首页 > 最新文献

2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)最新文献

英文 中文
Novel Method and Device for Delivery and Retention of Intrauterine Devices in the Immediate Postpartum Period: Pilot Baboon Feasibility Study 产后初期宫内节育器输送和保留的新方法和装置:试点狒狒可行性研究
Etse-Oghena Y. Campbell, Christopher G. Rylander, L. Thaxton, M. Y. Williams-Brown
The immediate post-partum period offers a convenient time to have an intrauterine device placed because of the co-location of a non-pregnant woman and her clinician; however, this practice is associated with increased expulsion rates of up to 30%, compared with a 3% expulsion rate for interval insertions. This paper presents a device and method to improve intrauterine device delivery and retention in the immediate postpartum period. This initial feasibility study illustrates that it is possible to temporarily tether a commercially available intrauterine device within the uterus of an immediately postpartum baboon. The results indicate this device and method are technically feasible, but further studies will be needed to evaluate safety and efficacy in reducing expulsion rates.
由于没有怀孕的妇女和她的临床医生同处一处,产后期间为放置宫内节育器提供了方便的时间;然而,与间隔插入的3%的排出率相比,这种做法增加了高达30%的排出率。本文介绍了一种提高产后即刻宫内节育器放置和保留的装置和方法。这项初步的可行性研究表明,在刚产后的狒狒的子宫内暂时拴上一个市售的宫内节育器是可能的。结果表明,该装置和方法在技术上是可行的,但还需要进一步的研究来评估降低排痰率的安全性和有效性。
{"title":"Novel Method and Device for Delivery and Retention of Intrauterine Devices in the Immediate Postpartum Period: Pilot Baboon Feasibility Study","authors":"Etse-Oghena Y. Campbell, Christopher G. Rylander, L. Thaxton, M. Y. Williams-Brown","doi":"10.1115/dmd2020-9049","DOIUrl":"https://doi.org/10.1115/dmd2020-9049","url":null,"abstract":"\u0000 The immediate post-partum period offers a convenient time to have an intrauterine device placed because of the co-location of a non-pregnant woman and her clinician; however, this practice is associated with increased expulsion rates of up to 30%, compared with a 3% expulsion rate for interval insertions. This paper presents a device and method to improve intrauterine device delivery and retention in the immediate postpartum period. This initial feasibility study illustrates that it is possible to temporarily tether a commercially available intrauterine device within the uterus of an immediately postpartum baboon. The results indicate this device and method are technically feasible, but further studies will be needed to evaluate safety and efficacy in reducing expulsion rates.","PeriodicalId":93509,"journal":{"name":"2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85999893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Flexible Circuit Board Package Embedded With Multi-Stack Dies 柔性电路板封装嵌入多堆栈芯片
N. Ueta, S. Sato, Masakazu Sato, Nakao Yoshio, Joshua P. Magnuson, R. Ishizuka
Miniaturization of electronics modules is always required for various medical applications including wearable technology, such as hearing aids, and implantable devices. Many types of high-density packaging technologies, such as package-on-package, bare-die stack, flex folded package and Through Si Via (TSV) technologies, have been proposed and used to fulfill the request. Among them, embedded die technology is one of the promising technologies to realize miniaturization and high-density packaging. We have developed WABE™ (wafer and board level device embedded) technology for embedding dies into multilayer flexible printed circuit (FPC) boards. The WABE package is comprised of thin dies (85 μm thickness), multi-layer polyimide, adhesive films and conductive paste. The dies are sandwiched by polyimide films with Cu circuits (FPCs). The conductive paste provides electrical connections between the layers as well as the layer and embedded die. First, each FPC layer is fabricated individually, and via holes are filled with conductive paste, and the dies are mounted on certain layers. Then, all layers undergo a one-step co-lamination process, and they are pressed to cure the adhesive material and conductive paste at the same time. This WABE technology has enabled multiple dies to be embedded by the one-step lamination process. Even if multiple dies are embedded, the footprint of a package can be reduced drastically by embedding multiple dies vertically in stacks. This paper describes the details of the results of fabricating a test vehicle with six embedded dies (three-dies in two stacks side-by-side). The fabricated test vehicle had 14 copper layers with less than 0.9 mm thickness. This paper also reports the results of various reliability testing on the package. These results were obtained by electrical measurements of daisy chain patterns formed between some of the layers. The fabricated test vehicle showed high reliability based on the results of a moisture and heat test and heat-shock test. These results show that the WABE technology to embed multiple dies vertically in polyimide film is one of the most promising packaging technologies to significantly miniaturize electronic circuits such as medical electronics.
各种医疗应用总是需要电子模块的小型化,包括可穿戴技术,如助听器和植入式设备。许多类型的高密度封装技术,如封装上封装、裸芯片堆叠、柔性折叠封装和通过Si Via (TSV)技术,已经被提出并用于满足这一要求。其中,嵌入式芯片技术是实现微型化和高密度封装的重要技术之一。我们开发了WABE™(晶圆和板级设备嵌入式)技术,用于将模具嵌入多层柔性印刷电路(FPC)板中。WABE封装由薄模具(厚度85 μm)、多层聚酰亚胺、胶膜和导电浆料组成。这些模具被带有Cu电路的聚酰亚胺薄膜(fpc)夹在中间。导电浆料提供层之间以及层与嵌入式模具之间的电连接。首先,每个FPC层单独制造,并通过孔填充导电浆料,并将模具安装在某些层上。然后,所有层都经过一步共层工艺,并同时压制粘合材料和导电浆料。这种WABE技术可以通过一步层压工艺嵌入多个模具。即使嵌入多个晶片,通过垂直堆叠嵌入多个晶片,也可以大大减少封装的占地面积。本文详细介绍了用6个嵌入式模具(3个模具并排放置在两堆)制造试验车的结果。制造的试验车辆有14层厚度小于0.9 mm的铜层。本文还报道了该封装的各种可靠性测试结果。这些结果是通过在一些层之间形成的菊花链图案的电测量得到的。根据湿热试验和热冲击试验的结果,制造的试验车具有较高的可靠性。这些结果表明,在聚酰亚胺薄膜中垂直嵌入多个芯片的WABE技术是实现医疗电子等电子电路小型化的最有前途的封装技术之一。
{"title":"Flexible Circuit Board Package Embedded With Multi-Stack Dies","authors":"N. Ueta, S. Sato, Masakazu Sato, Nakao Yoshio, Joshua P. Magnuson, R. Ishizuka","doi":"10.1115/dmd2020-9032","DOIUrl":"https://doi.org/10.1115/dmd2020-9032","url":null,"abstract":"\u0000 Miniaturization of electronics modules is always required for various medical applications including wearable technology, such as hearing aids, and implantable devices. Many types of high-density packaging technologies, such as package-on-package, bare-die stack, flex folded package and Through Si Via (TSV) technologies, have been proposed and used to fulfill the request. Among them, embedded die technology is one of the promising technologies to realize miniaturization and high-density packaging. We have developed WABE™ (wafer and board level device embedded) technology for embedding dies into multilayer flexible printed circuit (FPC) boards. The WABE package is comprised of thin dies (85 μm thickness), multi-layer polyimide, adhesive films and conductive paste. The dies are sandwiched by polyimide films with Cu circuits (FPCs). The conductive paste provides electrical connections between the layers as well as the layer and embedded die. First, each FPC layer is fabricated individually, and via holes are filled with conductive paste, and the dies are mounted on certain layers. Then, all layers undergo a one-step co-lamination process, and they are pressed to cure the adhesive material and conductive paste at the same time. This WABE technology has enabled multiple dies to be embedded by the one-step lamination process. Even if multiple dies are embedded, the footprint of a package can be reduced drastically by embedding multiple dies vertically in stacks. This paper describes the details of the results of fabricating a test vehicle with six embedded dies (three-dies in two stacks side-by-side). The fabricated test vehicle had 14 copper layers with less than 0.9 mm thickness. This paper also reports the results of various reliability testing on the package. These results were obtained by electrical measurements of daisy chain patterns formed between some of the layers. The fabricated test vehicle showed high reliability based on the results of a moisture and heat test and heat-shock test. These results show that the WABE technology to embed multiple dies vertically in polyimide film is one of the most promising packaging technologies to significantly miniaturize electronic circuits such as medical electronics.","PeriodicalId":93509,"journal":{"name":"2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89598688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a Modular Cost-Effective Robot Arm for Increased Dexterity in Laparoscopic Surgery 提高腹腔镜手术灵活性的模块化高效机械臂设计
J. Lowery, C. Nelson
This paper outlines the design of a reconfigurable, partially disposable, tendon-driven robotic arm for providing assistance in laparoscopic surgery. The rationale for its development and design objectives are provided, followed by a description of its mechanical design. Kinematic simulations to assess workspace are presented, and a first-stage assessment of the functionality of a prototype using a custom test bench is also included.
本文概述了一种可重构的,部分一次性的,肌腱驱动的机械臂的设计,为腹腔镜手术提供帮助。提供了其开发和设计目标的基本原理,然后描述了其机械设计。提出了评估工作空间的运动学模拟,并使用自定义测试台对原型的功能进行了第一阶段的评估。
{"title":"Design of a Modular Cost-Effective Robot Arm for Increased Dexterity in Laparoscopic Surgery","authors":"J. Lowery, C. Nelson","doi":"10.1115/dmd2020-9010","DOIUrl":"https://doi.org/10.1115/dmd2020-9010","url":null,"abstract":"\u0000 This paper outlines the design of a reconfigurable, partially disposable, tendon-driven robotic arm for providing assistance in laparoscopic surgery. The rationale for its development and design objectives are provided, followed by a description of its mechanical design. Kinematic simulations to assess workspace are presented, and a first-stage assessment of the functionality of a prototype using a custom test bench is also included.","PeriodicalId":93509,"journal":{"name":"2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77626128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Selectively Compliant Annuloplasty Ring to Enable Annular Dynamics in Mitral Valve Repair Evaluated by In-Vitro Stereovision 体外立体视觉评估选择性顺应环成形术使二尖瓣修复中的环动力学成为可能
Samuel Frishman, Annabel M. Imbrie-Moore, M. Cutkosky, Ali Kight, I. Pirozzi, Michael J Paulsen, J. Woo
Mitral valve (MV) annular dynamics are critical to the long term efficacy of MV repair. Today’s annuloplasty rings, used to restore MV function, impose significant constraints on the motion profile of the MV annulus. We present a selectively compliant ring that provides sufficient stiffness to stabilize a diseased annulus while allowing physiological annular dynamics. Ring design is informed by a finite element analysis and experimentally evaluated with in-vitro stereophotogrammetry. We compare the ring dynamics to commercially available semi-rigid rings as well as values found in literature for healthy annuli. The results demonstrate that motion of the selectively compliant ring is significantly closer to that of a healthy annulus based on standard metrics that define MV annular movement. Specifically, the metrics for the new ring compare to those in literature as follows: change in orifice area 12.5 ± 3% vs.10 ± 2%; change in anterior-posterior diam. 5.4 ± 0.3% vs. 7 ± 1%; change in inter-commissural diam. 6.6 ± 1.3% vs. 5 ± 1%.
二尖瓣环动力学对二尖瓣修复的长期疗效至关重要。目前用于恢复中压功能的环成形术对中压环的运动轮廓有很大的限制。我们提出了一种选择性柔顺环,提供足够的刚度来稳定患病环空,同时允许生理环空动力学。环形设计是由有限元分析和实验评估与体外立体摄影测量。我们将环动力学与商业上可用的半刚性环以及健康环空文献中发现的值进行比较。结果表明,基于定义MV环空运动的标准指标,选择性柔顺环的运动明显接近健康环空的运动。具体而言,新环与文献中的指标进行了比较:孔口面积变化12.5±3% vs.10±2%;前后直径变化:5.4±0.3% vs. 7±1%;关节间直径变化:6.6±1.3% vs. 5±1%。
{"title":"Selectively Compliant Annuloplasty Ring to Enable Annular Dynamics in Mitral Valve Repair Evaluated by In-Vitro Stereovision","authors":"Samuel Frishman, Annabel M. Imbrie-Moore, M. Cutkosky, Ali Kight, I. Pirozzi, Michael J Paulsen, J. Woo","doi":"10.1115/dmd2020-9034","DOIUrl":"https://doi.org/10.1115/dmd2020-9034","url":null,"abstract":"\u0000 Mitral valve (MV) annular dynamics are critical to the long term efficacy of MV repair. Today’s annuloplasty rings, used to restore MV function, impose significant constraints on the motion profile of the MV annulus. We present a selectively compliant ring that provides sufficient stiffness to stabilize a diseased annulus while allowing physiological annular dynamics. Ring design is informed by a finite element analysis and experimentally evaluated with in-vitro stereophotogrammetry. We compare the ring dynamics to commercially available semi-rigid rings as well as values found in literature for healthy annuli. The results demonstrate that motion of the selectively compliant ring is significantly closer to that of a healthy annulus based on standard metrics that define MV annular movement. Specifically, the metrics for the new ring compare to those in literature as follows: change in orifice area 12.5 ± 3% vs.10 ± 2%; change in anterior-posterior diam. 5.4 ± 0.3% vs. 7 ± 1%; change in inter-commissural diam. 6.6 ± 1.3% vs. 5 ± 1%.","PeriodicalId":93509,"journal":{"name":"2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85697974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Precise Scale-Up Method to Predict Particle Delivered Dose in a Human Respiratory System Using Rat Deposition Data: An In Silico Study 利用大鼠沉积数据预测人体呼吸系统颗粒递送剂量的精确放大方法:一项计算机研究
Hamideh Hayati, Yu Feng
As surrogates to human beings, rats are used occasionally to study the therapeutic impact of inhaled pulmonary drug particles in microscale. To speculate human responses from rat studies, scale-up factors are widely used to extrapolate particle lung deposition from rat to human. However, available scale-up methods are highly simplified and not accurate, because they directly use the human-to-rat ratios of body weights (RBW) or lung surface areas (RSA) as the scale-up factor. To find a precise scale-up strategy, an experimentally validated Computational Fluid-Particle Dynamics (CFPD) was employed to simulate the transport and deposition of microparticles in both human and rate respiratory systems, which encompasses the pulmonary routes from mouth/nose to airways up to Generation 17 (G17) for human and G23 for the rat. Microparticles with the same range of Stk/Fr were injected into both models with the airflow at resting conditions. Numerical results indicate that particles (with the size ranging from 1 to 13 μm for humans and 0.6 to 6 μm for rat) have similar deposition pattern (DP) and deposition fraction (DF) in both models, which are resulted from both inertial impaction and gravitational sedimentation effects. A novel correlation is proposed to predict DFs in both human and rat respiratory systems as a function of the ratio of Stokes number to Froude number (Stk/Fr). Using the correlation as the novel scale-up tool, inter-species extrapolations can be precisely done on predicting particle depositions in human respiratory systems based on the deposition data in rats obtained from animal studies.
作为人类的替代物,偶尔会用大鼠来研究吸入肺部药物颗粒在微观尺度上的治疗作用。为了从大鼠研究中推测人类的反应,放大因子被广泛用于推断大鼠到人的颗粒肺沉积。然而,现有的放大方法高度简化且不准确,因为它们直接使用人与大鼠的体重比(RBW)或肺表面积(RSA)作为放大因子。为了找到精确的放大策略,采用实验验证的计算流体粒子动力学(CFPD)来模拟微颗粒在人类和速率呼吸系统中的运输和沉积,包括从口/鼻到气道的肺部路径,直到人类的第17代(G17)和大鼠的第23代(G23)。在静息状态下,将Stk/Fr范围相同的微粒子注入两种模型。数值结果表明,两种模型中颗粒(人粒径为1 ~ 13 μm,大鼠粒径为0.6 ~ 6 μm)的沉积模式(DP)和沉积分数(DF)相似,这是惯性冲击和重力沉降共同作用的结果。提出了一种新的相关性来预测人类和大鼠呼吸系统的DFs,作为斯托克斯数与弗劳德数(Stk/Fr)之比的函数。利用这种相关性作为一种新的放大工具,可以根据动物研究中获得的大鼠沉积数据,精确地进行物种间外推,预测人类呼吸系统中的颗粒沉积。
{"title":"A Precise Scale-Up Method to Predict Particle Delivered Dose in a Human Respiratory System Using Rat Deposition Data: An In Silico Study","authors":"Hamideh Hayati, Yu Feng","doi":"10.1115/dmd2020-9060","DOIUrl":"https://doi.org/10.1115/dmd2020-9060","url":null,"abstract":"\u0000 As surrogates to human beings, rats are used occasionally to study the therapeutic impact of inhaled pulmonary drug particles in microscale. To speculate human responses from rat studies, scale-up factors are widely used to extrapolate particle lung deposition from rat to human. However, available scale-up methods are highly simplified and not accurate, because they directly use the human-to-rat ratios of body weights (RBW) or lung surface areas (RSA) as the scale-up factor. To find a precise scale-up strategy, an experimentally validated Computational Fluid-Particle Dynamics (CFPD) was employed to simulate the transport and deposition of microparticles in both human and rate respiratory systems, which encompasses the pulmonary routes from mouth/nose to airways up to Generation 17 (G17) for human and G23 for the rat. Microparticles with the same range of Stk/Fr were injected into both models with the airflow at resting conditions. Numerical results indicate that particles (with the size ranging from 1 to 13 μm for humans and 0.6 to 6 μm for rat) have similar deposition pattern (DP) and deposition fraction (DF) in both models, which are resulted from both inertial impaction and gravitational sedimentation effects. A novel correlation is proposed to predict DFs in both human and rat respiratory systems as a function of the ratio of Stokes number to Froude number (Stk/Fr). Using the correlation as the novel scale-up tool, inter-species extrapolations can be precisely done on predicting particle depositions in human respiratory systems based on the deposition data in rats obtained from animal studies.","PeriodicalId":93509,"journal":{"name":"2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79792150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Minimizing cotton ball retention in neurological procedures. 在神经外科手术中尽量减少棉球滞留。
Raphael Bechtold, Benjamin Garlow, Renee Liu, Arushi Tandon, Alexandra Szewc, William Zhu, Olivia Musmanno, Noah Gorelick, Ian Suk, Judy Huang, Henry Brem, Amir Manbachi, George Coles

Neurosurgical operations are long and intensive medical procedures, during which the surgeon must constantly have an unobscured view of the brain in order to be able to properly operate, and thus must use a variety of tools to clear obstructions (like blood and fluid) from the operating area. Currently, cotton balls are the most versatile and effective option to accomplish this as they absorb fluids, are soft enough to safely manipulate the brain, act as a barrier between other tools and the brain, and function as a spacer to keep anatomies of the brain open and visible during the operation. While cotton balls allow neurosurgeons to effectively improve visibility of the operating area, they may also be accidentally left in the brain upon completion of the surgery. This can lead to a wide range of post-operative risks including dangerous immune responses, additional medical care or surgical operations, and even death. This project seeks to develop a unique medical device that utilizes ultrasound technology in order to minimize cotton retention after neurosurgical procedures in order to reduce undesired post-operative risks, and maximize visibility.

神经外科手术是一项漫长而紧张的医疗程序,在手术过程中,外科医生必须始终保持对大脑的无障碍观察,才能正确地进行手术,因此必须使用各种工具清除手术区的障碍物(如血液和液体)。目前,棉球是实现这一目的最通用、最有效的选择,因为棉球能吸收液体,柔软度足以安全地操作大脑,是其他工具和大脑之间的屏障,还能在手术过程中充当保持大脑解剖结构开放和可见的间隔物。虽然棉球能让神经外科医生有效提高手术区域的可见度,但也可能在手术完成后意外留在脑内。这可能导致各种术后风险,包括危险的免疫反应、额外的医疗护理或外科手术,甚至死亡。本项目旨在开发一种独特的医疗设备,利用超声波技术最大限度地减少神经外科手术后的棉花残留,从而降低术后风险,并最大限度地提高可见度。
{"title":"Minimizing cotton ball retention in neurological procedures.","authors":"Raphael Bechtold, Benjamin Garlow, Renee Liu, Arushi Tandon, Alexandra Szewc, William Zhu, Olivia Musmanno, Noah Gorelick, Ian Suk, Judy Huang, Henry Brem, Amir Manbachi, George Coles","doi":"10.1115/dmd2020-9042","DOIUrl":"10.1115/dmd2020-9042","url":null,"abstract":"<p><p>Neurosurgical operations are long and intensive medical procedures, during which the surgeon must constantly have an unobscured view of the brain in order to be able to properly operate, and thus must use a variety of tools to clear obstructions (like blood and fluid) from the operating area. Currently, cotton balls are the most versatile and effective option to accomplish this as they absorb fluids, are soft enough to safely manipulate the brain, act as a barrier between other tools and the brain, and function as a spacer to keep anatomies of the brain open and visible during the operation. While cotton balls allow neurosurgeons to effectively improve visibility of the operating area, they may also be accidentally left in the brain upon completion of the surgery. This can lead to a wide range of post-operative risks including dangerous immune responses, additional medical care or surgical operations, and even death. This project seeks to develop a unique medical device that utilizes ultrasound technology in order to minimize cotton retention after neurosurgical procedures in order to reduce undesired post-operative risks, and maximize visibility.</p>","PeriodicalId":93509,"journal":{"name":"2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75972014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEVELOPMENT OF A PORTABLE BLOOD POTASSIUM MONITORING DEVICE FOR DIALYSIS PATIENTS. 为透析患者开发便携式血钾监测设备。
Parth Vora, Miguel Inserni, Alan Lai, Maya M Lapinski, Justin Wang, Min Jae Kim, Diane Lee, Rebecca Yu, Amir Manbachi, Mohamed G Atta

Approximately 500,000 dialysis patients in America are at a high risk of hyperkalemia, a condition where blood potassium becomes elevated above normal levels. Hyperkalemia is extremely dangerous, as it can result in severe cardiac complications if untreated. Hyperkalemia may be silent or present vague symptoms until those complications develop, at which point patients require emergency medical care. However, if patients have the ability to measure their potassium levels at home, they could detect hyperkalemia before it reaches a dangerous stage, and seek preventative medical care to avoid severe complications. Therefore, we have designed a novel device allowing patients to measure their blood potassium levels at home. The workflow of our solution is as follows: (1) patients obtain a blood sample from a finger prick, (2) potassium concentration is measured with an ion specific electrode (ISE), and (3) the device displays their potassium levels and a recommended course of action based on their hyperkalemic risk. We validate our solution with three major tests. First, our portable ISE technology must accurately measure potassium concentration in blood samples. Second, appropriate lancet parameters (gauge and depth) to minimize hemolysis in capillary blood samples must be found to minimize falsely elevated readings. Third, device portability and ease of use must be evaluated using patient input, as these factors will affect patient compliance. We have validated the use of portable ISE technology to feasibly measure potassium, and we continue to collect data for our second and third tests.

美国约有 50 万名透析患者面临高钾血症的高风险,高钾血症是指血钾升高超过正常水平。高钾血症非常危险,如果不及时治疗,会导致严重的心脏并发症。在并发症出现之前,高钾血症可能无声无息或症状模糊,此时患者需要紧急医疗护理。但是,如果患者能够在家中测量自己的血钾水平,他们就能在高钾血症发展到危险阶段之前发现它,并寻求预防性医疗护理以避免严重并发症。因此,我们设计了一种新颖的设备,让患者可以在家测量血钾水平。我们的解决方案的工作流程如下:(1) 患者通过刺破手指获取血液样本;(2) 使用离子特异性电极(ISE)测量血钾浓度;(3) 设备显示血钾水平,并根据高血钾风险建议采取的行动。我们通过三项主要测试来验证我们的解决方案。首先,我们的便携式 ISE 技术必须准确测量血液样本中的钾浓度。其次,必须找到合适的柳叶刀参数(规格和深度),以最大限度地减少毛细血管血样中的溶血现象,从而最大限度地降低假性升高读数。第三,必须根据患者的意见对设备的便携性和易用性进行评估,因为这些因素会影响患者的依从性。我们已经验证了使用便携式 ISE 技术测量血钾的可行性,并将继续收集第二次和第三次测试的数据。
{"title":"DEVELOPMENT OF A PORTABLE BLOOD POTASSIUM MONITORING DEVICE FOR DIALYSIS PATIENTS.","authors":"Parth Vora, Miguel Inserni, Alan Lai, Maya M Lapinski, Justin Wang, Min Jae Kim, Diane Lee, Rebecca Yu, Amir Manbachi, Mohamed G Atta","doi":"10.1115/dmd2020-9066","DOIUrl":"10.1115/dmd2020-9066","url":null,"abstract":"<p><p>Approximately 500,000 dialysis patients in America are at a high risk of hyperkalemia, a condition where blood potassium becomes elevated above normal levels. Hyperkalemia is extremely dangerous, as it can result in severe cardiac complications if untreated. Hyperkalemia may be silent or present vague symptoms until those complications develop, at which point patients require emergency medical care. However, if patients have the ability to measure their potassium levels at home, they could detect hyperkalemia before it reaches a dangerous stage, and seek preventative medical care to avoid severe complications. Therefore, we have designed a novel device allowing patients to measure their blood potassium levels at home. The workflow of our solution is as follows: (1) patients obtain a blood sample from a finger prick, (2) potassium concentration is measured with an ion specific electrode (ISE), and (3) the device displays their potassium levels and a recommended course of action based on their hyperkalemic risk. We validate our solution with three major tests. First, our portable ISE technology must accurately measure potassium concentration in blood samples. Second, appropriate lancet parameters (gauge and depth) to minimize hemolysis in capillary blood samples must be found to minimize falsely elevated readings. Third, device portability and ease of use must be evaluated using patient input, as these factors will affect patient compliance. We have validated the use of portable ISE technology to feasibly measure potassium, and we continue to collect data for our second and third tests.</p>","PeriodicalId":93509,"journal":{"name":"2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76945642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USDL: Inexpensive Medical Imaging Using Deep Learning Techniques and Ultrasound Technology. USDL:利用深度学习技术和超声波技术实现低成本医学成像。
Manish Balamurugan, Kathryn Chung, Venkat Kuppoor, Smruti Mahapatra, Aliaksei Pustavoitau, Amir Manbachi

In this study, we present USDL, a novel model that employs deep learning algorithms in order to reconstruct and enhance corrupted ultrasound images. We utilize an unsupervised neural network called an autoencoder which works by compressing its input into a latent-space representation and then reconstructing the output from this representation. We trained our model on a dataset that compromises of 15,700 in vivo images of the neck, wrist, elbow, and knee vasculature and compared the quality of the images generated using the structural similarity index (SSIM) and peak to noise ratio (PSNR). In closely simulated conditions, the architecture exhibited an average reconstruction accuracy of 90% as indicated by our SSIM. Our study demonstrates that USDL outperforms state of the art image enhancement and reconstruction techniques in both image quality and computational complexity, while maintaining the architecture efficiency.

在这项研究中,我们提出了一种采用深度学习算法的新型模型 USDL,以重建和增强损坏的超声波图像。我们利用了一种称为自动编码器的无监督神经网络,它的工作原理是将输入压缩为潜空间表示,然后根据该表示重建输出。我们在一个包含 15,700 幅颈部、手腕、肘部和膝部血管活体图像的数据集上训练了我们的模型,并使用结构相似性指数(SSIM)和峰噪比(PSNR)比较了生成图像的质量。在严密的模拟条件下,根据我们的结构相似性指数(SSIM),该架构的平均重建准确率达到了 90%。我们的研究表明,USDL 在保持架构效率的同时,在图像质量和计算复杂性方面都优于最先进的图像增强和重建技术。
{"title":"USDL: Inexpensive Medical Imaging Using Deep Learning Techniques and Ultrasound Technology.","authors":"Manish Balamurugan, Kathryn Chung, Venkat Kuppoor, Smruti Mahapatra, Aliaksei Pustavoitau, Amir Manbachi","doi":"10.1115/dmd2020-9109","DOIUrl":"10.1115/dmd2020-9109","url":null,"abstract":"<p><p>In this study, we present USDL, a novel model that employs deep learning algorithms in order to reconstruct and enhance corrupted ultrasound images. We utilize an unsupervised neural network called an autoencoder which works by compressing its input into a latent-space representation and then reconstructing the output from this representation. We trained our model on a dataset that compromises of 15,700 <i>in vivo</i> images of the neck, wrist, elbow, and knee vasculature and compared the quality of the images generated using the structural similarity index (SSIM) and peak to noise ratio (PSNR). In closely simulated conditions, the architecture exhibited an average reconstruction accuracy of 90% as indicated by our SSIM. Our study demonstrates that USDL outperforms state of the art image enhancement and reconstruction techniques in both image quality and computational complexity, while maintaining the architecture efficiency.</p>","PeriodicalId":93509,"journal":{"name":"2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89179003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Evaluation of Sensing Technologies to Measure Intraoperative Leg Length for Total Hip Arthroplasty. 评估用于测量全髋关节置换术术中腿长的传感技术。
Akash Chaurasia, Jerry Yan, Robert Li, Kate McCarren, Claire State, Hannah Takasuka, Evan Bender, Aditi Jithendra, Julius K Oni, Amir Manbachi

Total hip arthroplasty (THA) procedures have been identified as high-volume procedures with growing prevalence. During the procedure, orthopedic surgeons largely rely solely on qualitative assessment to ensure an excessive limb length discrepancy (LLD) is not introduced from the implant selection. LLD can result in back pain and gait complications, with some cases of LLD requiring a revision procedure to mitigate. To address this issue, we evaluated several methods of sensing distance intraoperatively to determine the best approach to measure leg length during the THA procedure. A testing setup using a sawbones model of hip anatomy in the decubitus position was used as a simulation of the THA procedure to test the accuracy of each of the sensing modalities.

全髋关节置换术(THA)被认为是一种高产量的手术,其发病率越来越高。在手术过程中,骨科医生主要依靠定性评估来确保植入物的选择不会导致肢体长度差异(LLD)过大。肢长偏差可能导致背痛和步态并发症,有些肢长偏差病例需要进行翻修手术来缓解。为了解决这个问题,我们评估了几种术中感知距离的方法,以确定在 THA 手术过程中测量腿长的最佳方法。我们使用褥疮位髋关节解剖锯骨模型作为模拟 THA 手术的测试装置,以测试每种传感模式的准确性。
{"title":"An Evaluation of Sensing Technologies to Measure Intraoperative Leg Length for Total Hip Arthroplasty.","authors":"Akash Chaurasia, Jerry Yan, Robert Li, Kate McCarren, Claire State, Hannah Takasuka, Evan Bender, Aditi Jithendra, Julius K Oni, Amir Manbachi","doi":"10.1115/dmd2020-9056","DOIUrl":"10.1115/dmd2020-9056","url":null,"abstract":"<p><p>Total hip arthroplasty (THA) procedures have been identified as high-volume procedures with growing prevalence. During the procedure, orthopedic surgeons largely rely solely on qualitative assessment to ensure an excessive limb length discrepancy (LLD) is not introduced from the implant selection. LLD can result in back pain and gait complications, with some cases of LLD requiring a revision procedure to mitigate. To address this issue, we evaluated several methods of sensing distance intraoperatively to determine the best approach to measure leg length during the THA procedure. A testing setup using a sawbones model of hip anatomy in the decubitus position was used as a simulation of the THA procedure to test the accuracy of each of the sensing modalities.</p>","PeriodicalId":93509,"journal":{"name":"2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895228/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77014621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DEVELOPMENT OF VOICE-CONTROLLED SMART SURGICAL BED. 开发声控智能手术床。
Jeong Hun Kim, Richard Um, Nicholas Theodore, Rajiv Iyer, Amir Manbachi

Wasted time in the operating room results in higher operating costs and greater post-operative complications. One effective way to reduce operation time is automating basic processes that occur during surgery. Given the rise of smart-home devices, implementation of virtual assistants became a feasible solution in many medical settings. With a consumer smart-home device and off-the-shelf components, we engineered a voice-controlled smart surgical bed that adjusts the bed configuration via a voice input. The resulting device is expected to optimize human resources and reduce surgical site infection by eliminating the need of a traditional touch control mechanism. Future work is needed to develop its proprietary hardware and software, and continuous collaboration with medical personnel to bring this device into market.

手术室时间的浪费会导致更高的手术成本和更严重的术后并发症。减少手术时间的一个有效方法是将手术过程中的基本流程自动化。随着智能家居设备的兴起,在许多医疗机构中实施虚拟助手成为一种可行的解决方案。利用消费类智能家居设备和现成的组件,我们设计了一款语音控制智能手术床,可通过语音输入调整床的配置。该设备无需传统的触摸控制机制,有望优化人力资源,减少手术部位感染。未来需要开发其专有硬件和软件,并与医务人员继续合作,将该设备推向市场。
{"title":"DEVELOPMENT OF VOICE-CONTROLLED SMART SURGICAL BED.","authors":"Jeong Hun Kim, Richard Um, Nicholas Theodore, Rajiv Iyer, Amir Manbachi","doi":"10.1115/dmd2020-9065","DOIUrl":"10.1115/dmd2020-9065","url":null,"abstract":"<p><p>Wasted time in the operating room results in higher operating costs and greater post-operative complications. One effective way to reduce operation time is automating basic processes that occur during surgery. Given the rise of smart-home devices, implementation of virtual assistants became a feasible solution in many medical settings. With a consumer smart-home device and off-the-shelf components, we engineered a voice-controlled smart surgical bed that adjusts the bed configuration via a voice input. The resulting device is expected to optimize human resources and reduce surgical site infection by eliminating the need of a traditional touch control mechanism. Future work is needed to develop its proprietary hardware and software, and continuous collaboration with medical personnel to bring this device into market.</p>","PeriodicalId":93509,"journal":{"name":"2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895242/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73243211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2020 Design of Medical Devices Conference (DMD 2020). Design of Medical Devices Conferences (2020 : Minneapolis, Minn.)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1