Ashton C et al report a retrospective multi-centre cohort of 34 patients from Canada, France, Austria and Australia with spinocerebellar ataxia 27B, describing the common feature of episodic ataxia and other episodic features, as well as the inefficacy of acetazolamide in these patients.
Genetic risk factors such as APOE ε4 and MAPT (rs242557) A allele are associated with amyloid and tau pathways and grey matter changes at both early and established stages of Alzheimer's disease, but their effects on cortical morphology in young healthy adults remain unclear. A total of 144 participants aged from 18 to 24 underwent 3T MRI and genotyping for APOE and MAPT to investigate unique impacts of these genetic risk factors in a cohort without significant comorbid conditions such as metabolic and cardiovascular diseases. We segmented the cerebral cortex into 68 regions and calculated the cortical area, thickness, curvature and folding index for each region. Then, we trained machine learning models to classify APOE and MAPT genotypes using these morphological features. In addition, we applied a growing hierarchical self-organizing maps algorithm, which clustered the 68 regions into 4 subgroups representing different morphological patterns. Then, we performed general linear model analyses to estimate the interaction between APOE and MAPT on cortical patterns. We found that the classifiers using all cortical features could accurately classify individuals carrying genetic risks of dementia outperforming each individual feature alone. APOE ε4 carriers had a more convoluted and thinner cortex across the cerebral cortex. A similar pattern was found in MAPT A allele carriers only in the regions that are vulnerable for early tau pathology. With the clustering analysis, we found a synergetic effect between APOE ε4 and MAPT A allele, i.e. carriers of both risk factors showed the most deviation of cortical pattern from the typical pattern of that cluster. Genetic risk factors of dementia by APOE ε4 and MAPT (rs242557) A allele were associated with variations of cortical morphology, which can be observed in young healthy adults more than 30 years before Alzheimer's pathology is likely to occur and 50 years before dementia symptoms may begin.
Two members of our Editorial Board discuss how the proceeds from article processing charges from Brain Communications and our sister journal Brain are put back into the translational neuroscience community.
Visuospatial processing deficits are commonly observed in individuals with cerebral visual impairment, even in cases where visual acuity and visual field functions are intact. Cerebral visual impairment is a brain-based visual disorder associated with the maldevelopment of central visual pathways and structures. However, the neurophysiological basis underlying higher-order perceptual impairments in this condition has not been clearly identified, which in turn poses limits on developing rehabilitative interventions. Using combined eye tracking and EEG recordings, we assessed the profile and performance of visual search on a naturalistic virtual reality-based task. Participants with cerebral visual impairment and controls with neurotypical development were instructed to search, locate and fixate on a specific target placed among surrounding distractors at two levels of task difficulty. We analysed evoked (phase-locked) and induced (non-phase-locked) components of broadband (4-55 Hz) neural oscillations to uncover the neurophysiological basis of visuospatial processing. We found that visual search performance in cerebral visual impairment was impaired compared to controls (as indexed by outcomes of success rate, reaction time and gaze error). Analysis of neural oscillations revealed markedly reduced early-onset evoked theta [4-6 Hz] activity (within 0.5 s) regardless of task difficulty. Moreover, while induced alpha activity increased with task difficulty in controls, this modulation was absent in the cerebral visual impairment group identifying a potential neural correlate related to deficits with visual search and distractor suppression. Finally, cerebral visual impairment participants also showed a sustained induced gamma response [30-45 Hz]. We conclude that impaired visual search performance in cerebral visual impairment is associated with substantial alterations across a wide range of neural oscillation frequencies. This includes both evoked and induced components suggesting the involvement of feedforward and feedback processing as well as local and distributed levels of neural processing.
People with HIV are at increased risk for depression, though the neurobiological mechanisms underlying this are unclear. In the last decade, there has been a substantial rise in interest in the contribution of (neuro)inflammation to depression, coupled with rapid advancements in the resolution and sensitivity of biomarker assays such as Luminex, single molecular array and newly developed positron emission tomography radioligands. Numerous pre-clinical and clinical studies have recently leveraged these next-generation immunoassays to identify biomarkers that may be associated with HIV and depression (separately), though few studies have explored these biomarkers in co-occurring HIV and depression. Using a systematic search, we detected 33 publications involving a cumulative N = 10 590 participants which tested for associations between depressive symptoms and 55 biomarkers of inflammation and related processes in participants living with HIV. Formal meta-analyses were not possible as statistical reporting in the field was highly variable; future studies must fully report test statistics and effect size estimates. The majority of included studies were carried out in the United States, with samples that were primarily older and primarily men. Substantial further work is necessary to diversify the geographical, age, and sex distribution of samples in the field. This review finds that alterations in concentrations of certain biomarkers of neuroinflammation (interleukin-6, tumour necrosis factor-α, neopterin) may influence the association between HIV and depression. Equally, the chemokines monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) or the metabolic index kynurenine:tryptophan (Kyn:Trp), which have been the focus of several studies, do not appear to be associated with depressive symptoms amongst people living with HIV, as all (MCP-1) or most (IL-8 and Kyn:Trp) available studies of these biomarkers reported non-significant associations. We propose a biomarker-driven hypothesis of the neuroimmunometabolic mechanisms that may precipitate the increased risk of depression among people with HIV. Chronically activated microglia, which trigger key neuroinflammatory cascades shown to be upregulated in people with HIV, may be the central link connecting HIV infection in the central nervous system with depressive symptoms. Findings from this review may inform research design in future studies of HIV-associated depression and enable concerted efforts towards biomarker discovery.
This scientific commentary refers to 'Chronic intracranial EEG recordings and interictal spike rate reveal multiscale temporal modulations in seizure states' by Schroeder et al. (https://doi.org/10.1093/braincomms/fcad205).
Alzheimer's disease is a multifactorial disorder with large heterogeneity. Comorbidities such as hypertension, hypercholesterolaemia and diabetes are known contributors to disease progression. However, less is known about their mechanistic contribution to Alzheimer's pathology and neurodegeneration. The aim of this study was to investigate the relationship of several biomarkers related to risk mechanisms in Alzheimer's disease with the well-established Alzheimer's disease markers in a memory clinic population without common comorbidities. We investigated 13 molecular markers representing key mechanisms underlying Alzheimer's disease pathogenesis in CSF from memory clinic patients without diagnosed hypertension, hypercholesterolaemia or diabetes nor other neurodegenerative disorders. An analysis of covariance was used to compare biomarker levels between clinical groups. Associations were analysed by linear regression. Two-step cluster analysis was used to determine patient clusters. Two key markers were analysed by immunofluorescence staining in the hippocampus of non-demented control and Alzheimer's disease individuals. CSF samples from a total of 90 participants were included in this study: 30 from patients with subjective cognitive decline (age 62.4 ± 4.38, female 60%), 30 with mild cognitive impairment (age 65.6 ± 7.48, female 50%) and 30 with Alzheimer's disease (age 68.2 ± 7.86, female 50%). Angiotensinogen, thioredoxin-1 and interleukin-15 had the most prominent associations with Alzheimer's disease pathology, synaptic and axonal damage markers. Synaptosomal-associated protein 25 kDa and neurofilament light chain were increased in mild cognitive impairment and Alzheimer's disease patients. Grouping biomarkers by biological function showed that inflammatory and survival components were associated with Alzheimer's disease pathology, synaptic dysfunction and axonal damage. Moreover, a vascular/metabolic component was associated with synaptic dysfunction. In the data-driven analysis, two patient clusters were identified: Cluster 1 had increased CSF markers of oxidative stress, vascular pathology and neuroinflammation and was characterized by elevated synaptic and axonal damage, compared with Cluster 2. Clinical groups were evenly distributed between the clusters. An analysis of post-mortem hippocampal tissue showed that compared with non-demented controls, angiotensinogen staining was higher in Alzheimer's disease and co-localized with phosphorylated-tau. The identification of biomarker-driven endophenotypes in cognitive disorder patients further highlights the biological heterogeneity of Alzheimer's disease and the importance of tailored prevention and treatment strategies.
Achiasmia is a rare visual pathway maldevelopment with reduced decussation of the axons in the optic chiasm. Our aim was to investigate clinical characteristics, macular, optic nerve and brain morphology in achiasmia. A prospective, cross-sectional, observational study of 12 participants with achiasmia [8 males and 4 females; 29.6 ± 18.4 years (mean ± standard deviation)] and 24 gender-, age-, ethnicity- and refraction-matched healthy controls was done. Full ophthalmology assessment, eye movement recording, a high-resolution spectral-domain optical coherence tomography of the macular and optic disc, five-channel visual-evoked responses, eye movement recordings and MRI scans of the brain and orbits were acquired. Achiasmia was confirmed in all 12 clinical participants by visual-evoked responses. Visual acuity in this group was 0.63 ± 0.19 and 0.53 ± 0.19 for the right and left eyes, respectively; most participants had mild refractive errors. All participants with achiasmia had see-saw nystagmus and no measurable stereo vision. Strabismus and abnormal head position were noted in 58% of participants. Optical coherence tomography showed optic nerve hypoplasia with associated foveal hypoplasia in four participants. In the remaining achiasmia participants, macular changes with significantly thinner paracentral inner segment (P = 0.002), wider pit (P = 0.04) and visual flattening of the ellipsoid line were found. MRI demonstrated chiasmatic aplasia in 3/12 (25%), chiasmatic hypoplasia in 7/12 (58%) and a subjectively normal chiasm in 2/12 (17%). Septo-optic dysplasia and severe bilateral optic nerve hypoplasia were found in three patients with chiasmic aplasia/hypoplasia on MRI. In this largest series of achiasmia patients to date, we found for the first time that neuronal abnormalities occur already at the retinal level. Foveal changes, optic nerve hypoplasia and the midline brain anomaly suggest that these abnormalities could be part of the same spectrum, with different manifestations of events during foetal development occurring with varying severity.