The modeling of dynamic systems is frequently hampered by a limited knowledge of the system to be modeled and by the difficulty of acquiring accurate data. This often results in a number of uncertain system parameters that are hard to incorporate into a mathematical model. Thus, there is a need for modeling formalisms that can accommodate all available data, even if uncertain, in order to employ them and build useful models. This paper shows how the Flexible Nets (FNs) formalism can be exploited to handle uncertain parameters while offering attractive analysis possibilities. FNs are composed of two nets, an event net and an intensity net, that model the relation between the state and the processes of the system. While the event net captures how the state of the system is updated by the processes in the system, the intensity net models how the speed of such processes is determined by the state of the system. Uncertain parameters are accounted for by sets of inequalities associated with both the event net and the intensity net. FNs are not only demonstrated to be a valuable formalism to cope with system uncertainties, but also to be capable of modeling different system features, such as resource allocation and control actions, in a facile manner.