首页 > 最新文献

Ecology最新文献

英文 中文
Multiple resiliency metrics reveal complementary drivers of ecosystem persistence: An application to kelp forest systems. 多种复原力指标揭示生态系统持续性的互补驱动因素:海藻森林系统的应用。
Pub Date : 2024-10-27 DOI: 10.1002/ecy.4453
Jorge Arroyo-Esquivel, Riley Adams, Sarah Gravem, Ross Whippo, Zachary Randell, Jason Hodin, Aaron W E Galloway, Brian Gaylord, Marissa L Baskett

Human-caused global change produces biotic and abiotic conditions that increase the uncertainty and risk of failure of restoration efforts. A focus of managing for resiliency, that is, the ability of the system to respond to disturbance, has the potential to reduce this uncertainty and risk. However, identifying what drives resiliency might depend on how one measures it. An example of a system where identifying how the drivers of different aspects of resiliency can inform restoration under climate change is the northern coast of California, where kelp experienced a decline in coverage of over 95% due to the combination of an intense marine heat wave and the functional extinction of the primary predator of the kelp-grazing purple sea urchin, the sunflower sea star. Although restoration efforts focused on urchin removal and kelp reintroduction in this system are ongoing, the question of how to increase the resiliency of this system to future marine heat waves remains open. In this paper, we introduce a dynamical model that describes a tritrophic food chain of kelp, purple urchins, and a purple urchin predator such as the sunflower sea star. We run a global sensitivity analysis of three different resiliency metrics (recovery likelihood, recovery rate, and resistance to disturbance) of the kelp forest to identify their ecological drivers. We find that each metric depends the most on a unique set of drivers: Recovery likelihood depends the most on live and drift kelp production, recovery rate depends the most on urchin production and feedbacks that determine urchin grazing on live kelp, and resistance depends the most on feedbacks that determine predator consumption of urchins. Therefore, an understanding of the potential role of predator reintroduction or recovery in kelp systems relies on a comprehensive approach to measuring resiliency.

人类造成的全球变化所产生的生物和非生物条件增加了恢复工作的不确定性和失败风险。注重恢复能力的管理,即系统应对干扰的能力,有可能减少这种不确定性和风险。然而,如何确定恢复能力的驱动因素可能取决于如何衡量它。加利福尼亚州北部海岸就是一个例子,在那里,由于强烈的海洋热浪和啃食海藻的紫色海胆的主要捕食者向日葵海星的功能性灭绝,海藻的覆盖率下降了 95% 以上。尽管在该系统中以清除海胆和重新引入海藻为重点的恢复工作正在进行中,但如何提高该系统对未来海洋热浪的适应能力仍是一个未决问题。在本文中,我们介绍了一个动态模型,该模型描述了由海带、紫海胆和紫海胆捕食者(如向日葵海星)组成的三营养食物链。我们对海藻森林三种不同的恢复力指标(恢复可能性、恢复率和抗干扰能力)进行了全局敏感性分析,以确定其生态驱动因素。我们发现,每个指标都最依赖于一组独特的驱动因素:恢复可能性最大的因素是活海带和漂流海带的产量,恢复率最大的因素是海胆产量和决定海胆吃活海带的反馈,而抗扰性最大的因素是决定捕食者消耗海胆的反馈。因此,要了解捕食者重新引入或恢复在海带系统中的潜在作用,必须采用综合方法来衡量恢复力。
{"title":"Multiple resiliency metrics reveal complementary drivers of ecosystem persistence: An application to kelp forest systems.","authors":"Jorge Arroyo-Esquivel, Riley Adams, Sarah Gravem, Ross Whippo, Zachary Randell, Jason Hodin, Aaron W E Galloway, Brian Gaylord, Marissa L Baskett","doi":"10.1002/ecy.4453","DOIUrl":"https://doi.org/10.1002/ecy.4453","url":null,"abstract":"<p><p>Human-caused global change produces biotic and abiotic conditions that increase the uncertainty and risk of failure of restoration efforts. A focus of managing for resiliency, that is, the ability of the system to respond to disturbance, has the potential to reduce this uncertainty and risk. However, identifying what drives resiliency might depend on how one measures it. An example of a system where identifying how the drivers of different aspects of resiliency can inform restoration under climate change is the northern coast of California, where kelp experienced a decline in coverage of over 95% due to the combination of an intense marine heat wave and the functional extinction of the primary predator of the kelp-grazing purple sea urchin, the sunflower sea star. Although restoration efforts focused on urchin removal and kelp reintroduction in this system are ongoing, the question of how to increase the resiliency of this system to future marine heat waves remains open. In this paper, we introduce a dynamical model that describes a tritrophic food chain of kelp, purple urchins, and a purple urchin predator such as the sunflower sea star. We run a global sensitivity analysis of three different resiliency metrics (recovery likelihood, recovery rate, and resistance to disturbance) of the kelp forest to identify their ecological drivers. We find that each metric depends the most on a unique set of drivers: Recovery likelihood depends the most on live and drift kelp production, recovery rate depends the most on urchin production and feedbacks that determine urchin grazing on live kelp, and resistance depends the most on feedbacks that determine predator consumption of urchins. Therefore, an understanding of the potential role of predator reintroduction or recovery in kelp systems relies on a comprehensive approach to measuring resiliency.</p>","PeriodicalId":93986,"journal":{"name":"Ecology","volume":" ","pages":"e4453"},"PeriodicalIF":0.0,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Attenuated asymmetry of above- versus belowground stoichiometry to a decadal nitrogen addition during stand development. 在林木生长过程中,地上与地下的化学计量对十年期氮添加量的不对称影响减弱。
Pub Date : 2024-10-27 DOI: 10.1002/ecy.4458
Shijie Ning, Xinru He, Tian Ma, Tao Yan

Deciphering the linkage between ecological stoichiometry and ecosystem functioning under anthropogenic nitrogen (N) deposition is critical for understanding the impact of afforestation on terrestrial carbon (C) sequestration. However, the specific changes in above- versus belowground stoichiometric asymmetry with stand age in response to long-term N addition remain poorly understood. In this study, we investigated changes in stoichiometry following a decadal addition of three levels of N (control, no N addition; low N addition, 20 kg N ha-1 year-1; high N addition, 50 kg N ha-1 year-1) in young, intermediate, and mature stands in three temperate larch plantations (Larix principis-rupprechtii) in North China. We found that low N addition had no impact on both above- (leaf and litter) and belowground (soil and microbe) stoichiometry. In contrast, high N addition resulted in significant asymmetry in above- versus belowground stoichiometry, which then diminished during stand development. Following 10 years of N inputs, the young and intermediate plantations transitioned from a state of relative N limitation to co-limitation by both N and phosphorus (P), whereas the mature plantation continued to experience relative N limitation. Conversely, soil microorganisms exhibited relative P limitation in all three plantations. Broader niche differentiation (N limitation for trees, but P limitation for microorganisms) under long-term N input may have been responsible for the faster attainment of stoichiometric homeostasis in mature plantations than in young plantations. Our findings provide stoichiometric-based insight into the operating mechanisms of large C sinks in young forests, particularly above- versus belowground C stock asymmetry, and highlight the need to consider the role of flexible stoichiometry when forecasting future forest C sinks.

解读人为氮(N)沉积条件下生态化学计量与生态系统功能之间的联系,对于理解植树造林对陆地碳(C)固存的影响至关重要。然而,人们对长期氮添加作用下地上与地下生态计量不对称随林龄的具体变化仍然知之甚少。在这项研究中,我们调查了华北地区三个温带落叶松人工林(Larix principis-rupprechtii)中幼龄、中龄和成熟林分在十年添加三种水平氮(对照,不添加氮;低氮添加,20 千克氮/公顷-年-1;高氮添加,50 千克氮/公顷-年-1)后生态计量的变化。我们发现,低氮添加量对地上(叶片和枯落物)和地下(土壤和微生物)的化学计量没有影响。与此相反,高氮添加量导致地上与地下的化学计量显著不对称,这种不对称在林分生长过程中逐渐减弱。经过 10 年的氮输入后,幼年和中期种植园从氮的相对限制状态过渡到氮和磷的共同限制状态,而成熟种植园则继续受到氮的相对限制。相反,在所有三个种植园中,土壤微生物都表现出相对的磷限制。在长期氮输入条件下,更广泛的生态位分化(树木受限于氮,而微生物受限于磷)可能是成熟种植园比年轻种植园更快实现化学计量平衡的原因。我们的研究结果以化学计量学为基础,深入揭示了幼林大型碳汇的运行机制,尤其是地上与地下碳储量的不对称,并强调了在预测未来森林碳汇时考虑灵活的化学计量学作用的必要性。
{"title":"Attenuated asymmetry of above- versus belowground stoichiometry to a decadal nitrogen addition during stand development.","authors":"Shijie Ning, Xinru He, Tian Ma, Tao Yan","doi":"10.1002/ecy.4458","DOIUrl":"https://doi.org/10.1002/ecy.4458","url":null,"abstract":"<p><p>Deciphering the linkage between ecological stoichiometry and ecosystem functioning under anthropogenic nitrogen (N) deposition is critical for understanding the impact of afforestation on terrestrial carbon (C) sequestration. However, the specific changes in above- versus belowground stoichiometric asymmetry with stand age in response to long-term N addition remain poorly understood. In this study, we investigated changes in stoichiometry following a decadal addition of three levels of N (control, no N addition; low N addition, 20 kg N ha<sup>-1</sup> year<sup>-1</sup>; high N addition, 50 kg N ha<sup>-1</sup> year<sup>-1</sup>) in young, intermediate, and mature stands in three temperate larch plantations (Larix principis-rupprechtii) in North China. We found that low N addition had no impact on both above- (leaf and litter) and belowground (soil and microbe) stoichiometry. In contrast, high N addition resulted in significant asymmetry in above- versus belowground stoichiometry, which then diminished during stand development. Following 10 years of N inputs, the young and intermediate plantations transitioned from a state of relative N limitation to co-limitation by both N and phosphorus (P), whereas the mature plantation continued to experience relative N limitation. Conversely, soil microorganisms exhibited relative P limitation in all three plantations. Broader niche differentiation (N limitation for trees, but P limitation for microorganisms) under long-term N input may have been responsible for the faster attainment of stoichiometric homeostasis in mature plantations than in young plantations. Our findings provide stoichiometric-based insight into the operating mechanisms of large C sinks in young forests, particularly above- versus belowground C stock asymmetry, and highlight the need to consider the role of flexible stoichiometry when forecasting future forest C sinks.</p>","PeriodicalId":93986,"journal":{"name":"Ecology","volume":" ","pages":"e4458"},"PeriodicalIF":0.0,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Icing-related injuries in polar bears (Ursus maritimus) at high latitudes. 高纬度地区北极熊(Ursus maritimus)与冰冻有关的伤害。
Pub Date : 2024-10-22 DOI: 10.1002/ecy.4435
Kristin L Laidre, Stephen N Atkinson
{"title":"Icing-related injuries in polar bears (Ursus maritimus) at high latitudes.","authors":"Kristin L Laidre, Stephen N Atkinson","doi":"10.1002/ecy.4435","DOIUrl":"https://doi.org/10.1002/ecy.4435","url":null,"abstract":"","PeriodicalId":93986,"journal":{"name":"Ecology","volume":" ","pages":"e4435"},"PeriodicalIF":0.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Territoriality 领土
Pub Date : 2020-03-25 DOI: 10.1093/obo/9780199830060-0230
A. Kamath
Territoriality is a foundational concept in animal behavior and behavioral ecology. Territoriality is commonly defined as “the defense of an area,” wherein the area being defended is known as the “territory.” Territoriality serves as a framework that allows animal behaviorists and behavioral ecologists to describe and hypothesize links among diverse aspects of animals’ biology. The many facets and functions of territoriality include the acquisition of food, nest sites, and shelter, space-use and movement behavior, and interactions with mates and competitors. Thus, because territoriality encompasses behaviors that directly determine individuals’ survival and reproduction (i.e., their fitness), it offers a powerful approach to understanding the evolution of animal behavior. Territoriality has been used to describe animal behavior for many centuries, particularly in avian systems; conversely, many advances in how biologists conceive of and use territoriality have arisen in research on birds. Operational definitions of territory fall broadly into two categories—those that focus on animals’ behavior and those that focus on their ecological relationships. That said, the question of how to conceive of territory has long been a subject of contention, with widely varied opinions on how the term should be defined and whether and how it is useful for understanding animal behavior. Discussions and critiques of territoriality, from not only animal behavior and behavioral ecology but also from the social sciences, help to contextualize and sharpen how we use the concept to understand the evolution of animal behavior. Technological and statistical advances continue to change the ways in which territories are mapped and quantified, with different methods available for taxa of different sizes, habitats, and life histories. Research on territoriality can be divided into two large domains based on the function served by territory—foraging and mating—but these two functions are intimately linked through the socioecological hypothesis that proposes a relationship between resource distributions and mating systems. This hypothesis has served to structure much research on territoriality in the last half-century or so. Finally, territoriality is pertinent not just to within-species interactions but also to between-species interactions and species coexistence, with implications for macroecological and macroevolutionary patterns and processes.
领地性是动物行为学和行为生态学的一个基本概念。领地性通常被定义为 "对一个区域的保卫",其中被保卫的区域被称为 "领地"。领地性是动物行为学家和行为生态学家描述和假设动物生物学不同方面之间联系的框架。领地性的许多方面和功能包括获取食物、巢穴和住所,空间利用和移动行为,以及与配偶和竞争者的互动。因此,由于领地性包含了直接决定个体生存和繁殖(即个体的适应性)的行为,它为理解动物行为的进化提供了一种强有力的方法。几个世纪以来,人们一直用领地性来描述动物行为,尤其是在鸟类系统中;相反,生物学家在如何构想和使用领地性方面取得的许多进展也是在对鸟类的研究中产生的。领地的操作性定义大致分为两类--侧重于动物行为的定义和侧重于动物生态关系的定义。尽管如此,如何看待领地这个问题一直以来都是一个争论不休的话题,对于如何定义领地这个术语,以及领地对于理解动物行为是否有用和如何有用等问题,人们众说纷纭。不仅是动物行为学和行为生态学,社会科学领域对领地性的讨论和批评也有助于我们理解和阐明如何使用这一概念来理解动物行为的进化。技术和统计方面的进步不断改变着绘制领地图和量化领地的方法,不同大小、栖息地和生活史的类群可以使用不同的方法。根据领地的功能--觅食和交配--对领地性的研究可分为两大领域,但这两种功能通过社会生态假说紧密联系在一起,社会生态假说提出了资源分布和交配系统之间的关系。在过去的半个多世纪里,这一假说为有关领地性的大量研究提供了理论基础。最后,领地性不仅关系到物种内部的相互作用,也关系到物种之间的相互作用和物种共存,对宏观生态学和宏观进化模式与过程具有影响。
{"title":"Territoriality","authors":"A. Kamath","doi":"10.1093/obo/9780199830060-0230","DOIUrl":"https://doi.org/10.1093/obo/9780199830060-0230","url":null,"abstract":"Territoriality is a foundational concept in animal behavior and behavioral ecology. Territoriality is commonly defined as “the defense of an area,” wherein the area being defended is known as the “territory.” Territoriality serves as a framework that allows animal behaviorists and behavioral ecologists to describe and hypothesize links among diverse aspects of animals’ biology. The many facets and functions of territoriality include the acquisition of food, nest sites, and shelter, space-use and movement behavior, and interactions with mates and competitors. Thus, because territoriality encompasses behaviors that directly determine individuals’ survival and reproduction (i.e., their fitness), it offers a powerful approach to understanding the evolution of animal behavior. Territoriality has been used to describe animal behavior for many centuries, particularly in avian systems; conversely, many advances in how biologists conceive of and use territoriality have arisen in research on birds. Operational definitions of territory fall broadly into two categories—those that focus on animals’ behavior and those that focus on their ecological relationships. That said, the question of how to conceive of territory has long been a subject of contention, with widely varied opinions on how the term should be defined and whether and how it is useful for understanding animal behavior. Discussions and critiques of territoriality, from not only animal behavior and behavioral ecology but also from the social sciences, help to contextualize and sharpen how we use the concept to understand the evolution of animal behavior. Technological and statistical advances continue to change the ways in which territories are mapped and quantified, with different methods available for taxa of different sizes, habitats, and life histories. Research on territoriality can be divided into two large domains based on the function served by territory—foraging and mating—but these two functions are intimately linked through the socioecological hypothesis that proposes a relationship between resource distributions and mating systems. This hypothesis has served to structure much research on territoriality in the last half-century or so. Finally, territoriality is pertinent not just to within-species interactions but also to between-species interactions and species coexistence, with implications for macroecological and macroevolutionary patterns and processes.","PeriodicalId":93986,"journal":{"name":"Ecology","volume":" 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141220878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Ecology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1