Accordingly, these kinase inhibitors potentiate the effects of THZ531, disrupting gene expression and increasing intronic polyadenylation.
Conclusion: Overall, this study demonstrates the critical role of ABCG2 in limiting the efficacy of transcriptional CDK inhibitors and identifies multiple kinase inhibitors that disrupt ABCG2 transporter function and thereby synergize with these CDK inhibitors. These findings therefore further facilitate the development of new (combination) therapies targeting transcriptional CDKs and highlight the importance of evaluating the role of ABC transporters in synergistic drug-drug interactions in general.
{"title":"Systematic screening identifies ABCG2 as critical factor underlying synergy of kinase inhibitors with transcriptional CDK inhibitors.","authors":"Vera E van der Noord, Wanda van der Stel, Gijs Louwerens, Danielle Verhoeven, Hendrik J Kuiken, Cor Lieftink, Melanie Grandits, Gerhard F Ecker, Roderick L Beijersbergen, Peter Bouwman, Sylvia E Le Dévédec, Bob van de Water","doi":"10.1186/s13058-023-01648-x","DOIUrl":"https://doi.org/10.1186/s13058-023-01648-x","url":null,"abstract":"<p><strong>Background: </strong>Triple-negative breast cancer (TNBC) is a subtype of breast cancer with limited treatment options and poor clinical prognosis. Inhibitors of transcriptional CDKs are currently under thorough investigation for application in the treatment of multiple cancer types, including breast cancer. These studies have raised interest in combining these inhibitors, including CDK12/13 inhibitor THZ531, with a variety of other anti-cancer agents. However, the full scope of these potential synergistic interactions of transcriptional CDK inhibitors with kinase inhibitors has not been systematically investigated. Moreover, the mechanisms behind these previously described synergistic interactions remain largely elusive.</p><p><strong>Methods: </strong>Kinase inhibitor combination screenings were performed to identify kinase inhibitors that synergize with CDK7 inhibitor THZ1 and CDK12/13 inhibitor THZ531 in TNBC cell lines. CRISPR-Cas9 knockout screening and transcriptomic evaluation of resistant versus sensitive cell lines were performed to identify genes critical for THZ531 resistance. RNA sequencing analysis after treatment with individual and combined synergistic treatments was performed to gain further insights into the mechanism of this synergy. Kinase inhibitor screening in combination with visualization of ABCG2-substrate pheophorbide A was used to identify kinase inhibitors that inhibit ABCG2. Multiple transcriptional CDK inhibitors were evaluated to extend the significance of the found mechanism to other transcriptional CDK inhibitors.</p><p><strong>Results: </strong>We show that a very high number of tyrosine kinase inhibitors synergize with the CDK12/13 inhibitor THZ531. Yet, we identified the multidrug transporter ABCG2 as key determinant of THZ531 resistance in TNBC cells. Mechanistically, we demonstrate that most synergistic kinase inhibitors block ABCG2 function, thereby sensitizing cells to transcriptional CDK inhibitors, including THZ531. Accordingly, these kinase inhibitors potentiate the effects of THZ531, disrupting gene expression and increasing intronic polyadenylation.</p><p><strong>Conclusion: </strong>Overall, this study demonstrates the critical role of ABCG2 in limiting the efficacy of transcriptional CDK inhibitors and identifies multiple kinase inhibitors that disrupt ABCG2 transporter function and thereby synergize with these CDK inhibitors. These findings therefore further facilitate the development of new (combination) therapies targeting transcriptional CDKs and highlight the importance of evaluating the role of ABC transporters in synergistic drug-drug interactions in general.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":"25 1","pages":"51"},"PeriodicalIF":0.0,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10027500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-05DOI: 10.1186/s13058-023-01651-2
Kacey VanderVorst, Courtney A Dreyer, Jason Hatakeyama, George R R Bell, Julie A Learn, Anastasia L Berg, Maria Hernandez, Hyun Lee, Sean R Collins, Kermit L Carraway
Background: In light of the growing appreciation for the role of collective cell motility in metastasis, a deeper understanding of the underlying signaling pathways will be critical to translating these observations to the treatment of advanced cancers. Here, we examine the contribution of Wnt/planar cell polarity (Wnt/PCP), one of the non-canonical Wnt signaling pathways and defined by the involvement of the tetraspanin-like proteins Vangl1 and Vangl2, to breast tumor cell motility, collective cell invasiveness and mammary tumor metastasis.
Methods: Vangl1 and Vangl2 knockdown and overexpression and Wnt5a stimulation were employed to manipulate Wnt/PCP signaling in a battery of breast cancer cell lines representing all breast cancer subtypes, and in tumor organoids from MMTV-PyMT mice. Cell migration was assessed by scratch and organoid invasion assays, Vangl protein subcellular localization was assessed by confocal fluorescence microscopy, and RhoA activation was assessed in real time by fluorescence imaging with an advanced FRET biosensor. The impact of Wnt/PCP suppression on mammary tumor growth and metastasis was assessed by determining the effect of conditional Vangl2 knockout on the MMTV-NDL mouse mammary tumor model.
Results: We observed that Vangl2 knockdown suppresses the motility of all breast cancer cell lines examined, and overexpression drives the invasiveness of collectively migrating MMTV-PyMT organoids. Vangl2-dependent RhoA activity is localized in real time to a subpopulation of motile leader cells displaying a hyper-protrusive leading edge, Vangl protein is localized to leader cell protrusions within leader cells, and actin cytoskeletal regulator RhoA is preferentially activated in the leader cells of a migrating collective. Mammary gland-specific knockout of Vangl2 results in a striking decrease in lung metastases in MMTV-NDL mice, but does not impact primary tumor growth characteristics.
Conclusions: We conclude that Vangl-dependent Wnt/PCP signaling promotes breast cancer collective cell migration independent of breast tumor subtype and facilitates distant metastasis in a genetically engineered mouse model of breast cancer. Our observations are consistent with a model whereby Vangl proteins localized at the leading edge of leader cells in a migrating collective act through RhoA to mediate the cytoskeletal rearrangements required for pro-migratory protrusion formation.
{"title":"Vangl-dependent Wnt/planar cell polarity signaling mediates collective breast carcinoma motility and distant metastasis.","authors":"Kacey VanderVorst, Courtney A Dreyer, Jason Hatakeyama, George R R Bell, Julie A Learn, Anastasia L Berg, Maria Hernandez, Hyun Lee, Sean R Collins, Kermit L Carraway","doi":"10.1186/s13058-023-01651-2","DOIUrl":"10.1186/s13058-023-01651-2","url":null,"abstract":"<p><strong>Background: </strong>In light of the growing appreciation for the role of collective cell motility in metastasis, a deeper understanding of the underlying signaling pathways will be critical to translating these observations to the treatment of advanced cancers. Here, we examine the contribution of Wnt/planar cell polarity (Wnt/PCP), one of the non-canonical Wnt signaling pathways and defined by the involvement of the tetraspanin-like proteins Vangl1 and Vangl2, to breast tumor cell motility, collective cell invasiveness and mammary tumor metastasis.</p><p><strong>Methods: </strong>Vangl1 and Vangl2 knockdown and overexpression and Wnt5a stimulation were employed to manipulate Wnt/PCP signaling in a battery of breast cancer cell lines representing all breast cancer subtypes, and in tumor organoids from MMTV-PyMT mice. Cell migration was assessed by scratch and organoid invasion assays, Vangl protein subcellular localization was assessed by confocal fluorescence microscopy, and RhoA activation was assessed in real time by fluorescence imaging with an advanced FRET biosensor. The impact of Wnt/PCP suppression on mammary tumor growth and metastasis was assessed by determining the effect of conditional Vangl2 knockout on the MMTV-NDL mouse mammary tumor model.</p><p><strong>Results: </strong>We observed that Vangl2 knockdown suppresses the motility of all breast cancer cell lines examined, and overexpression drives the invasiveness of collectively migrating MMTV-PyMT organoids. Vangl2-dependent RhoA activity is localized in real time to a subpopulation of motile leader cells displaying a hyper-protrusive leading edge, Vangl protein is localized to leader cell protrusions within leader cells, and actin cytoskeletal regulator RhoA is preferentially activated in the leader cells of a migrating collective. Mammary gland-specific knockout of Vangl2 results in a striking decrease in lung metastases in MMTV-NDL mice, but does not impact primary tumor growth characteristics.</p><p><strong>Conclusions: </strong>We conclude that Vangl-dependent Wnt/PCP signaling promotes breast cancer collective cell migration independent of breast tumor subtype and facilitates distant metastasis in a genetically engineered mouse model of breast cancer. Our observations are consistent with a model whereby Vangl proteins localized at the leading edge of leader cells in a migrating collective act through RhoA to mediate the cytoskeletal rearrangements required for pro-migratory protrusion formation.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":"25 1","pages":"52"},"PeriodicalIF":0.0,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10045003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-03DOI: 10.1186/s13058-023-01647-y
Cody Ramin, Lene H S Veiga, Jacqueline B Vo, Rochelle E Curtis, Clara Bodelon, Erin J Aiello Bowles, Diana S M Buist, Sheila Weinmann, Heather Spencer Feigelson, Gretchen L Gierach, Amy Berrington de Gonzalez
Background: Breast cancer survivors are living longer due to early detection and advances in treatment and are at increased risk for second primary cancers. Comprehensive evaluation of second cancer risk among patients treated in recent decades is lacking.
Methods: We identified 16,004 females diagnosed with a first primary stage I-III breast cancer between 1990 and 2016 (followed through 2017) and survived ≥ 1 year at Kaiser Permanente (KP) Colorado, Northwest, and Washington. Second cancer was defined as an invasive primary cancer diagnosed ≥ 12 months after the first primary breast cancer. Second cancer risk was evaluated for all cancers (excluding ipsilateral breast cancer) using standardized incidence ratios (SIRs), and a competing risk approach for cumulative incidence and hazard ratios (HRs) adjusted for KP center, treatment, age, and year of first cancer diagnosis.
Results: Over a median follow-up of 6.2 years, 1,562 women developed second cancer. Breast cancer survivors had a 70% higher risk of any cancer (95%CI = 1.62-1.79) and 45% higher risk of non-breast cancer (95%CI = 1.37-1.54) compared with the general population. SIRs were highest for malignancies of the peritoneum (SIR = 3.44, 95%CI = 1.65-6.33), soft tissue (SIR = 3.32, 95%CI = 2.51-4.30), contralateral breast (SIR = 3.10, 95%CI = 2.82-3.40), and acute myeloid leukemia (SIR = 2.11, 95%CI = 1.18-3.48)/myelodysplastic syndrome (SIR = 3.25, 95%CI = 1.89-5.20). Women also had elevated risks for oral, colon, pancreas, lung, and uterine corpus cancer, melanoma, and non-Hodgkin lymphoma (SIR range = 1.31-1.97). Radiotherapy was associated with increased risk for all second cancers (HR = 1.13, 95%CI = 1.01-1.25) and soft tissue sarcoma (HR = 2.36, 95%CI = 1.17-4.78), chemotherapy with decreased risk for all second cancers (HR = 0.87, 95%CI = 0.78-0.98) and increased myelodysplastic syndrome risk (HR = 3.01, 95%CI = 1.01-8.94), and endocrine therapy with lower contralateral breast cancer risk (HR = 0.48, 95%CI = 0.38-0.60). Approximately 1 in 9 women who survived ≥ 1 year developed second cancer, 1 in 13 developed second non-breast cancer, and 1 in 30 developed contralateral breast cancer by 10 years. Trends in cumulative incidence declined for contralateral breast cancer but not for second non-breast cancers.
Conclusions: Elevated risks of second cancer among breast cancer survivors treated in recent decades suggests that heightened surveillance is warranted and continued efforts to reduce second cancers are needed.
{"title":"Risk of second primary cancer among women in the Kaiser Permanente Breast Cancer Survivors Cohort.","authors":"Cody Ramin, Lene H S Veiga, Jacqueline B Vo, Rochelle E Curtis, Clara Bodelon, Erin J Aiello Bowles, Diana S M Buist, Sheila Weinmann, Heather Spencer Feigelson, Gretchen L Gierach, Amy Berrington de Gonzalez","doi":"10.1186/s13058-023-01647-y","DOIUrl":"https://doi.org/10.1186/s13058-023-01647-y","url":null,"abstract":"<p><strong>Background: </strong>Breast cancer survivors are living longer due to early detection and advances in treatment and are at increased risk for second primary cancers. Comprehensive evaluation of second cancer risk among patients treated in recent decades is lacking.</p><p><strong>Methods: </strong>We identified 16,004 females diagnosed with a first primary stage I-III breast cancer between 1990 and 2016 (followed through 2017) and survived ≥ 1 year at Kaiser Permanente (KP) Colorado, Northwest, and Washington. Second cancer was defined as an invasive primary cancer diagnosed ≥ 12 months after the first primary breast cancer. Second cancer risk was evaluated for all cancers (excluding ipsilateral breast cancer) using standardized incidence ratios (SIRs), and a competing risk approach for cumulative incidence and hazard ratios (HRs) adjusted for KP center, treatment, age, and year of first cancer diagnosis.</p><p><strong>Results: </strong>Over a median follow-up of 6.2 years, 1,562 women developed second cancer. Breast cancer survivors had a 70% higher risk of any cancer (95%CI = 1.62-1.79) and 45% higher risk of non-breast cancer (95%CI = 1.37-1.54) compared with the general population. SIRs were highest for malignancies of the peritoneum (SIR = 3.44, 95%CI = 1.65-6.33), soft tissue (SIR = 3.32, 95%CI = 2.51-4.30), contralateral breast (SIR = 3.10, 95%CI = 2.82-3.40), and acute myeloid leukemia (SIR = 2.11, 95%CI = 1.18-3.48)/myelodysplastic syndrome (SIR = 3.25, 95%CI = 1.89-5.20). Women also had elevated risks for oral, colon, pancreas, lung, and uterine corpus cancer, melanoma, and non-Hodgkin lymphoma (SIR range = 1.31-1.97). Radiotherapy was associated with increased risk for all second cancers (HR = 1.13, 95%CI = 1.01-1.25) and soft tissue sarcoma (HR = 2.36, 95%CI = 1.17-4.78), chemotherapy with decreased risk for all second cancers (HR = 0.87, 95%CI = 0.78-0.98) and increased myelodysplastic syndrome risk (HR = 3.01, 95%CI = 1.01-8.94), and endocrine therapy with lower contralateral breast cancer risk (HR = 0.48, 95%CI = 0.38-0.60). Approximately 1 in 9 women who survived ≥ 1 year developed second cancer, 1 in 13 developed second non-breast cancer, and 1 in 30 developed contralateral breast cancer by 10 years. Trends in cumulative incidence declined for contralateral breast cancer but not for second non-breast cancers.</p><p><strong>Conclusions: </strong>Elevated risks of second cancer among breast cancer survivors treated in recent decades suggests that heightened surveillance is warranted and continued efforts to reduce second cancers are needed.</p>","PeriodicalId":9283,"journal":{"name":"Breast Cancer Research : BCR","volume":"25 1","pages":"50"},"PeriodicalIF":0.0,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9671520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}