首页 > 最新文献

Cell host & microbe最新文献

英文 中文
A gut-secreted histidine methyltransferase enforces cross-kingdom catalytic antifungal defense. 肠道分泌的组氨酸甲基转移酶强制跨界催化抗真菌防御。
IF 18.7 Pub Date : 2026-01-14 Epub Date: 2025-12-17 DOI: 10.1016/j.chom.2025.11.015
Hong Bao, Chen Yang, Panrui Zhang, Jiayang Zhang, Siyao Fang, Alin Yang, Zhentao Yang, Siwen Wang, Si Chen, Xuebiao Yao, Kaiguang Zhang, Shu Zhu, Dan Cao, Wen Pan

Mucosal immunity deploys diverse defenses against fungal pathogens, yet the evolution of fungal resistance demands new antifungal strategies. Here, we uncover that intestinal epithelial cells secrete the host histidine methyltransferase METTL9 as a cross-kingdom, catalytic antifungal effector. Proteomic profiling revealed that exposure to Candida albicans induces robust METTL9 secretion into the intestinal lumen. Extracellular METTL9 directly binds the fungal zinc-scavenging protein PRA1, catalyzing histidine methylation of this zincophore to disrupt zinc acquisition-an essential micronutrient for fungal growth and virulence. This methylation-driven "nutritional sabotage" restricts C. albicans colonization and dissemination in vivo and also targets multidrug-resistant Candida auris, which retains PRA1. Clinically, reduced METTL9 levels in colonic mucosa from patients with inflammatory bowel disease correlate with increased C. albicans abundance, linking METTL9 to human antifungal mucosal homeostasis. Our findings reveal a host-derived, catalytic antifungal mechanism that bypasses conventional resistance pathways, establishing secreted methyltransferases as an arm of innate mucosal immunity.

黏膜免疫部署多种防御真菌病原体,但真菌耐药性的进化需要新的抗真菌策略。在这里,我们发现肠上皮细胞分泌宿主组氨酸甲基转移酶METTL9作为跨界的催化抗真菌效应物。蛋白质组学分析显示,暴露于白色念珠菌可诱导METTL9分泌到肠腔。细胞外METTL9直接结合真菌的锌清除蛋白PRA1,催化该锌载体的组氨酸甲基化,从而破坏锌的获取——锌是真菌生长和毒力所必需的微量营养素。这种甲基化驱动的“营养破坏”限制了白色念珠菌在体内的定植和传播,也针对保留PRA1的耐多药耳念珠菌。在临床上,炎症性肠病患者结肠黏膜中METTL9水平的降低与白色念珠菌丰度的增加相关,将METTL9与人类抗真菌粘膜稳态联系起来。我们的研究结果揭示了宿主衍生的催化抗真菌机制,该机制绕过传统的耐药途径,建立了分泌的甲基转移酶作为先天粘膜免疫的一个分支。
{"title":"A gut-secreted histidine methyltransferase enforces cross-kingdom catalytic antifungal defense.","authors":"Hong Bao, Chen Yang, Panrui Zhang, Jiayang Zhang, Siyao Fang, Alin Yang, Zhentao Yang, Siwen Wang, Si Chen, Xuebiao Yao, Kaiguang Zhang, Shu Zhu, Dan Cao, Wen Pan","doi":"10.1016/j.chom.2025.11.015","DOIUrl":"10.1016/j.chom.2025.11.015","url":null,"abstract":"<p><p>Mucosal immunity deploys diverse defenses against fungal pathogens, yet the evolution of fungal resistance demands new antifungal strategies. Here, we uncover that intestinal epithelial cells secrete the host histidine methyltransferase METTL9 as a cross-kingdom, catalytic antifungal effector. Proteomic profiling revealed that exposure to Candida albicans induces robust METTL9 secretion into the intestinal lumen. Extracellular METTL9 directly binds the fungal zinc-scavenging protein PRA1, catalyzing histidine methylation of this zincophore to disrupt zinc acquisition-an essential micronutrient for fungal growth and virulence. This methylation-driven \"nutritional sabotage\" restricts C. albicans colonization and dissemination in vivo and also targets multidrug-resistant Candida auris, which retains PRA1. Clinically, reduced METTL9 levels in colonic mucosa from patients with inflammatory bowel disease correlate with increased C. albicans abundance, linking METTL9 to human antifungal mucosal homeostasis. Our findings reveal a host-derived, catalytic antifungal mechanism that bypasses conventional resistance pathways, establishing secreted methyltransferases as an arm of innate mucosal immunity.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":" ","pages":"131-148.e9"},"PeriodicalIF":18.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A CLOCK-targeting lncRNA induces trained immunity against tuberculosis. 一种以时钟为目标的lncRNA诱导对结核病的训练免疫。
IF 18.7 Pub Date : 2026-01-14 Epub Date: 2025-12-30 DOI: 10.1016/j.chom.2025.12.002
Shanshan Yu, Qiyao Chai, Zhe Lu, Changgen Qiu, Yanzhao Zhong, Yiru Wang, Zehui Lei, Lihua Qiang, Yingxu Fang, Xinwen Zhang, Bingxi Li, Mengqiu Gao, Lingqiang Zhang, Gong Cheng, Jing Wang, Cui Hua Liu, Yu Pang

Trained immunity confers innate immune memory via metabolic and epigenetic reprogramming, yet the intercellular mediators regulating this process in host defense remain largely elusive. Here, through plasma exosomal profiling of tuberculosis (TB)-resistant individuals, we identify a trained immunity-inducing long non-coding RNA (lncRNA), termed tuberculosisresister-derived CLOCK regulator 1 (TRCR1). Mechanistically, exosome-derived TRCR1 collaborates with the RNA-binding protein FXR2 to stabilize CLOCK mRNA by forming lncRNA-protein-mRNA complexes in monocytes, thus enhancing circadian regulator CLOCK expression and promoting CLOCK-mediated histone H3 acetylation (K9/K14) at immune gene promoters, ultimately establishing epigenetic memory-mediated antimicrobial activity. We further reveal that Mycobacterium tuberculosis (Mtb)-secreted protein MPT53 induces lung epithelial cells to release TRCR1-enriched exosomes. In mice, TRCR1 training strengthens host anti-Mtb immunity and improves Bacille Calmette-Guérin (BCG) vaccine efficacy. Collectively, our findings unveil an intercellular TRCR1-FXR2-CLOCK axis driving trained immunity at the lung-systemic immune interface, providing a strategy for refining BCG vaccination and preventing infectious diseases.

经过训练的免疫通过代谢和表观遗传重编程赋予先天免疫记忆,然而在宿主防御中调节这一过程的细胞间介质在很大程度上仍然难以捉摸。通过对结核病(TB)耐药个体的血浆外泌体谱分析,我们鉴定出一种经过训练的免疫诱导长链非编码RNA (lncRNA),称为结核病耐药源性时钟调节因子1 (TRCR1)。机制上,外泌体衍生的TRCR1与rna结合蛋白FXR2合作,通过在单核细胞中形成lncrna -蛋白-mRNA复合物来稳定CLOCK mRNA,从而增强昼夜节律调节因子CLOCK的表达,促进CLOCK介导的免疫基因启动子组蛋白H3乙酰化(K9/K14),最终建立表观遗传记忆介导的抗菌活性。我们进一步发现结核分枝杆菌(Mtb)分泌的蛋白MPT53诱导肺上皮细胞释放富含trcr1的外泌体。在小鼠实验中,TRCR1训练增强宿主抗结核免疫并提高卡介苗(Bacille calmette - gusamrin, BCG)疫苗的效力。总之,我们的发现揭示了细胞间TRCR1-FXR2-CLOCK轴在肺-系统免疫界面驱动训练免疫,为改进卡介苗接种和预防传染病提供了一种策略。
{"title":"A CLOCK-targeting lncRNA induces trained immunity against tuberculosis.","authors":"Shanshan Yu, Qiyao Chai, Zhe Lu, Changgen Qiu, Yanzhao Zhong, Yiru Wang, Zehui Lei, Lihua Qiang, Yingxu Fang, Xinwen Zhang, Bingxi Li, Mengqiu Gao, Lingqiang Zhang, Gong Cheng, Jing Wang, Cui Hua Liu, Yu Pang","doi":"10.1016/j.chom.2025.12.002","DOIUrl":"10.1016/j.chom.2025.12.002","url":null,"abstract":"<p><p>Trained immunity confers innate immune memory via metabolic and epigenetic reprogramming, yet the intercellular mediators regulating this process in host defense remain largely elusive. Here, through plasma exosomal profiling of tuberculosis (TB)-resistant individuals, we identify a trained immunity-inducing long non-coding RNA (lncRNA), termed tuberculosisresister-derived CLOCK regulator 1 (TRCR1). Mechanistically, exosome-derived TRCR1 collaborates with the RNA-binding protein FXR2 to stabilize CLOCK mRNA by forming lncRNA-protein-mRNA complexes in monocytes, thus enhancing circadian regulator CLOCK expression and promoting CLOCK-mediated histone H3 acetylation (K9/K14) at immune gene promoters, ultimately establishing epigenetic memory-mediated antimicrobial activity. We further reveal that Mycobacterium tuberculosis (Mtb)-secreted protein MPT53 induces lung epithelial cells to release TRCR1-enriched exosomes. In mice, TRCR1 training strengthens host anti-Mtb immunity and improves Bacille Calmette-Guérin (BCG) vaccine efficacy. Collectively, our findings unveil an intercellular TRCR1-FXR2-CLOCK axis driving trained immunity at the lung-systemic immune interface, providing a strategy for refining BCG vaccination and preventing infectious diseases.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":" ","pages":"68-85.e13"},"PeriodicalIF":18.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145879362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The yin and yang of bacterial Asn in tumor biology. 细菌Asn在肿瘤生物学中的阴阳作用。
IF 18.7 Pub Date : 2026-01-14 DOI: 10.1016/j.chom.2025.12.011
Lior Lobel

In this issue of Cell Host & Microbe, Qiao et al. show that Bacteroides asparaginase reshapes anti-tumor immunity. When bacteria deplete asparagine, CD8⁺ T cells lose stemness and effector capacity, promoting tumor progression and weakening anti-PD-1 therapy. Deleting asparaginase restores asparagine to the tumor, enhancing anti-tumor immunity and immunotherapy.

在本期的《细胞宿主与微生物》中,Qiao等人发现天冬酰胺杆菌酶重塑了抗肿瘤免疫。当细菌耗尽天冬酰胺时,CD8 + T细胞失去干性和效应能力,促进肿瘤进展,减弱抗pd -1治疗。去除天冬酰胺酶可使天冬酰胺恢复到肿瘤中,增强抗肿瘤免疫和免疫治疗。
{"title":"The yin and yang of bacterial Asn in tumor biology.","authors":"Lior Lobel","doi":"10.1016/j.chom.2025.12.011","DOIUrl":"https://doi.org/10.1016/j.chom.2025.12.011","url":null,"abstract":"<p><p>In this issue of Cell Host & Microbe, Qiao et al. show that Bacteroides asparaginase reshapes anti-tumor immunity. When bacteria deplete asparagine, CD8⁺ T cells lose stemness and effector capacity, promoting tumor progression and weakening anti-PD-1 therapy. Deleting asparaginase restores asparagine to the tumor, enhancing anti-tumor immunity and immunotherapy.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":"34 1","pages":"7-8"},"PeriodicalIF":18.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145992223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-specific bidirectional links between the maternal microbiome, milk composition, and infant gut microbiota. 母体微生物群、牛奶成分和婴儿肠道微生物群之间的时间特异性双向联系。
IF 18.7 Pub Date : 2026-01-14 Epub Date: 2025-12-17 DOI: 10.1016/j.chom.2025.11.014
Lishi Deng, Kelsey Fehr, Laeticia Celine Toe, Lindsay H Allen, Lars Bode, Daniela Hampel, Melissa B Manus, Andrew Mertens, Bianca Robertson, Chloe Yonemitsu, Bruno De Meulenaer, Carl Lachat, Justin L Sonnenburg, Meghan B Azad, Trenton Dailey-Chwalibóg

Early-life gut microbiome development is shaped by complex maternal and nutritional influences, yet the temporal and directional structure of these interactions remains unclear. In a longitudinal study of 152 mother-infant dyads in rural Burkina Faso, we examine how maternal gut and milk microbiomes, alongside milk components, influence infant gut microbiome development during the first 6 months. At 1-2 months, the infant gut microbiome clusters into three types: Escherichia-dominated, Bifidobacterium-dominated, and a diverse, pathogen-prevalent profile, which become less distinct by 5-6 months. Early infant gut microbiomes associate with maternal prenatal gut microbiota and early milk microbiome and oligosaccharides, while later variation links to other milk nutrients. Furthermore, early infant gut profiles predict subsequent milk composition, suggesting potential bidirectional communication between infant needs and maternal lactational physiology. These findings offer insights into early-life microbial development and inform future mechanistic studies and microbiome-targeted interventions, particularly in low-resource settings.

生命早期肠道微生物群的发育受到复杂的母体和营养影响,但这些相互作用的时间和方向结构尚不清楚。在一项对布基纳法索农村152对母婴进行的纵向研究中,我们研究了母亲肠道和牛奶微生物群以及牛奶成分如何影响婴儿前6个月肠道微生物群的发育。在1-2个月时,婴儿肠道微生物群分为三种类型:埃希氏菌为主,双歧杆菌为主,以及多种多样的病原体流行谱,到5-6个月时变得不那么明显。早期婴儿肠道微生物群与母体产前肠道微生物群、早期乳汁微生物群和低聚糖有关,而后期的变异与其他乳汁营养物质有关。此外,早期婴儿肠道特征可以预测随后的牛奶成分,这表明婴儿需求和母亲哺乳生理之间存在潜在的双向交流。这些发现为早期生命微生物发育提供了见解,并为未来的机制研究和微生物组靶向干预提供了信息,特别是在资源匮乏的环境中。
{"title":"Time-specific bidirectional links between the maternal microbiome, milk composition, and infant gut microbiota.","authors":"Lishi Deng, Kelsey Fehr, Laeticia Celine Toe, Lindsay H Allen, Lars Bode, Daniela Hampel, Melissa B Manus, Andrew Mertens, Bianca Robertson, Chloe Yonemitsu, Bruno De Meulenaer, Carl Lachat, Justin L Sonnenburg, Meghan B Azad, Trenton Dailey-Chwalibóg","doi":"10.1016/j.chom.2025.11.014","DOIUrl":"10.1016/j.chom.2025.11.014","url":null,"abstract":"<p><p>Early-life gut microbiome development is shaped by complex maternal and nutritional influences, yet the temporal and directional structure of these interactions remains unclear. In a longitudinal study of 152 mother-infant dyads in rural Burkina Faso, we examine how maternal gut and milk microbiomes, alongside milk components, influence infant gut microbiome development during the first 6 months. At 1-2 months, the infant gut microbiome clusters into three types: Escherichia-dominated, Bifidobacterium-dominated, and a diverse, pathogen-prevalent profile, which become less distinct by 5-6 months. Early infant gut microbiomes associate with maternal prenatal gut microbiota and early milk microbiome and oligosaccharides, while later variation links to other milk nutrients. Furthermore, early infant gut profiles predict subsequent milk composition, suggesting potential bidirectional communication between infant needs and maternal lactational physiology. These findings offer insights into early-life microbial development and inform future mechanistic studies and microbiome-targeted interventions, particularly in low-resource settings.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":" ","pages":"149-166.e5"},"PeriodicalIF":18.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145784013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
METTL9 tests Candida's mettle by limiting metal acquisition. METTL9通过限制金属获取来测试念珠菌的勇气。
IF 18.7 Pub Date : 2026-01-14 DOI: 10.1016/j.chom.2025.12.010
Raminder Singh, Manuela Raffatellu

The gut mucosal immune system orchestrates diverse defense mechanisms against fungal pathogens. In this issue of Cell Host & Microbe, Bao and Yang et al.1 demonstrate that intestinal epithelial cells secrete an anti-zincophore protein, METTL9, that limits fungal access to the essential micronutrient zinc, thereby diminishing colonization and growth.

肠道黏膜免疫系统协调多种防御机制对抗真菌病原体。在这一期的《细胞宿主与微生物》中,Bao和Yang等人1证明肠上皮细胞分泌一种抗锌载体蛋白METTL9,该蛋白限制了真菌对必需微量营养素锌的获取,从而减少了定植和生长。
{"title":"METTL9 tests Candida's mettle by limiting metal acquisition.","authors":"Raminder Singh, Manuela Raffatellu","doi":"10.1016/j.chom.2025.12.010","DOIUrl":"https://doi.org/10.1016/j.chom.2025.12.010","url":null,"abstract":"<p><p>The gut mucosal immune system orchestrates diverse defense mechanisms against fungal pathogens. In this issue of Cell Host & Microbe, Bao and Yang et al.<sup>1</sup> demonstrate that intestinal epithelial cells secrete an anti-zincophore protein, METTL9, that limits fungal access to the essential micronutrient zinc, thereby diminishing colonization and growth.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":"34 1","pages":"9-11"},"PeriodicalIF":18.7,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145992239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial effector OspB hijacks apoptosis through peptide-bond recombination of BH3 domain proteins. 细菌效应物OspB通过BH3结构域蛋白的肽键重组劫持细胞凋亡。
IF 18.7 Pub Date : 2025-11-12 Epub Date: 2025-10-23 DOI: 10.1016/j.chom.2025.09.018
Yue Shao, Dandan Yang, Xinguang Gao, Minghui Wang, Liyuan Meng, Tianye Niu, Li Xia, Jingjin Ding, Feng Shao, Yue Xu

Apoptosis is a defense response involving key players, including BH3-only proteins that engage BCL-2 family proteins BAX and BAK, initiating mitochondrial outer membrane permeabilization and caspase activation. However, Shigella flexneri subverts these death pathways to promote infection. Here, we identify the Shigella type III secretion system effector OspB as an enzyme that suppresses apoptosis by targeting BAX and BAK. OspB recognizes BAX/BAK in complex with BH3-only activators, notably tBID, and catalyzes a peptide-bond recombination between their BH3 domains. This reaction generates chimeric proteins comprising the N-terminal BH3-only segment fused to the C-terminal region of BAX or BAK, irreversibly inhibiting protein function and thus mitochondrial outer membrane permeabilization and apoptosis. OspB-mediated apoptosis inhibition enhances S. flexneri virulence in vivo. Homologous effectors with similar catalytic activity are conserved across various bacterial species. These findings reveal a bacterial strategy for apoptosis inhibition via remodeling of BCL-2 family proteins, offering avenues for therapeutic intervention.

凋亡是一种涉及关键参与者的防御反应,包括BH3-only蛋白,它与BCL-2家族蛋白BAX和BAK结合,启动线粒体外膜渗透和caspase激活。然而,福氏志贺氏菌破坏这些死亡途径,促进感染。在这里,我们发现志贺氏菌III型分泌系统效应物OspB是一种通过靶向BAX和BAK抑制细胞凋亡的酶。OspB识别BAX/BAK与BH3-only激活剂(特别是tBID)的复合物,并催化BH3结构域之间的肽键重组。该反应产生的嵌合蛋白包括n端BH3-only片段融合到BAX或BAK的c端区域,不可逆地抑制蛋白质功能,从而抑制线粒体外膜渗透和凋亡。ospb介导的细胞凋亡抑制增强弗氏梭菌体内毒力。具有相似催化活性的同源效应物在各种细菌中都是保守的。这些发现揭示了细菌通过重塑BCL-2家族蛋白来抑制细胞凋亡的策略,为治疗干预提供了途径。
{"title":"Bacterial effector OspB hijacks apoptosis through peptide-bond recombination of BH3 domain proteins.","authors":"Yue Shao, Dandan Yang, Xinguang Gao, Minghui Wang, Liyuan Meng, Tianye Niu, Li Xia, Jingjin Ding, Feng Shao, Yue Xu","doi":"10.1016/j.chom.2025.09.018","DOIUrl":"10.1016/j.chom.2025.09.018","url":null,"abstract":"<p><p>Apoptosis is a defense response involving key players, including BH3-only proteins that engage BCL-2 family proteins BAX and BAK, initiating mitochondrial outer membrane permeabilization and caspase activation. However, Shigella flexneri subverts these death pathways to promote infection. Here, we identify the Shigella type III secretion system effector OspB as an enzyme that suppresses apoptosis by targeting BAX and BAK. OspB recognizes BAX/BAK in complex with BH3-only activators, notably tBID, and catalyzes a peptide-bond recombination between their BH3 domains. This reaction generates chimeric proteins comprising the N-terminal BH3-only segment fused to the C-terminal region of BAX or BAK, irreversibly inhibiting protein function and thus mitochondrial outer membrane permeabilization and apoptosis. OspB-mediated apoptosis inhibition enhances S. flexneri virulence in vivo. Homologous effectors with similar catalytic activity are conserved across various bacterial species. These findings reveal a bacterial strategy for apoptosis inhibition via remodeling of BCL-2 family proteins, offering avenues for therapeutic intervention.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":" ","pages":"1886-1900.e9"},"PeriodicalIF":18.7,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145369078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gut bacteria metabolize natural and synthetic steroid hormones via the reductive OsrABC pathway. 肠道细菌通过还原OsrABC途径代谢天然和合成类固醇激素。
IF 18.7 Pub Date : 2025-11-12 Epub Date: 2025-10-20 DOI: 10.1016/j.chom.2025.09.014
Christian Jacoby, Kaylie Scorza, Lia Ecker, Paola Nol Bernardino, Alexander S Little, Mary McMillin, Ramanujam Ramaswamy, Anitha Sundararajan, Ashley M Sidebottom, Huaiying Lin, Keith Dufault-Thompson, Brantley Hall, Xiaofang Jiang, Samuel H Light

Steroid hormone metabolism by the gut microbiome affects host physiology, however, the underlying microbial pathways remain incompletely understood. Here, we isolate a gut bacterial species, which we designate Clostridium steroidoreducens, that reduces cortisol and related steroid hormones to 3β,5β-tetrahydrosteroid products. Through transcriptomics and enzymatic discovery, we establish the C. steroidoreducens OsrABC steroid hormone pathway. OsrA is a 3-oxo-Δ1-steroid hormone reductase that targets synthetic glucocorticoids, including prednisolone-a frontline Crohn's disease therapy. OsrB is a 3-oxo-Δ⁴-steroid reductase that converts steroid hormones to 5β-dihydrosteroid intermediates, which OsrC subsequently reduces to 3β,5β-tetrahydro products. Homologs of osrA and osrB predict steroid-reducing activity across gut bacteria and are enriched in metagenomes of Crohn's disease patients. Consistent with a role in modulating drug efficacy, C. steroidoreducens colonization decreases prednisolone bioavailability in gnotobiotic mice. These findings thus define a previously unrecognized pathway for microbial steroid hormone inactivation and establish a mechanistic basis for bacterial interference with anti-inflammatory therapies.

肠道微生物组的类固醇激素代谢影响宿主生理,然而,潜在的微生物途径仍然不完全清楚。在这里,我们分离出一种肠道细菌,我们将其命名为甾体还原梭状芽胞杆菌,它可以将皮质醇和相关类固醇激素减少为3β,5β-四氢类固醇产物。通过转录组学和酶的发现,我们建立了C. steroidoreducens OsrABC类固醇激素通路。OsrA是一种3-oxo-Δ1-steroid激素还原酶,靶向合成糖皮质激素,包括强的松龙-一种克罗恩病的一线治疗方法。OsrB是一种3-氧-Δ⁴类固醇还原酶,可将类固醇激素转化为5β-二氢类固醇中间体,OsrC随后将其还原为3β,5β-四氢产物。osrA和osrB的同源物预测肠道细菌中的类固醇减少活性,并在克罗恩病患者的宏基因组中富集。与调节药物功效的作用一致,C. steroidoreducens定植降低了非生物小鼠的强的松龙生物利用度。因此,这些发现确定了一个以前未被认识的微生物类固醇激素失活途径,并建立了细菌干扰抗炎治疗的机制基础。
{"title":"Gut bacteria metabolize natural and synthetic steroid hormones via the reductive OsrABC pathway.","authors":"Christian Jacoby, Kaylie Scorza, Lia Ecker, Paola Nol Bernardino, Alexander S Little, Mary McMillin, Ramanujam Ramaswamy, Anitha Sundararajan, Ashley M Sidebottom, Huaiying Lin, Keith Dufault-Thompson, Brantley Hall, Xiaofang Jiang, Samuel H Light","doi":"10.1016/j.chom.2025.09.014","DOIUrl":"10.1016/j.chom.2025.09.014","url":null,"abstract":"<p><p>Steroid hormone metabolism by the gut microbiome affects host physiology, however, the underlying microbial pathways remain incompletely understood. Here, we isolate a gut bacterial species, which we designate Clostridium steroidoreducens, that reduces cortisol and related steroid hormones to 3β,5β-tetrahydrosteroid products. Through transcriptomics and enzymatic discovery, we establish the C. steroidoreducens OsrABC steroid hormone pathway. OsrA is a 3-oxo-Δ<sup>1</sup>-steroid hormone reductase that targets synthetic glucocorticoids, including prednisolone-a frontline Crohn's disease therapy. OsrB is a 3-oxo-Δ⁴-steroid reductase that converts steroid hormones to 5β-dihydrosteroid intermediates, which OsrC subsequently reduces to 3β,5β-tetrahydro products. Homologs of osrA and osrB predict steroid-reducing activity across gut bacteria and are enriched in metagenomes of Crohn's disease patients. Consistent with a role in modulating drug efficacy, C. steroidoreducens colonization decreases prednisolone bioavailability in gnotobiotic mice. These findings thus define a previously unrecognized pathway for microbial steroid hormone inactivation and establish a mechanistic basis for bacterial interference with anti-inflammatory therapies.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":" ","pages":"1873-1885.e7"},"PeriodicalIF":18.7,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145350446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetically engineered plant endophytes broaden effector-triggered immunity. 基因工程植物内生菌扩大效应触发的免疫。
IF 18.7 Pub Date : 2025-11-12 Epub Date: 2025-10-21 DOI: 10.1016/j.chom.2025.09.017
Menglu Hou, Sitao Zhu, Ruixia Niu, Guitao Zhong, Zhao Wang, Ming Luo, Jiawei Long, Ruoying Yang, Zhijuan Tang, Shaosong Shi, Guoyong Xu

Plants utilize nucleotide-binding leucine-rich repeat (NLR) receptors to detect pathogen effectors and initiate a potent immune response called effector-triggered immunity (ETI). However, this defense relies on the presence of recognizable effectors in pathogens, which is often unpredictable during natural infections. To address this, we engineer plant endophytes, termed Sentinels, to heterologously express effectors that are recognized by the host's corresponding NLR. Using an OxyR regulatory circuit, effector expression is activated by reactive oxygen species-a common signal during pathogen infection. This circuit enables ETI activation against pathogens without recognizable effectors. Colonization by the sentinel bacterium slightly alters microbial abundance but maintains overall microbiota diversity and normal plant growth. We demonstrate the strategy's versatility by testing distinct effector-NLR recognition pairs in various plants against a range of pathogens. This strategy exploits the microbiota-host-pathogen interaction network to rapidly engineer a spectrum-expanded ETI, complementing synthetic microbial consortia for plant defense.

植物利用核苷酸结合的富含亮氨酸重复序列(NLR)受体来检测病原体效应物,并启动一种被称为效应触发免疫(ETI)的有效免疫反应。然而,这种防御依赖于病原体中可识别的效应物的存在,这在自然感染期间通常是不可预测的。为了解决这个问题,我们设计了植物内生菌,称为哨兵,以异源表达被宿主相应NLR识别的效应物。利用一个OxyR调控回路,效应表达被活性氧激活,这是病原体感染过程中的一个常见信号。这种电路使ETI在没有可识别的效应物的情况下激活病原体。哨兵菌的定植稍微改变了微生物的丰度,但维持了总体微生物群的多样性和正常的植物生长。我们通过测试不同植物中针对一系列病原体的不同效应- nlr识别对来证明该策略的多功能性。该策略利用微生物-宿主-病原体相互作用网络来快速设计一个光谱扩展的ETI,补充了植物防御的合成微生物联盟。
{"title":"Genetically engineered plant endophytes broaden effector-triggered immunity.","authors":"Menglu Hou, Sitao Zhu, Ruixia Niu, Guitao Zhong, Zhao Wang, Ming Luo, Jiawei Long, Ruoying Yang, Zhijuan Tang, Shaosong Shi, Guoyong Xu","doi":"10.1016/j.chom.2025.09.017","DOIUrl":"10.1016/j.chom.2025.09.017","url":null,"abstract":"<p><p>Plants utilize nucleotide-binding leucine-rich repeat (NLR) receptors to detect pathogen effectors and initiate a potent immune response called effector-triggered immunity (ETI). However, this defense relies on the presence of recognizable effectors in pathogens, which is often unpredictable during natural infections. To address this, we engineer plant endophytes, termed Sentinels, to heterologously express effectors that are recognized by the host's corresponding NLR. Using an OxyR regulatory circuit, effector expression is activated by reactive oxygen species-a common signal during pathogen infection. This circuit enables ETI activation against pathogens without recognizable effectors. Colonization by the sentinel bacterium slightly alters microbial abundance but maintains overall microbiota diversity and normal plant growth. We demonstrate the strategy's versatility by testing distinct effector-NLR recognition pairs in various plants against a range of pathogens. This strategy exploits the microbiota-host-pathogen interaction network to rapidly engineer a spectrum-expanded ETI, complementing synthetic microbial consortia for plant defense.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":" ","pages":"1945-1959.e6"},"PeriodicalIF":18.7,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145350540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Run to boost your gut microbiome that can help fight cancer. 跑步可以增强肠道微生物群,帮助对抗癌症。
IF 18.7 Pub Date : 2025-09-10 DOI: 10.1016/j.chom.2025.07.022
Shuo Wang

Exercise is beneficial to physical health, and it also helps to promote efficacy following immunotherapy. In a recent paper published in Cell, Phelps et al. identified that the gut microbiota plays a critical role in how exercise improves checkpoint inhibitor efficacy in melanoma.

运动有利于身体健康,也有助于提高免疫治疗后的疗效。在最近发表在Cell杂志上的一篇论文中,Phelps等人发现,肠道微生物群在运动如何提高黑色素瘤的检查点抑制剂疗效方面起着关键作用。
{"title":"Run to boost your gut microbiome that can help fight cancer.","authors":"Shuo Wang","doi":"10.1016/j.chom.2025.07.022","DOIUrl":"10.1016/j.chom.2025.07.022","url":null,"abstract":"<p><p>Exercise is beneficial to physical health, and it also helps to promote efficacy following immunotherapy. In a recent paper published in Cell, Phelps et al. identified that the gut microbiota plays a critical role in how exercise improves checkpoint inhibitor efficacy in melanoma.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":"33 9","pages":"1464-1465"},"PeriodicalIF":18.7,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145042610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host-specific microbiome and genomic signatures in Bifidobacterium reveal co-evolutionary and functional adaptations across diverse animal hosts. 双歧杆菌的宿主特异性微生物组和基因组特征揭示了不同动物宿主的共同进化和功能适应。
IF 18.7 Pub Date : 2025-09-10 DOI: 10.1016/j.chom.2025.08.008
Magdalena Kujawska, David Seki, Lisa Chalklen, Jennifer Malsom, Raymond Kiu, Sara Goatcher, Ioulios Christoforou, Suparna Mitra, Lucy Crouch, Lindsay J Hall

Animals harbor divergent microbiota, including various Bifidobacterium species, yet their evolutionary relationships and functional adaptations remain understudied. Using samples from insects, reptiles, birds, and mammals, we integrated taxonomic, genomic, and predicted functional annotations to uncover how Bifidobacterium adapts to host-specific environments. Host phylogeny is a major determinant of gut microbial composition. Distinct microbiota in mammalian and avian hosts reflect evolutionary adaptations to dietary niches, such as carnivory, and ecological pressures. At a strain-resolved level, Bifidobacterium and their hosts exhibit strong co-phylogenetic associations, driven by vertical transmission and dietary selection. Functional analyses highlight striking host-specific adaptations in Bifidobacterium, particularly in carbohydrate metabolism and oxidative stress responses. In mammals, Bifidobacterium strains are enriched in glycoside hydrolases tailored to complex carbohydrate-rich diets, including multi-domain GH13_28 α-amylases associated with degradation of resistant starch. Together, these findings deepen our understanding of host-microbe co-evolution and the critical role of microbiota in shaping animal health and adaptation.

动物拥有不同的微生物群,包括各种双歧杆菌,但它们的进化关系和功能适应仍未得到充分研究。利用来自昆虫、爬行动物、鸟类和哺乳动物的样本,我们整合了分类学、基因组学和预测功能注释,以揭示双歧杆菌如何适应宿主特异性环境。宿主系统发育是肠道微生物组成的主要决定因素。哺乳动物和鸟类宿主中不同的微生物群反映了对饮食生态位(如食肉性)和生态压力的进化适应。在菌株解决水平上,双歧杆菌及其宿主在垂直传播和饮食选择的驱动下表现出强烈的共系统发育关联。功能分析强调双歧杆菌显著的宿主特异性适应,特别是在碳水化合物代谢和氧化应激反应方面。在哺乳动物中,双歧杆菌菌株富含糖苷水解酶,以适应复杂的富含碳水化合物的饮食,包括与抗性淀粉降解相关的多域GH13_28 α-淀粉酶。总之,这些发现加深了我们对宿主-微生物共同进化以及微生物群在塑造动物健康和适应方面的关键作用的理解。
{"title":"Host-specific microbiome and genomic signatures in Bifidobacterium reveal co-evolutionary and functional adaptations across diverse animal hosts.","authors":"Magdalena Kujawska, David Seki, Lisa Chalklen, Jennifer Malsom, Raymond Kiu, Sara Goatcher, Ioulios Christoforou, Suparna Mitra, Lucy Crouch, Lindsay J Hall","doi":"10.1016/j.chom.2025.08.008","DOIUrl":"10.1016/j.chom.2025.08.008","url":null,"abstract":"<p><p>Animals harbor divergent microbiota, including various Bifidobacterium species, yet their evolutionary relationships and functional adaptations remain understudied. Using samples from insects, reptiles, birds, and mammals, we integrated taxonomic, genomic, and predicted functional annotations to uncover how Bifidobacterium adapts to host-specific environments. Host phylogeny is a major determinant of gut microbial composition. Distinct microbiota in mammalian and avian hosts reflect evolutionary adaptations to dietary niches, such as carnivory, and ecological pressures. At a strain-resolved level, Bifidobacterium and their hosts exhibit strong co-phylogenetic associations, driven by vertical transmission and dietary selection. Functional analyses highlight striking host-specific adaptations in Bifidobacterium, particularly in carbohydrate metabolism and oxidative stress responses. In mammals, Bifidobacterium strains are enriched in glycoside hydrolases tailored to complex carbohydrate-rich diets, including multi-domain GH13_28 α-amylases associated with degradation of resistant starch. Together, these findings deepen our understanding of host-microbe co-evolution and the critical role of microbiota in shaping animal health and adaptation.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":"33 9","pages":"1502-1517.e13"},"PeriodicalIF":18.7,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145042537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell host & microbe
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1