Pub Date : 2023-01-01DOI: 10.1177/09603271231224521
{"title":"Corrigendum to \"5-Fluorouracil-induced toxicity in both male and female reproductive systems: A narrative review\".","authors":"","doi":"10.1177/09603271231224521","DOIUrl":"https://doi.org/10.1177/09603271231224521","url":null,"abstract":"","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"42 ","pages":"9603271231224521"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139038286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/09603271231205859
Muhammad Umar Ijaz, Shama Mustafa, Qurat Ul Ain, Ali Hamza, Shafaqat Ali
2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a potential environmental toxin that has the ability to affect male reproductive tract. Rhamnazin is a naturally present flavone that displays multiple medicinal properties. Therefore, the current study was designed to determine the mitigative role of rhamnazin against TCDD induced reproductive damage. 48 adult male albino rats were randomly separated into four groups: control, TCDD (10 µgkg-1), TCDD + rhamnazin (10 µgkg-1 + 5 mgkg-1 respectively) and rhamnazin (5 mgkg-1). The trial was conducted for 56 days. TCDD intoxication notably affected superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR) and catalase (CAT) activities, besides reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations were augmented. TCDD administration also lowered sperm motility, viability, sperm number, while it augmented the sperm morphological (tail, neck/midpiece and head) anomalies. Moreover, it decreased the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and plasma testosterone. Moreover, TCDD reduced steroidogenic enzymes i.e., 17-beta hydroxysteroid dehydrogenase (17β-HSD), steroidogenic acute regulatory protein (StAR) and 3-beta hydroxysteroid dehydrogenase (3β-HSD) as well as B-cell lymphoma 2 (Bcl-2) expressions, but increased the expressions of Bcl-2-associated X protein (Bax) and cysteine-aspartic acid protease (Caspase-3). Furthermore, TCDD exposure also induced histopathological anomalies in testicular tissues. However, the supplementation of rhamnazin recovered all the mentioned damages in the testicles. The outcomes revealed that rhamnazin can ameliorate TCDD induced reproductive toxicity due to its anti-oxidant, anti-apoptotic and androgenic nature.
{"title":"Rhamnazin ameliorates 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-evoked testicular toxicity by restoring biochemical, spermatogenic and histological profile in male albino rats.","authors":"Muhammad Umar Ijaz, Shama Mustafa, Qurat Ul Ain, Ali Hamza, Shafaqat Ali","doi":"10.1177/09603271231205859","DOIUrl":"10.1177/09603271231205859","url":null,"abstract":"<p><p>2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a potential environmental toxin that has the ability to affect male reproductive tract. Rhamnazin is a naturally present flavone that displays multiple medicinal properties. Therefore, the current study was designed to determine the mitigative role of rhamnazin against TCDD induced reproductive damage. 48 adult male albino rats were randomly separated into four groups: control, TCDD (10 µgkg<sup>-1</sup>), TCDD + rhamnazin (10 µgkg<sup>-1</sup> + 5 mgkg<sup>-1</sup> respectively) and rhamnazin (5 mgkg<sup>-1</sup>). The trial was conducted for 56 days. TCDD intoxication notably affected superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR) and catalase (CAT) activities, besides reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations were augmented. TCDD administration also lowered sperm motility, viability, sperm number, while it augmented the sperm morphological (tail, neck/midpiece and head) anomalies. Moreover, it decreased the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and plasma testosterone. Moreover, TCDD reduced steroidogenic enzymes i.e., 17-beta hydroxysteroid dehydrogenase (17β-HSD), steroidogenic acute regulatory protein (StAR) and 3-beta hydroxysteroid dehydrogenase (3β-HSD) as well as B-cell lymphoma 2 (Bcl-2) expressions, but increased the expressions of Bcl-2-associated X protein (Bax) and cysteine-aspartic acid protease (Caspase-3). Furthermore, TCDD exposure also induced histopathological anomalies in testicular tissues. However, the supplementation of rhamnazin recovered all the mentioned damages in the testicles. The outcomes revealed that rhamnazin can ameliorate TCDD induced reproductive toxicity due to its anti-oxidant, anti-apoptotic and androgenic nature.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"42 ","pages":"9603271231205859"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41147346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: The purpose of this study was to explore the anticancer effect of punicalagin, an abundant bioactive tannin compound isolated from Punica granatum L., on three colon cancer cell lines, namely, HCT 116, HT-29, and LoVo.Research Design: Normal and colon cancer cells were treated with different concentrations of punicalagin for different periods. Data Collection and Analysis: Cell viability was measured with a CCK-8 assay. Programmed cell death and invasion were analyzed using an annexin V and cell death kit and a cell invasion analysis kit. The expression of active caspase-3, MMP-2, MMP-9, Snail, and Slug were measured by Western blot.Results: The results of the cell viability analysis showed that punicalagin was cytotoxic to colon cancer cells, but it was not to normal cells in a dose- and time-dependent manner. Additionally, punicalagin induced apoptosis in colon cancer cells (shown by the cumulative percentage of colorectal cancer cells in early and late apoptosis). It was found that caspase-3 activity increased following punicalagin treatment. Western blot results also showed that punicalagin increased the expression of activated caspase-3. In contrast, punicalagin inhibited the invasion of colon cancer cells. Further, treatment of colon cancer cells with punicalagin suppressed the expression of MMP-2, MMP-9, Snail, and Slug. Conclusions: These results showed that the activation of caspase-3 and the inhibition of MMP-2, MMP-9, Snail and Slug were involved in the effects of punicalagin on colon cancer cells.
{"title":"Punicalagin is cytotoxic to human colon cancer cells by modulating cell proliferation, apoptosis, and invasion.","authors":"Ding-Ping Sun, Hsuan-Yi Huang, Chia-Lin Chou, Li-Chin Cheng, Wen-Ching Wang, Yu-Feng Tian, Chia-Lang Fang, Kai-Yuan Lin","doi":"10.1177/09603271231213979","DOIUrl":"https://doi.org/10.1177/09603271231213979","url":null,"abstract":"<p><p><b>Purpose:</b> The purpose of this study was to explore the anticancer effect of punicalagin, an abundant bioactive tannin compound isolated from <i>Punica granatum</i> L., on three colon cancer cell lines, namely, HCT 116, HT-29, and LoVo.<b>Research Design:</b> Normal and colon cancer cells were treated with different concentrations of punicalagin for different periods. <b>Data Collection and Analysis:</b> Cell viability was measured with a CCK-8 assay. Programmed cell death and invasion were analyzed using an annexin V and cell death kit and a cell invasion analysis kit. The expression of active caspase-3, MMP-2, MMP-9, Snail, and Slug were measured by Western blot.<b>Results:</b> The results of the cell viability analysis showed that punicalagin was cytotoxic to colon cancer cells, but it was not to normal cells in a dose- and time-dependent manner. Additionally, punicalagin induced apoptosis in colon cancer cells (shown by the cumulative percentage of colorectal cancer cells in early and late apoptosis). It was found that caspase-3 activity increased following punicalagin treatment. Western blot results also showed that punicalagin increased the expression of activated caspase-3. In contrast, punicalagin inhibited the invasion of colon cancer cells. Further, treatment of colon cancer cells with punicalagin suppressed the expression of MMP-2, MMP-9, Snail, and Slug. <b>Conclusions:</b> These results showed that the activation of caspase-3 and the inhibition of MMP-2, MMP-9, Snail and Slug were involved in the effects of punicalagin on colon cancer cells.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"42 ","pages":"9603271231213979"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/09603271231219488
Hao Yu, Yanxia Peng, Wenjuan Dong, Baoyu Shen, Genmeng Yang, Qianyun Nie, Yan Tian, Lixiang Qin, Chunhui Song, Bingzheng Chen, Yongna Zhao, Lihua Li, Shijun Hong
Objectives: Methamphetamine (MA) abuse is a serious social problem worldwide. Cardiovascular complications were the second leading cause of death among MA abusers. We aimed to clarify the effects of MA on myocardial injury, oxidative stress, and apoptosis in myocardial cells and to explore the potential mechanism of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) in MA-induced oxidative stress and apoptosis.
Methods: An acute cardiac toxicity model of MA was established by intraperitoneal injection of MA (2 mg/kg) for 5 days. Nrf2 activation (by sulforaphane (SFN) 1 h before MA injection) and Nrf2 gene knockout were performed to explore the regulatory effects of Nrf2 on cardiac toxicity.
Results: The protein expressions of Nrf2 (p < .001) and heme oxygenase-1 (HO-1) were increased (p < .01), suggesting that MA activated the Nrf2/HO-1 pathway. In the MA group, cardiac injury score (p < .001) and cardiac troponin I (cTnI) protein expression increased (p < .01). Malondialdehyde (MDA) content increased (p < .001), superoxide dismutase (SOD) activity decreased (p < .05). Protein expressions of Caspase-3 (p < .001) and Bax (p < .001) increased, and Bcl-2 decreased (p < .001) as well. These changes were reversed by activation of Nrf2 but became more pronounced after Nrf2 knockout, suggested that the activation and knockout of Nrf2 attenuated and aggravated MA-induced myocardial injury, oxidative stress and apoptosis in myocardial cells, respectively.
Conclusions: MA administration induced myocardial injury, oxidative stress, and apoptosis in mice. Nrf2 attenuated MA-induced myocardial injury by regulating oxidative stress and apoptosis, thus playing a protective role.
{"title":"Nrf2 attenuates methamphetamine-induced myocardial injury by regulating oxidative stress and apoptosis in mice.","authors":"Hao Yu, Yanxia Peng, Wenjuan Dong, Baoyu Shen, Genmeng Yang, Qianyun Nie, Yan Tian, Lixiang Qin, Chunhui Song, Bingzheng Chen, Yongna Zhao, Lihua Li, Shijun Hong","doi":"10.1177/09603271231219488","DOIUrl":"10.1177/09603271231219488","url":null,"abstract":"<p><strong>Objectives: </strong>Methamphetamine (MA) abuse is a serious social problem worldwide. Cardiovascular complications were the second leading cause of death among MA abusers. We aimed to clarify the effects of MA on myocardial injury, oxidative stress, and apoptosis in myocardial cells and to explore the potential mechanism of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) in MA-induced oxidative stress and apoptosis.</p><p><strong>Methods: </strong>An acute cardiac toxicity model of MA was established by intraperitoneal injection of MA (2 mg/kg) for 5 days. Nrf2 activation (by sulforaphane (SFN) 1 h before MA injection) and <i>Nrf2</i> gene knockout were performed to explore the regulatory effects of Nrf2 on cardiac toxicity.</p><p><strong>Results: </strong>The protein expressions of Nrf2 (<i>p</i> < .001) and heme oxygenase-1 (HO-1) were increased (<i>p</i> < .01), suggesting that MA activated the Nrf2/HO-1 pathway. In the MA group, cardiac injury score (<i>p</i> < .001) and cardiac troponin I (cTnI) protein expression increased (<i>p</i> < .01). Malondialdehyde (MDA) content increased (<i>p</i> < .001), superoxide dismutase (SOD) activity decreased (<i>p</i> < .05). Protein expressions of Caspase-3 (<i>p</i> < .001) and Bax (<i>p</i> < .001) increased, and Bcl-2 decreased (<i>p</i> < .001) as well. These changes were reversed by activation of Nrf2 but became more pronounced after Nrf2 knockout, suggested that the activation and knockout of Nrf2 attenuated and aggravated MA-induced myocardial injury, oxidative stress and apoptosis in myocardial cells, respectively.</p><p><strong>Conclusions: </strong>MA administration induced myocardial injury, oxidative stress, and apoptosis in mice. Nrf2 attenuated MA-induced myocardial injury by regulating oxidative stress and apoptosis, thus playing a protective role.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"42 ","pages":"9603271231219488"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138465186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/09603271231203392
Zhuang Li, Ning Huang, Wei Zhang, Li Li
Objective: To determine the function of the chemokine (C-X-C motif) ligand 1 (CXCL1) gene in ovarian cancer cells and to investigate the relationship between CXCL1 gene mRNA expression and ovarian tumor clinical pathology.
Methods: Using bioinformatics methods to identify common differentially expressed genes associated with ovarian cancer in the GEO database. Growth curves of A2780 cells with or without CXCL1 expression were plotted by MTT assay. Cell cycles were measured by flow cytometry. Cell colony formation was enumerated in Transwell chambers. Migration and invasion in vitro were investigated using Cell Counting Kit-8 (CCK8), wound healing and Transwell, respectively. The relationship between CXCL1 gene mRNA expression and ovarian tumor clinical pathology was analyzed.
Results: CXCL1 was found to be one of the co-upregulated differentially expressed genes in the GEO database. The migration of A2780 cells expressing CXCL1 was significantly higher than that of A2780 cells without CXCL1 expression. CXCL1 mRNA expression in ovarian malignancy was significantly higher than those in benign lesions and the normal control (p < .01). In advanced ovarian cancer (Stages III-IV), CXCL1 mRNA expression was also significantly higher than that in patients with early-stage ovarian cancer (Stages I-II) (p = .005). Kaplan-Meier survival curve showed no correlation between CXCL1 mRNA expression and ovarian cancer prognosis. A Cox proportional hazard model also showed that CXCL1 expression was not an independent prognostic factor for ovarian cancer patients.
Conclusions: CXCL1 gene could promotes ovarian cancer A2780 cell proliferation and invasion in vitro, and contributed theoretical knowledge for the target selection in molecular targeted therapy. CXCL1 mRNA over-expression may be correlated with the occurrence and development of ovarian malignancy. Level of plasma CXCL1 might serve as a biomarker for prognosis in ovarian carcinoma patients.
{"title":"Biological function of C-X-C Motif Chemokine Ligand 1 gene (CXCL1) in ovarian malignant tumors.","authors":"Zhuang Li, Ning Huang, Wei Zhang, Li Li","doi":"10.1177/09603271231203392","DOIUrl":"10.1177/09603271231203392","url":null,"abstract":"<p><strong>Objective: </strong>To determine the function of the chemokine (C-X-C motif) ligand 1 (CXCL1) gene in ovarian cancer cells and to investigate the relationship between CXCL1 gene mRNA expression and ovarian tumor clinical pathology.</p><p><strong>Methods: </strong>Using bioinformatics methods to identify common differentially expressed genes associated with ovarian cancer in the GEO database. Growth curves of A2780 cells with or without CXCL1 expression were plotted by MTT assay. Cell cycles were measured by flow cytometry. Cell colony formation was enumerated in Transwell chambers. Migration and invasion in vitro were investigated using Cell Counting Kit-8 (CCK8), wound healing and Transwell, respectively. The relationship between CXCL1 gene mRNA expression and ovarian tumor clinical pathology was analyzed.</p><p><strong>Results: </strong>CXCL1 was found to be one of the co-upregulated differentially expressed genes in the GEO database. The migration of A2780 cells expressing CXCL1 was significantly higher than that of A2780 cells without CXCL1 expression. CXCL1 mRNA expression in ovarian malignancy was significantly higher than those in benign lesions and the normal control (<i>p</i> < .01). In advanced ovarian cancer (Stages III-IV), CXCL1 mRNA expression was also significantly higher than that in patients with early-stage ovarian cancer (Stages I-II) (<i>p</i> = .005). Kaplan-Meier survival curve showed no correlation between CXCL1 mRNA expression and ovarian cancer prognosis. A Cox proportional hazard model also showed that CXCL1 expression was not an independent prognostic factor for ovarian cancer patients.</p><p><strong>Conclusions: </strong>CXCL1 gene could promotes ovarian cancer A2780 cell proliferation and invasion in vitro, and contributed theoretical knowledge for the target selection in molecular targeted therapy. CXCL1 mRNA over-expression may be correlated with the occurrence and development of ovarian malignancy. Level of plasma CXCL1 might serve as a biomarker for prognosis in ovarian carcinoma patients.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"42 ","pages":"9603271231203392"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41175893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/09603271231210262
Ali Tavakoli Pirzaman, Pouyan Ebrahimi, Shokat Niknezhad, Turan Vahidi, Dariush Hosseinzadeh, Sousan Akrami, Arash M Ashrafi, Mohammad Moeen Velayatimehr, Rezvan Hosseinzadeh, Sohrab Kazemi
Incidence and mortality rates of gastrointestinal (GI) and oral cancers are among the highest in the world, compared to other cancers. GI cancers include esophageal, gastric, colon, rectal, liver, and pancreatic cancers, with colorectal cancer being the most common. Oral cancer, which is included in the head and neck cancers category, is one of the most important causes of death in India. Cadmium (Cd) is a toxic element affecting humans and the environment, which has both natural and anthropogenic sources. Generally, water, soil, air, and food supplies are reported as some sources of Cd. It accumulates in organs, particularly in the kidneys and liver. Exposure to cadmium is associated with different types of health risks such as kidney dysfunction, cardiovascular disease, reproductive dysfunction, diabetes, cerebral infarction, and neurotoxic effects (Parkinson's disease (PD) and Alzheimer's disease (AD)). Exposure to Cd is also associated with various cancers, including lung, kidney, liver, stomach, hematopoietic system, gynecologic and breast cancer. In the present study, we have provided and summarized the association of Cd exposure with oral and GI cancers.
{"title":"Toxic mechanisms of cadmium and exposure as a risk factor for oral and gastrointestinal carcinomas.","authors":"Ali Tavakoli Pirzaman, Pouyan Ebrahimi, Shokat Niknezhad, Turan Vahidi, Dariush Hosseinzadeh, Sousan Akrami, Arash M Ashrafi, Mohammad Moeen Velayatimehr, Rezvan Hosseinzadeh, Sohrab Kazemi","doi":"10.1177/09603271231210262","DOIUrl":"10.1177/09603271231210262","url":null,"abstract":"<p><p>Incidence and mortality rates of gastrointestinal (GI) and oral cancers are among the highest in the world, compared to other cancers. GI cancers include esophageal, gastric, colon, rectal, liver, and pancreatic cancers, with colorectal cancer being the most common. Oral cancer, which is included in the head and neck cancers category, is one of the most important causes of death in India. Cadmium (Cd) is a toxic element affecting humans and the environment, which has both natural and anthropogenic sources. Generally, water, soil, air, and food supplies are reported as some sources of Cd. It accumulates in organs, particularly in the kidneys and liver. Exposure to cadmium is associated with different types of health risks such as kidney dysfunction, cardiovascular disease, reproductive dysfunction, diabetes, cerebral infarction, and neurotoxic effects (Parkinson's disease (PD) and Alzheimer's disease (AD)). Exposure to Cd is also associated with various cancers, including lung, kidney, liver, stomach, hematopoietic system, gynecologic and breast cancer. In the present study, we have provided and summarized the association of Cd exposure with oral and GI cancers.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"42 ","pages":"9603271231210262"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/09603271231222253
Soha A Abd Elghany, Heba I Lashin, Ghada N El-Sarnagawy, Merfat M Oreby, Eman Soliman
Background: Accurate assessment of disturbed consciousness level (DCL) is crucial for predicting acutely poisoned patients' outcomes.
Aim: Development of a novel Poisoning Agitation-Sedation Score (PASS) to predict the need for endotracheal intubation (ETI) and mechanical ventilation (MV) in acutely poisoned patients with DCL. Validation of the proposed score on a new set of acutely poisoned patients with DCL.
Methods: This study was conducted on 187 acutely poisoned patients with DCL admitted to hospital from June 2020 to November 2021 (Derivation cohort). Patients' demographics, toxicological data, neurological examination, calculation of the Glasgow Coma Scale (GCS), Full Outline of Unresponsiveness (FOUR) score, Richmond Agitation-Sedation Scale (RASS), and outcomes were gathered for developing a new score. The proposed score was externally validated on 100 acutely poisoned patients with DCL (Validation cohort).
Results: The PASS assessing sedation consists of FOUR (reflexes and respiration) and GCS (motor) and provides a significantly excellent predictive power (AUC = 0.975) at a cutoff ≤9 with 100% sensitivity and 92.11% specificity for predicting the need for ETI and MV in sedated patients. Additionally, adding RASS (agitation) to the previous model exhibits significantly good predictive power (AUC = 0.893), 90.32% sensitivity, and 73.68% specificity at a cutoff ≤14 for predicting the need for ETI and MV in disturbed consciousness patients with agitation.
Conclusion: The proposed PASS could be an excellent, valid and feasible tool to predict the need for ETI and MV in acutely poisoned disturbed consciousness patients with or without agitation.
{"title":"Development and validation of a novel poisoning agitation-sedation score for predicting the need for endotracheal intubation and mechanical ventilation in acutely poisoned patients with disturbed consciousness.","authors":"Soha A Abd Elghany, Heba I Lashin, Ghada N El-Sarnagawy, Merfat M Oreby, Eman Soliman","doi":"10.1177/09603271231222253","DOIUrl":"https://doi.org/10.1177/09603271231222253","url":null,"abstract":"<p><strong>Background: </strong>Accurate assessment of disturbed consciousness level (DCL) is crucial for predicting acutely poisoned patients' outcomes.</p><p><strong>Aim: </strong>Development of a novel Poisoning Agitation-Sedation Score (PASS) to predict the need for endotracheal intubation (ETI) and mechanical ventilation (MV) in acutely poisoned patients with DCL. Validation of the proposed score on a new set of acutely poisoned patients with DCL.</p><p><strong>Methods: </strong>This study was conducted on 187 acutely poisoned patients with DCL admitted to hospital from June 2020 to November 2021 (Derivation cohort). Patients' demographics, toxicological data, neurological examination, calculation of the Glasgow Coma Scale (GCS), Full Outline of Unresponsiveness (FOUR) score, Richmond Agitation-Sedation Scale (RASS), and outcomes were gathered for developing a new score. The proposed score was externally validated on 100 acutely poisoned patients with DCL (Validation cohort).</p><p><strong>Results: </strong>The PASS assessing sedation consists of FOUR (reflexes and respiration) and GCS (motor) and provides a significantly excellent predictive power (AUC = 0.975) at a cutoff ≤9 with 100% sensitivity and 92.11% specificity for predicting the need for ETI and MV in sedated patients. Additionally, adding RASS (agitation) to the previous model exhibits significantly good predictive power (AUC = 0.893), 90.32% sensitivity, and 73.68% specificity at a cutoff ≤14 for predicting the need for ETI and MV in disturbed consciousness patients with agitation.</p><p><strong>Conclusion: </strong>The proposed PASS could be an excellent, valid and feasible tool to predict the need for ETI and MV in acutely poisoned disturbed consciousness patients with or without agitation.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"42 ","pages":"9603271231222253"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138814268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/09603271231210970
Gökçe Nur Say, Mehmet Emin Önger, Ferhat Say, Onur Yontar, Oktay Yapıcı
The use of Methylphenidate (MP) can have adverse effects on bone growth and mineralization. This study aimed to investigate the underlying pathophysiology of MP-induced skeletal deficits in growing rats using stereological and immunohistochemical methods. Male rats, aged 4 weeks, were orally treated with MP through an 8-h/day water drinking protocol. The rats (n=30) were randomly divided into three groups: MP-High Dose (30/60 mg/kg/day MP), MP-Low Dose (4/10 mg/kg/day MP), and control (water only). After 13 weeks, the femoral bones were assessed using calliper measurements, dual-energy X-ray absorptiometry, and biomechanical evaluation. The total femur volume, cartilage volume, growth zone volume, and volume fractions were determined using the Cavalieri method. Immunohistochemical analyses were conducted using alkaline phosphatase and anti-calpain antibody staining. Rats exposed to MP exhibited significant reductions in weight gain, femoral growth, bone mineralization, and biomechanical integrity compared to the control group. The total femoral volume of MP-treated rats was significantly lower than that of the control group. The MP-High Dose group showed significantly higher ratios of total cartilage volume/total femoral volume and total growth zone volume/total femoral volume than the other groups. Immunohistochemical evaluation of the growth plate revealed reduced osteoblastic activity and decreased intracellular calcium deposition with chronic MP exposure. The possible mechanism of MP-induced skeletal growth retardation may involve the inhibition of intracellular calcium deposition in chondrocytes of the hypertrophic zone in the growth plate. In this way, MP may hinder the differentiation of cartilage tissue from bone tissue, resulting in reduced bone growth and mineralization.
{"title":"Effects of methylphenidate on femoral bone growth in male rats.","authors":"Gökçe Nur Say, Mehmet Emin Önger, Ferhat Say, Onur Yontar, Oktay Yapıcı","doi":"10.1177/09603271231210970","DOIUrl":"10.1177/09603271231210970","url":null,"abstract":"<p><p>The use of Methylphenidate (MP) can have adverse effects on bone growth and mineralization. This study aimed to investigate the underlying pathophysiology of MP-induced skeletal deficits in growing rats using stereological and immunohistochemical methods. Male rats, aged 4 weeks, were orally treated with MP through an 8-h/day water drinking protocol. The rats (<i>n</i>=30) were randomly divided into three groups: MP-High Dose (30/60 mg/kg/day MP), MP-Low Dose (4/10 mg/kg/day MP), and control (water only). After 13 weeks, the femoral bones were assessed using calliper measurements, dual-energy X-ray absorptiometry, and biomechanical evaluation. The total femur volume, cartilage volume, growth zone volume, and volume fractions were determined using the Cavalieri method. Immunohistochemical analyses were conducted using alkaline phosphatase and anti-calpain antibody staining. Rats exposed to MP exhibited significant reductions in weight gain, femoral growth, bone mineralization, and biomechanical integrity compared to the control group. The total femoral volume of MP-treated rats was significantly lower than that of the control group. The MP-High Dose group showed significantly higher ratios of total cartilage volume/total femoral volume and total growth zone volume/total femoral volume than the other groups. Immunohistochemical evaluation of the growth plate revealed reduced osteoblastic activity and decreased intracellular calcium deposition with chronic MP exposure. The possible mechanism of MP-induced skeletal growth retardation may involve the inhibition of intracellular calcium deposition in chondrocytes of the hypertrophic zone in the growth plate. In this way, MP may hinder the differentiation of cartilage tissue from bone tissue, resulting in reduced bone growth and mineralization.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"42 ","pages":"9603271231210970"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71416363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The chemotherapeutic drug 5-flourouracil (5FU) is frequently used to treat a wide range of solid malignant tumors, such as colorectal, pancreatic, gastric, breast, and head and neck cancers. Its antitumoral effects are achieved by interfering with the synthesis of RNA and DNA and by inhibiting thymidylate synthase in both malignant and non-malignant cells. Therefore, it can be responsible for severe toxicities in crucial body organs, including heart, liver, kidney, and reproductive system. Given the fact that 5FU-induced reproductive toxicity may limit the clinical application of this drug, in this study, we aimed to discuss the main locations and mechanisms of the 5FU-induced reproductive toxicity. Initially, we discussed the impact of 5FU on the male reproductive system, which leads to damage of the seminiferous epithelial cells and the development of vacuoles in Sertoli cells. Although no noticeable changes occur at the histopathological level, there is a decrease in the weight of the prostate. Additionally, 5FU causes significant abnormalities in spermatogenesis, including germ cell shedding, spermatid halo formation, polynucleated giant cells, and decreased sperm count. Finally, in females, 5FU-induced reproductive toxicity is characterized by the presence of atretic secondary and antral follicles with reduced numbers of growing follicles, ovarian weight, and maturity impairment.
{"title":"5-Flourouracil-induced toxicity in both male and female reproductive systems: A narrative review.","authors":"Ali Tavakoli Pirzaman, Pouyan Ebrahimi, Shahrbanoo Doostmohamadian, Bardia Karim, Darya Almasi, Fatemeh Madani, Ahmadreza Moghadamnia, Sohrab Kazemi","doi":"10.1177/09603271231217988","DOIUrl":"10.1177/09603271231217988","url":null,"abstract":"<p><p>The chemotherapeutic drug 5-flourouracil (5FU) is frequently used to treat a wide range of solid malignant tumors, such as colorectal, pancreatic, gastric, breast, and head and neck cancers. Its antitumoral effects are achieved by interfering with the synthesis of RNA and DNA and by inhibiting thymidylate synthase in both malignant and non-malignant cells. Therefore, it can be responsible for severe toxicities in crucial body organs, including heart, liver, kidney, and reproductive system. Given the fact that 5FU-induced reproductive toxicity may limit the clinical application of this drug, in this study, we aimed to discuss the main locations and mechanisms of the 5FU-induced reproductive toxicity. Initially, we discussed the impact of 5FU on the male reproductive system, which leads to damage of the seminiferous epithelial cells and the development of vacuoles in Sertoli cells. Although no noticeable changes occur at the histopathological level, there is a decrease in the weight of the prostate. Additionally, 5FU causes significant abnormalities in spermatogenesis, including germ cell shedding, spermatid halo formation, polynucleated giant cells, and decreased sperm count. Finally, in females, 5FU-induced reproductive toxicity is characterized by the presence of atretic secondary and antral follicles with reduced numbers of growing follicles, ovarian weight, and maturity impairment.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"42 ","pages":"9603271231217988"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138814220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1177/09603271231221567
Jiayi Peng, Yunlin Wu, Qi E, Ziyin Zhou, Xianjie Wen
Objective: To explore the differential expression of genes between wild-type chronic compressive injury (CCI) mice (WT-CCI) and interferon regulatory factors 4 (IRF4) knockout CCI mice (KO-CCI) by RNA-seq analysis of the mouse spinal cord.
Methods: RNA-seq analysis of the spinal cord tissue of the chronic sciatic nerve ligation mice and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used.
Results: A total of 104 genes were up-regulated and 116 genes were down-regulated in spinal cord of the mice in IRF4 knockout (KO-CCI) group compared with that in the wild-type CCI (WT-CCI) group. There were 1472 differentially expressed genes in the biological process group, 62 differentially expressed genes in the cellular component group, and 163 differentially expressed genes in the molecular function group in KO-CCI mice. A total of 14 genes related to inflammatory reactions were differentially expressed. Real-time PCR results confirmed that Pparg and Grpr mRNA expression was up-regulated and Arg 1 and Ccl11 mRNA expression was down-regulated in the KO-CCI group.
Conclusion: IRF4 is involved in neuropathic pain in CCI mice, IRF4 may participate in neuropathic pain by regulating Grpr, Mas1, Galr3, Nos2, Arg1, Ccl11, Ptgs2, S100a8, Pparg, Cd40, Has2, Gpr151, Il123a, Capns2, Ankrd1, Ccnb1, and Nppb genes.
{"title":"RNA-seq analysis revealed genes associated with neuropathic pain induced by chronic compressive injury in interferon regulatory factors 4 knockout mice.","authors":"Jiayi Peng, Yunlin Wu, Qi E, Ziyin Zhou, Xianjie Wen","doi":"10.1177/09603271231221567","DOIUrl":"https://doi.org/10.1177/09603271231221567","url":null,"abstract":"<p><strong>Objective: </strong>To explore the differential expression of genes between wild-type chronic compressive injury (CCI) mice (WT-CCI) and interferon regulatory factors 4 (IRF4) knockout CCI mice (KO-CCI) by RNA-seq analysis of the mouse spinal cord.</p><p><strong>Methods: </strong>RNA-seq analysis of the spinal cord tissue of the chronic sciatic nerve ligation mice and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used.</p><p><strong>Results: </strong>A total of 104 genes were up-regulated and 116 genes were down-regulated in spinal cord of the mice in IRF4 knockout (KO-CCI) group compared with that in the wild-type CCI (WT-CCI) group. There were 1472 differentially expressed genes in the biological process group, 62 differentially expressed genes in the cellular component group, and 163 differentially expressed genes in the molecular function group in KO-CCI mice. A total of 14 genes related to inflammatory reactions were differentially expressed. Real-time PCR results confirmed that <i>Pparg</i> and <i>Grpr</i> mRNA expression was up-regulated and <i>Arg 1</i> and <i>Ccl11</i> mRNA expression was down-regulated in the KO-CCI group.</p><p><strong>Conclusion: </strong>IRF4 is involved in neuropathic pain in CCI mice, IRF4 may participate in neuropathic pain by regulating Grpr, Mas1, Galr3, Nos2, Arg1, Ccl11, Ptgs2, S100a8, <i>Pparg</i>, <i>Cd40, Has2, Gpr151, Il123a, Capns2, Ankrd1, Ccnb1,</i> and <i>Nppb</i> genes.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"42 ","pages":"9603271231221567"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138814394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}