首页 > 最新文献

Biotechnology for biofuels and bioproducts最新文献

英文 中文
Identifying metabolic bottlenecks for micafungin precursor production via untargeted regulatory perturbation. 通过非靶向调节扰动确定米卡芬宁前体生产的代谢瓶颈。
IF 4.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-14 DOI: 10.1186/s13068-026-02737-7
Ping Men, Li Xie, Jiachen Wang, Yu Zhou, Xiaoxi Zhang, Yanping Li, Xuenian Huang, Xuefeng Lu

Background: Micafungin, a clinically important echinocandin antifungal agent, is derived from the nonribosomal cyclic hexapeptide FR901379 produced by the filamentous fungus Coleophoma empetri. However, low fermentation efficiency remains a major constraint in its industrial production.

Results: In this study, we implemented an untargeted regulatory perturbation strategy to systematically identify metabolic bottlenecks affecting FR901379 biosynthesis. A mutant library was constructed by rationally engineering the key untargeted regulatory genes involved in histone modification and global regulation. The untargeted perturbation led to diverse phenotypes in both growth and secondary metabolism, ranging from enhancement (by up to 170%) to complete abolition of FR901379 production. Transcriptome profiling of high-producing strains revealed coordinated upregulation of genes in the acetyl-CoA, palmitic acid, and 3'-phosphoadenosine-5'-phosphosulfate biosynthetic pathways. Exogenous supplementation of palm oil further enhanced FR901379 titer by 87.6%, confirming the critical role of precursor supply.

Conclusions: This work elucidates the metabolic network governing FR901379 biosynthesis and provides key candidates for further metabolic engineering. It also demonstrates that untargeted regulatory perturbation strategy is an effective approach for deciphering the mechanisms behind specific phenotypic traits in industrial filamentous fungi.

背景:Micafungin是一种临床重要的棘白菌素抗真菌药物,来源于丝状真菌coleophhoma empetri产生的非核糖体环六肽FR901379。然而,发酵效率低仍然是制约其工业化生产的主要因素。结果:在本研究中,我们实施了一种非靶向调控摄动策略,系统地识别影响FR901379生物合成的代谢瓶颈。将参与组蛋白修饰和全局调控的关键非靶向调控基因合理工程化构建突变体文库。非靶向扰动导致生长和次级代谢的表型多样化,从增强(高达170%)到完全消除FR901379的产生。高产菌株的转录组分析显示,乙酰辅酶a、棕榈酸和3′-磷酸腺苷-5′-硫酸磷生物合成途径中的基因协同上调。外源补充棕榈油进一步使FR901379滴度提高了87.6%,证实了前体供应的关键作用。结论:这项工作阐明了调控FR901379生物合成的代谢网络,并为进一步的代谢工程提供了关键的候选物。这也证明了非靶向调控摄动策略是破译工业丝状真菌特定表型性状背后机制的有效方法。
{"title":"Identifying metabolic bottlenecks for micafungin precursor production via untargeted regulatory perturbation.","authors":"Ping Men, Li Xie, Jiachen Wang, Yu Zhou, Xiaoxi Zhang, Yanping Li, Xuenian Huang, Xuefeng Lu","doi":"10.1186/s13068-026-02737-7","DOIUrl":"10.1186/s13068-026-02737-7","url":null,"abstract":"<p><strong>Background: </strong>Micafungin, a clinically important echinocandin antifungal agent, is derived from the nonribosomal cyclic hexapeptide FR901379 produced by the filamentous fungus Coleophoma empetri. However, low fermentation efficiency remains a major constraint in its industrial production.</p><p><strong>Results: </strong>In this study, we implemented an untargeted regulatory perturbation strategy to systematically identify metabolic bottlenecks affecting FR901379 biosynthesis. A mutant library was constructed by rationally engineering the key untargeted regulatory genes involved in histone modification and global regulation. The untargeted perturbation led to diverse phenotypes in both growth and secondary metabolism, ranging from enhancement (by up to 170%) to complete abolition of FR901379 production. Transcriptome profiling of high-producing strains revealed coordinated upregulation of genes in the acetyl-CoA, palmitic acid, and 3'-phosphoadenosine-5'-phosphosulfate biosynthetic pathways. Exogenous supplementation of palm oil further enhanced FR901379 titer by 87.6%, confirming the critical role of precursor supply.</p><p><strong>Conclusions: </strong>This work elucidates the metabolic network governing FR901379 biosynthesis and provides key candidates for further metabolic engineering. It also demonstrates that untargeted regulatory perturbation strategy is an effective approach for deciphering the mechanisms behind specific phenotypic traits in industrial filamentous fungi.</p>","PeriodicalId":93909,"journal":{"name":"Biotechnology for biofuels and bioproducts","volume":" ","pages":"17"},"PeriodicalIF":4.6,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12874660/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145971671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving inhibitor tolerance of xylitol-producing Saccharomyces cerevisiae by overexpressing key target genes mined through comparative transcriptomes. 通过比较转录组挖掘的关键靶基因的过表达提高木糖醇生产酵母的抑制剂耐受性。
IF 4.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2026-01-10 DOI: 10.1186/s13068-026-02735-9
Xin-Yu Xiao, Xin-Yu Wang, Ya-Jing Wu, Ying Cheng, Quan Zhang, Cai-Yun Xie, Yue-Qin Tang

Background: Xylitol, a valuable five-carbon sugar alcohol widely used in the food and pharmaceutical industries, can be biosynthesized through the reduction of xylose by engineered Saccharomyces cerevisiae. A major challenge in producing xylitol from lignocellulosic feedstocks is the sensitivity of yeast to multiple inhibitors generated during biomass pretreatment. Developing robust microbial cell factories with enhanced tolerance to these inhibitors is therefore essential for efficient and sustainable xylitol production. In this study, we employed comparative transcriptomic analysis to investigate the response mechanisms of two xylitol-producing S. cerevisiae strains, CXAU and TX2022, to vanillin and PCS-L (liquid hydrolysate from pretreated corn stover).

Results: Under vanillin stress, CXAU exhibited downregulation of glycolysis, the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle, accompanied by upregulation of amino acid and ergosterol biosynthesis. In contrast, TX2022 showed repression of central carbon metabolism, oxidative phosphorylation, and heme and thiamine synthesis, while enhancing amino acid synthesis and glutathione (GSH) regeneration. Under PCS-L exposure, CXAU experienced severe metabolic disruption but prioritized improving the fidelity of protein translation. Meanwhile, TX2022 upregulated amino acid and ergosterol synthesis, purine metabolism, and ribosome biogenesis, while downregulating oxidative phosphorylation and peroxisomal functions. Based on transcriptomic insights, 11 candidate genes potentially involved in stress tolerance were identified and individually overexpressed. Overexpression of SIP18 or CTT1 significantly enhanced tolerance to both vanillin and complex inhibitors. Additionally, overexpression of AAD4 or AAD6 improved vanillin tolerance, whereas SPI1 or GRE1 overexpression conferred increased resistance to the complex inhibitors. Notably, the engineered strain TX2022-SIP18 achieved high-level xylitol production of 43.50 g/L (yield: 0.961 g/g xylose) in concentrated hydrolysate from pretreated corn cob containing high concentrations of inhibitors.

Conclusions: This study provides the first experimental evidence that SIP18, AAD4, AAD6, SPI1, CTT1, and GRE1 contribute to inhibitor tolerance of S. cerevisiae, highlighting their potential as targets for engineering robust industrial strains for sustainable lignocellulosic xylitol production.

背景:木糖醇是一种有价值的五碳糖醇,广泛应用于食品和制药工业,可以通过工程酿酒酵母还原木糖来合成木糖醇。从木质纤维素原料生产木糖醇的一个主要挑战是酵母对生物质预处理过程中产生的多种抑制剂的敏感性。因此,开发强大的微生物细胞工厂,增强对这些抑制剂的耐受性,对于有效和可持续的木糖醇生产至关重要。在本研究中,我们采用比较转录组学分析研究了两株产木糖醇的酿酒葡萄球菌CXAU和TX2022对香兰素和PCS-L(预处理玉米秸秆液体水解物)的响应机制。结果:在香兰素胁迫下,CXAU表现出糖酵解、戊糖磷酸途径(PPP)和三羧酸(TCA)循环下调,同时氨基酸和麦角甾醇生物合成上调。相比之下,TX2022抑制了中心碳代谢、氧化磷酸化、血红素和硫胺素的合成,同时促进了氨基酸合成和谷胱甘肽(GSH)的再生。在PCS-L暴露下,CXAU经历了严重的代谢破坏,但优先考虑提高蛋白质翻译的保真度。同时,TX2022上调氨基酸和麦角甾醇合成、嘌呤代谢和核糖体生物发生,下调氧化磷酸化和过氧化物酶体功能。基于转录组学的见解,鉴定了11个可能参与胁迫耐受性的候选基因,并分别过表达。过表达SIP18或CTT1显著增强对香兰素和复合抑制剂的耐受性。此外,过表达AAD4或AAD6可改善香兰素耐受性,而过表达SPI1或GRE1可增加对复合抑制剂的抗性。值得注意的是,工程菌株TX2022-SIP18在含有高浓度抑制剂的预处理玉米芯浓缩水解物中获得了43.50 g/L(产量:0.961 g/g木糖)的高木糖醇产量。结论:本研究首次提供了实验证据,证明SIP18、AAD4、AAD6、SPI1、CTT1和GRE1与酿酒酵母对抑制剂的耐受性有关,突出了它们作为可持续生产木质纤维素木糖醇的强大工业菌株的潜力。
{"title":"Improving inhibitor tolerance of xylitol-producing Saccharomyces cerevisiae by overexpressing key target genes mined through comparative transcriptomes.","authors":"Xin-Yu Xiao, Xin-Yu Wang, Ya-Jing Wu, Ying Cheng, Quan Zhang, Cai-Yun Xie, Yue-Qin Tang","doi":"10.1186/s13068-026-02735-9","DOIUrl":"10.1186/s13068-026-02735-9","url":null,"abstract":"<p><strong>Background: </strong>Xylitol, a valuable five-carbon sugar alcohol widely used in the food and pharmaceutical industries, can be biosynthesized through the reduction of xylose by engineered Saccharomyces cerevisiae. A major challenge in producing xylitol from lignocellulosic feedstocks is the sensitivity of yeast to multiple inhibitors generated during biomass pretreatment. Developing robust microbial cell factories with enhanced tolerance to these inhibitors is therefore essential for efficient and sustainable xylitol production. In this study, we employed comparative transcriptomic analysis to investigate the response mechanisms of two xylitol-producing S. cerevisiae strains, CXAU and TX2022, to vanillin and PCS-L (liquid hydrolysate from pretreated corn stover).</p><p><strong>Results: </strong>Under vanillin stress, CXAU exhibited downregulation of glycolysis, the pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle, accompanied by upregulation of amino acid and ergosterol biosynthesis. In contrast, TX2022 showed repression of central carbon metabolism, oxidative phosphorylation, and heme and thiamine synthesis, while enhancing amino acid synthesis and glutathione (GSH) regeneration. Under PCS-L exposure, CXAU experienced severe metabolic disruption but prioritized improving the fidelity of protein translation. Meanwhile, TX2022 upregulated amino acid and ergosterol synthesis, purine metabolism, and ribosome biogenesis, while downregulating oxidative phosphorylation and peroxisomal functions. Based on transcriptomic insights, 11 candidate genes potentially involved in stress tolerance were identified and individually overexpressed. Overexpression of SIP18 or CTT1 significantly enhanced tolerance to both vanillin and complex inhibitors. Additionally, overexpression of AAD4 or AAD6 improved vanillin tolerance, whereas SPI1 or GRE1 overexpression conferred increased resistance to the complex inhibitors. Notably, the engineered strain TX2022-SIP18 achieved high-level xylitol production of 43.50 g/L (yield: 0.961 g/g xylose) in concentrated hydrolysate from pretreated corn cob containing high concentrations of inhibitors.</p><p><strong>Conclusions: </strong>This study provides the first experimental evidence that SIP18, AAD4, AAD6, SPI1, CTT1, and GRE1 contribute to inhibitor tolerance of S. cerevisiae, highlighting their potential as targets for engineering robust industrial strains for sustainable lignocellulosic xylitol production.</p>","PeriodicalId":93909,"journal":{"name":"Biotechnology for biofuels and bioproducts","volume":" ","pages":"15"},"PeriodicalIF":4.6,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12874835/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145949533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in microbial ε-poly-L-lysine fermentation and its diverse applications 微生物ε-聚赖氨酸发酵研究进展及其广泛应用
Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-16 DOI: 10.1186/s13068-022-02166-2
Shubo Li, Yunren Mao, Lifei Zhang, Miao Wang, Jinhao Meng, Xiaoling Liu, Yunxia Bai, Yuan Guo
{"title":"Recent advances in microbial ε-poly-L-lysine fermentation and its diverse applications","authors":"Shubo Li, Yunren Mao, Lifei Zhang, Miao Wang, Jinhao Meng, Xiaoling Liu, Yunxia Bai, Yuan Guo","doi":"10.1186/s13068-022-02166-2","DOIUrl":"https://doi.org/10.1186/s13068-022-02166-2","url":null,"abstract":"","PeriodicalId":93909,"journal":{"name":"Biotechnology for biofuels and bioproducts","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43809026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Integrative transcriptome and proteome analyses of Trichoderma longibrachiatum LC and its cellulase hyper-producing mutants generated by heavy ion mutagenesis reveal the key genes involved in cellulolytic enzymes regulation 通过重离子诱变产生的长achiatum木霉LC及其纤维素酶高产突变体的综合转录组和蛋白质组分析,揭示了参与纤维素酶调控的关键基因
Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-06-03 DOI: 10.1186/s13068-022-02161-7
Miaoyin Dong, Shu-Yang Wang, Fuqiang Xu, G. Xiao, Jin Bai, Junkai Wang, Xisi Sun
{"title":"Integrative transcriptome and proteome analyses of Trichoderma longibrachiatum LC and its cellulase hyper-producing mutants generated by heavy ion mutagenesis reveal the key genes involved in cellulolytic enzymes regulation","authors":"Miaoyin Dong, Shu-Yang Wang, Fuqiang Xu, G. Xiao, Jin Bai, Junkai Wang, Xisi Sun","doi":"10.1186/s13068-022-02161-7","DOIUrl":"https://doi.org/10.1186/s13068-022-02161-7","url":null,"abstract":"","PeriodicalId":93909,"journal":{"name":"Biotechnology for biofuels and bioproducts","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45027276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Genetic modifications of critical regulators provide new insights into regulation modes of raw-starch-digesting enzyme expression in Penicillium 关键调控因子的遗传修饰为青霉菌中原料淀粉消化酶表达的调控模式提供了新的见解
Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-05-31 DOI: 10.1186/s13068-022-02162-6
Shengfang Zhao, Boyu Xiang, Le Yang, Jie Chen, Cui Zhu, Yu Chen, Jun Cui, Shengbiao Hu, Yibo Hu
{"title":"Genetic modifications of critical regulators provide new insights into regulation modes of raw-starch-digesting enzyme expression in Penicillium","authors":"Shengfang Zhao, Boyu Xiang, Le Yang, Jie Chen, Cui Zhu, Yu Chen, Jun Cui, Shengbiao Hu, Yibo Hu","doi":"10.1186/s13068-022-02162-6","DOIUrl":"https://doi.org/10.1186/s13068-022-02162-6","url":null,"abstract":"","PeriodicalId":93909,"journal":{"name":"Biotechnology for biofuels and bioproducts","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46175562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Metabolomic, proteomic and lactylated proteomic analyses indicate lactate plays important roles in maintaining energy and C:N homeostasis in Phaeodactylum tricornutum 代谢组学、蛋白质组学和乳酸盐蛋白质组学分析表明,乳酸盐在维持三角褐指藻的能量和C:N稳态方面发挥着重要作用
Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-05-31 DOI: 10.1186/s13068-022-02152-8
Ai-you Huang, Yuanxiang Li, Jiawen Duan, Shiyi Guo, Xiaoni Cai, Xiang Zhang, H. Long, Wei Ren, Zhenyu Xie
{"title":"Metabolomic, proteomic and lactylated proteomic analyses indicate lactate plays important roles in maintaining energy and C:N homeostasis in Phaeodactylum tricornutum","authors":"Ai-you Huang, Yuanxiang Li, Jiawen Duan, Shiyi Guo, Xiaoni Cai, Xiang Zhang, H. Long, Wei Ren, Zhenyu Xie","doi":"10.1186/s13068-022-02152-8","DOIUrl":"https://doi.org/10.1186/s13068-022-02152-8","url":null,"abstract":"","PeriodicalId":93909,"journal":{"name":"Biotechnology for biofuels and bioproducts","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45430712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Engineering the oleaginous yeast Candida tropicalis for α-humulene overproduction 设计产油酵母热带假丝酵母过量生产α-葎草烯
Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-05-26 DOI: 10.1186/s13068-022-02160-8
Lihua Zhang, Haiquan Yang, Yuanyuan Xia, W. Shen, Liming Liu, Qi Li, Xianzhong Chen
{"title":"Engineering the oleaginous yeast Candida tropicalis for α-humulene overproduction","authors":"Lihua Zhang, Haiquan Yang, Yuanyuan Xia, W. Shen, Liming Liu, Qi Li, Xianzhong Chen","doi":"10.1186/s13068-022-02160-8","DOIUrl":"https://doi.org/10.1186/s13068-022-02160-8","url":null,"abstract":"","PeriodicalId":93909,"journal":{"name":"Biotechnology for biofuels and bioproducts","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44027547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Vibrio-based microbial platform for accelerated lignocellulosic sugar conversion 加速木质纤维素糖转化的弧菌微生物平台
Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-05-25 DOI: 10.1186/s13068-022-02157-3
Sunghwa Woo, H. Lim, Y. Han, Sungwoo Park, M. Noh, D. Baek, J. Moon, S. Seo, G. Jung
{"title":"A Vibrio-based microbial platform for accelerated lignocellulosic sugar conversion","authors":"Sunghwa Woo, H. Lim, Y. Han, Sungwoo Park, M. Noh, D. Baek, J. Moon, S. Seo, G. Jung","doi":"10.1186/s13068-022-02157-3","DOIUrl":"https://doi.org/10.1186/s13068-022-02157-3","url":null,"abstract":"","PeriodicalId":93909,"journal":{"name":"Biotechnology for biofuels and bioproducts","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44308393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Enhanced accumulation of oil through co-expression of fatty acid and ABC transporters in Chlamydomonas under standard growth conditions 在标准生长条件下,衣藻通过脂肪酸和ABC转运体的共同表达来增强油脂的积累
Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-05-20 DOI: 10.1186/s13068-022-02154-6
Ru Chen, Miao Yang, Mengjie Li, Hao Zhang, Haiyan Lu, Xiaotan Dou, Shiqi Feng, Song Xue, Chenba Zhu, Zhanyou Chi, Fantao Kong
{"title":"Enhanced accumulation of oil through co-expression of fatty acid and ABC transporters in Chlamydomonas under standard growth conditions","authors":"Ru Chen, Miao Yang, Mengjie Li, Hao Zhang, Haiyan Lu, Xiaotan Dou, Shiqi Feng, Song Xue, Chenba Zhu, Zhanyou Chi, Fantao Kong","doi":"10.1186/s13068-022-02154-6","DOIUrl":"https://doi.org/10.1186/s13068-022-02154-6","url":null,"abstract":"","PeriodicalId":93909,"journal":{"name":"Biotechnology for biofuels and bioproducts","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41577324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Oxidative stress facilitates infection of the unicellular alga Haematococcus pluvialis by the fungus Paraphysoderma sedebokerense 氧化应激促进单细胞藻雨红球菌被真菌副葡萄皮病sedebokerense感染
Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2022-05-20 DOI: 10.1186/s13068-022-02140-y
H. Yan, Haiyan Ma, Yanhua Li, Liang Zhao, Juan Lin, Qikun Jia, Q. Hu, Danxiang Han
{"title":"Oxidative stress facilitates infection of the unicellular alga Haematococcus pluvialis by the fungus Paraphysoderma sedebokerense","authors":"H. Yan, Haiyan Ma, Yanhua Li, Liang Zhao, Juan Lin, Qikun Jia, Q. Hu, Danxiang Han","doi":"10.1186/s13068-022-02140-y","DOIUrl":"https://doi.org/10.1186/s13068-022-02140-y","url":null,"abstract":"","PeriodicalId":93909,"journal":{"name":"Biotechnology for biofuels and bioproducts","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48652052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Biotechnology for biofuels and bioproducts
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1