Pub Date : 2024-06-01DOI: 10.4049/immunohorizons.2300057
Vitaly V Ganusov
One of the goals of vaccination is to induce long-lived immunity against the infection and/or disease. Many studies have followed the generation of humoral immunity to SARS-CoV-2 after vaccination; however, such studies typically varied by the duration of the follow-up and the number of time points at which immune response measurements were done. How these parameters (the number of time points and the overall duration of the follow-up) impact estimates of immunity longevity remain largely unknown. Several studies, including one by Arunachalam et al. (2023. J. Clin. Invest. 133: e167955), evaluated the humoral immune response in individuals receiving either a third or fourth dose of mRNA COVID-19 vaccine; by measuring Ab levels at three time points (prior to vaccination and at 1 and 6 mo), Arunachalam et al. found similar half-life times for serum Abs in the two groups and thus suggested that additional boosting is unnecessary to prolong immunity to SARS-CoV-2. I demonstrate that measuring Ab levels at these three time points and only for 6 mo does not allow one to accurately evaluate the long-term half-life of vaccine-induced Abs. By using the data from a cohort of blood donors followed for several years, I show that after revaccination with vaccinia virus, vaccinia virus-specific Abs decay biphasically, and even the late decay rate exceeds the true slow loss rate of humoral memory observed years prior to the boosting. Mathematical models of Ab response kinetics, parameterized using preliminary data, should be used for power analysis to determine the most appropriate timing and duration of sampling to rigorously determine the duration of humoral immunity after vaccination.
{"title":"Appropriate Sampling and Longer Follow-Up Are Required to Rigorously Evaluate Longevity of Humoral Memory After Vaccination.","authors":"Vitaly V Ganusov","doi":"10.4049/immunohorizons.2300057","DOIUrl":"10.4049/immunohorizons.2300057","url":null,"abstract":"<p><p>One of the goals of vaccination is to induce long-lived immunity against the infection and/or disease. Many studies have followed the generation of humoral immunity to SARS-CoV-2 after vaccination; however, such studies typically varied by the duration of the follow-up and the number of time points at which immune response measurements were done. How these parameters (the number of time points and the overall duration of the follow-up) impact estimates of immunity longevity remain largely unknown. Several studies, including one by Arunachalam et al. (2023. J. Clin. Invest. 133: e167955), evaluated the humoral immune response in individuals receiving either a third or fourth dose of mRNA COVID-19 vaccine; by measuring Ab levels at three time points (prior to vaccination and at 1 and 6 mo), Arunachalam et al. found similar half-life times for serum Abs in the two groups and thus suggested that additional boosting is unnecessary to prolong immunity to SARS-CoV-2. I demonstrate that measuring Ab levels at these three time points and only for 6 mo does not allow one to accurately evaluate the long-term half-life of vaccine-induced Abs. By using the data from a cohort of blood donors followed for several years, I show that after revaccination with vaccinia virus, vaccinia virus-specific Abs decay biphasically, and even the late decay rate exceeds the true slow loss rate of humoral memory observed years prior to the boosting. Mathematical models of Ab response kinetics, parameterized using preliminary data, should be used for power analysis to determine the most appropriate timing and duration of sampling to rigorously determine the duration of humoral immunity after vaccination.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 6","pages":"397-403"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220738/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.4049/immunohorizons.2400026
Jianing Zhang, Can Yue, Yin Lin, Jinmin Tian, Yuanyuan Guo, Danni Zhang, Yaxin Guo, Beiwei Ye, Yan Chai, Jianxun Qi, Yingze Zhao, George F Gao, Zeyu Sun, Jun Liu
The individual HLA-related susceptibility to emerging viral diseases such as COVID-19 underscores the importance of understanding how HLA polymorphism influences peptide presentation and T cell recognition. Similar to HLA-A*0101, which is one of the earliest identified HLA alleles among the human population, HLA-A*2601 possesses a similar characteristic for the binding peptide and acts as a prevalent allomorph in HLA-I. In this study, we found that, compared with HLA-A*0101, HLA-A*2601 individuals exhibit distinctive features for the T cell responses to SARS-CoV-2 and influenza virus after infection and/or vaccination. The heterogeneous T cell responses can be attributed to the distinct preference of HLA-A*2601 and HLA-A*0101 to T cell epitope motifs with negative-charged residues at the P1 and P3 positions, respectively. Furthermore, we determined the crystal structures of the HLA-A*2601 complexed to four peptides derived from SARS-CoV-2 and human papillomavirus, with one structure of HLA-A*0101 for comparison. The shallow pocket C of HLA-A*2601 results in the promiscuous presentation of peptides with "switchable" bulged conformations because of the secondary anchor in the median portion. Notably, the hydrogen bond network formed between the negative-charged P1 anchors and the HLA-A*2601-specific residues lead to a "closed" conformation and solid placement for the P1 secondary anchor accommodation in pocket A. This insight sheds light on the intricate relationship between HLA I allelic allomorphs, peptide binding, and the immune response and provides valuable implications for understanding disease susceptibility and potential vaccine design.
与 HLA 相关的个体对 COVID-19 等新兴病毒性疾病的易感性突出表明,了解 HLA 多态性如何影响肽的呈现和 T 细胞识别非常重要。HLA-A*0101 是人类中最早发现的 HLA 等位基因之一,与 HLA-A*2601 类似,HLA-A*2601 也具有类似的结合肽特性,是 HLA-I 中的一种普遍异构体。在这项研究中,我们发现与 HLA-A*0101 相比,HLA-A*2601 人在感染和/或接种疫苗后对 SARS-CoV-2 和流感病毒的 T 细胞反应表现出不同的特征。这种异质性的 T 细胞反应可归因于 HLA-A*2601 和 HLA-A*0101 对分别位于 P1 和 P3 位带负电荷残基的 T 细胞表位基团的不同偏好。此外,我们还测定了 HLA-A*2601 与来自 SARS-CoV-2 和人类乳头瘤病毒的四种多肽复合的晶体结构,并与 HLA-A*0101 的一个结构进行了对比。HLA-A*2601 的 C 袋较浅,由于中间部分有二级锚,因此可以杂乱地呈现具有 "可切换 "隆起构象的多肽。值得注意的是,带负电荷的 P1 锚点和 HLA-A*2601 特异残基之间形成的氢键网络导致了 P1 次级锚点在口袋 A 中的 "封闭 "构象和稳固位置。这一发现揭示了 HLA I 等位基因异构体、肽结合和免疫反应之间错综复杂的关系,为了解疾病易感性和潜在的疫苗设计提供了宝贵的启示。
{"title":"Uncommon P1 Anchor-featured Viral T Cell Epitope Preference within HLA-A*2601 and HLA-A*0101 Individuals.","authors":"Jianing Zhang, Can Yue, Yin Lin, Jinmin Tian, Yuanyuan Guo, Danni Zhang, Yaxin Guo, Beiwei Ye, Yan Chai, Jianxun Qi, Yingze Zhao, George F Gao, Zeyu Sun, Jun Liu","doi":"10.4049/immunohorizons.2400026","DOIUrl":"10.4049/immunohorizons.2400026","url":null,"abstract":"<p><p>The individual HLA-related susceptibility to emerging viral diseases such as COVID-19 underscores the importance of understanding how HLA polymorphism influences peptide presentation and T cell recognition. Similar to HLA-A*0101, which is one of the earliest identified HLA alleles among the human population, HLA-A*2601 possesses a similar characteristic for the binding peptide and acts as a prevalent allomorph in HLA-I. In this study, we found that, compared with HLA-A*0101, HLA-A*2601 individuals exhibit distinctive features for the T cell responses to SARS-CoV-2 and influenza virus after infection and/or vaccination. The heterogeneous T cell responses can be attributed to the distinct preference of HLA-A*2601 and HLA-A*0101 to T cell epitope motifs with negative-charged residues at the P1 and P3 positions, respectively. Furthermore, we determined the crystal structures of the HLA-A*2601 complexed to four peptides derived from SARS-CoV-2 and human papillomavirus, with one structure of HLA-A*0101 for comparison. The shallow pocket C of HLA-A*2601 results in the promiscuous presentation of peptides with \"switchable\" bulged conformations because of the secondary anchor in the median portion. Notably, the hydrogen bond network formed between the negative-charged P1 anchors and the HLA-A*2601-specific residues lead to a \"closed\" conformation and solid placement for the P1 secondary anchor accommodation in pocket A. This insight sheds light on the intricate relationship between HLA I allelic allomorphs, peptide binding, and the immune response and provides valuable implications for understanding disease susceptibility and potential vaccine design.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 6","pages":"415-430"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.4049/immunohorizons.2400002
Dylan Krajewski, Saurav Ranjitkar, Caitlin Tedeschi, Nicole Maldonado Perez, Nathan Jordan, Mohamed Mire, Sallie S Schneider, Clinton B Mathias
IgE-mediated mast cell (MC) activation is a critical component of allergic responses to oral Ags. Several T cell-derived cytokines have been shown to promote MC reactivity, and we recently demonstrated a critical role for the cytokine IL-10 in mediating MC responses during food allergy. In this study, we further validate the role of IL-10 using Ab-mediated IL-10 depletion. IL-10 neutralization significantly attenuated MC responses, leading to decreased MC accumulation and activation, as well as inhibition of MC-mediated symptoms such as allergic diarrhea. This was accompanied by decreased Th2 cytokine gene expression, attenuated systemic T cell responses, and fewer CD4 T cells, B cells, and MCs in the spleen. Our data further confirm the role of IL-10 in driving MC responses and suggest that IL-10-responsive MCs may constitute an important player in allergic responses.
IgE 介导的肥大细胞(MC)活化是口服抗原过敏反应的关键组成部分。已证明多种 T 细胞衍生的细胞因子可促进肥大细胞的反应性,我们最近证明了细胞因子 IL-10 在食物过敏期间介导 MC 反应的关键作用。在本研究中,我们利用抗体介导的 IL-10 去势进一步验证了 IL-10 的作用。IL-10中和可明显减弱MC反应,从而减少MC的聚集和激活,并抑制MC介导的过敏性腹泻等症状。与此同时,Th2 细胞因子基因表达减少,全身 T 细胞反应减弱,脾脏中的 CD4 T 细胞、B 细胞和 MC 减少。我们的数据进一步证实了IL-10在驱动MC反应中的作用,并表明IL-10反应性MC可能是过敏反应中的一个重要角色。
{"title":"IL-10 Neutralization Attenuates Mast Cell Responses in a Murine Model of Experimental Food Allergy.","authors":"Dylan Krajewski, Saurav Ranjitkar, Caitlin Tedeschi, Nicole Maldonado Perez, Nathan Jordan, Mohamed Mire, Sallie S Schneider, Clinton B Mathias","doi":"10.4049/immunohorizons.2400002","DOIUrl":"10.4049/immunohorizons.2400002","url":null,"abstract":"<p><p>IgE-mediated mast cell (MC) activation is a critical component of allergic responses to oral Ags. Several T cell-derived cytokines have been shown to promote MC reactivity, and we recently demonstrated a critical role for the cytokine IL-10 in mediating MC responses during food allergy. In this study, we further validate the role of IL-10 using Ab-mediated IL-10 depletion. IL-10 neutralization significantly attenuated MC responses, leading to decreased MC accumulation and activation, as well as inhibition of MC-mediated symptoms such as allergic diarrhea. This was accompanied by decreased Th2 cytokine gene expression, attenuated systemic T cell responses, and fewer CD4 T cells, B cells, and MCs in the spleen. Our data further confirm the role of IL-10 in driving MC responses and suggest that IL-10-responsive MCs may constitute an important player in allergic responses.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 6","pages":"431-441"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220741/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141422284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.4049/immunohorizons.2400046
Gabriel J Rodriguez-Garcia, Diana K Graves, Muhammad B Mirza, Kamran Idrees, Young J Kim, Michael J Korrer, Jeffrey C Rathmell
PD-1 blockade has been approved for head and neck squamous cell carcinoma (HNSCC) patients. However, many HNSCC patients do not respond to this treatment, and other tumor microenvironmental factors may promote resistance to PD-1 blockade. We previously identified increased expression of the inhibitory receptor NKG2A on CD8+ T cells in HNSCC tumors compared with T cells in matching PBMC samples. Mechanisms that promote NKG2A expression and the role of NKG2A on human T cells in the tumor microenvironment, however, are uncertain. In this study, we show that tumor-conditioned media (TCM) of HNSCC cancer cell lines or ascites fluid from colorectal carcinoma patients is sufficient to induce the expression of NKG2A and other inhibitory receptors on activated CD8+ T cells isolated from PBMCs of healthy donors. Boiling or small molecular mass cutoff filtering did not eliminate the effect of TCM, suggesting that a small molecule promotes NKG2A. T cell activation in TCM decreased the basal and maximal mitochondrial respiration to metabolically restrain CD8+ T cells. Functionally, T cell activation in TCM reduced CD8+ T cell cytotoxicity as shown by lower production of cytokines, granzyme B, and perforin. Furthermore, TCM prevented CD8+ T cells from killing cancer cells in response to an anti-CD19/anti-CD3 bispecific T cell engager. Thus, a small secreted molecule from HNSCC cells can induce NKG2A expression and promote T cell dysfunction. Our findings may lead to targets for novel cancer therapies or biomarkers for NKG2A blockade response and provide a model to study T cell dysfunction and impaired metabolism.
头颈部鳞状细胞癌(HNSCC)患者已获准使用 PD-1 阻断疗法。然而,许多 HNSCC 患者对这种治疗方法没有反应,其他肿瘤微环境因素可能会促进对 PD-1 阻断剂的耐药性。我们之前发现,与匹配的 PBMC 样本中的 T 细胞相比,HNSCC 肿瘤中 CD8+ T 细胞上的抑制性受体 NKG2A 表达增加。然而,促进 NKG2A 表达的机制以及 NKG2A 在肿瘤微环境中对人类 T 细胞的作用尚不确定。在这项研究中,我们发现 HNSCC 癌细胞株的肿瘤条件培养基(TCM)或结直肠癌患者的腹水足以诱导从健康供体的 PBMCs 分离出来的活化 CD8+ T 细胞表达 NKG2A 和其他抑制性受体。煮沸或小分子质量截止过滤并不能消除中药的作用,这表明小分子促进了 NKG2A。中药激活的 T 细胞降低了线粒体的基础呼吸和最大呼吸,从而抑制了 CD8+ T 细胞的代谢。从功能上看,中药中的 T 细胞活化降低了 CD8+ T 细胞的细胞毒性,表现为细胞因子、颗粒酶 B 和穿孔素的产生减少。此外,TCM 还能阻止 CD8+ T 细胞对抗 CD19/ 抗 CD3 双特异性 T 细胞吞噬因子产生杀伤癌细胞的反应。因此,HNSCC细胞分泌的一种小分子可诱导NKG2A的表达并促进T细胞功能障碍。我们的研究结果可能会成为新型癌症疗法的靶点或NKG2A阻断反应的生物标记物,并为研究T细胞功能障碍和代谢受损提供了一个模型。
{"title":"Cancer Cell Small Molecule Secretome Induces the Immune Checkpoint NKG2A and Dysfunction of Human CD8+ T Cells.","authors":"Gabriel J Rodriguez-Garcia, Diana K Graves, Muhammad B Mirza, Kamran Idrees, Young J Kim, Michael J Korrer, Jeffrey C Rathmell","doi":"10.4049/immunohorizons.2400046","DOIUrl":"10.4049/immunohorizons.2400046","url":null,"abstract":"<p><p>PD-1 blockade has been approved for head and neck squamous cell carcinoma (HNSCC) patients. However, many HNSCC patients do not respond to this treatment, and other tumor microenvironmental factors may promote resistance to PD-1 blockade. We previously identified increased expression of the inhibitory receptor NKG2A on CD8+ T cells in HNSCC tumors compared with T cells in matching PBMC samples. Mechanisms that promote NKG2A expression and the role of NKG2A on human T cells in the tumor microenvironment, however, are uncertain. In this study, we show that tumor-conditioned media (TCM) of HNSCC cancer cell lines or ascites fluid from colorectal carcinoma patients is sufficient to induce the expression of NKG2A and other inhibitory receptors on activated CD8+ T cells isolated from PBMCs of healthy donors. Boiling or small molecular mass cutoff filtering did not eliminate the effect of TCM, suggesting that a small molecule promotes NKG2A. T cell activation in TCM decreased the basal and maximal mitochondrial respiration to metabolically restrain CD8+ T cells. Functionally, T cell activation in TCM reduced CD8+ T cell cytotoxicity as shown by lower production of cytokines, granzyme B, and perforin. Furthermore, TCM prevented CD8+ T cells from killing cancer cells in response to an anti-CD19/anti-CD3 bispecific T cell engager. Thus, a small secreted molecule from HNSCC cells can induce NKG2A expression and promote T cell dysfunction. Our findings may lead to targets for novel cancer therapies or biomarkers for NKG2A blockade response and provide a model to study T cell dysfunction and impaired metabolism.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 6","pages":"464-477"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220743/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141452471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4049/immunohorizons.2300076
Sean J Lund, Pamela G B Del Rosario, Asami Honda, Kaitlin J Caoili, Marten A Hoeksema, Victor Nizet, Kathryn A Patras, Lawrence S Prince
The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.
{"title":"Sialic Acid-Siglec-E Interactions Regulate the Response of Neonatal Macrophages to Group B Streptococcus.","authors":"Sean J Lund, Pamela G B Del Rosario, Asami Honda, Kaitlin J Caoili, Marten A Hoeksema, Victor Nizet, Kathryn A Patras, Lawrence S Prince","doi":"10.4049/immunohorizons.2300076","DOIUrl":"10.4049/immunohorizons.2300076","url":null,"abstract":"<p><p>The mammalian Siglec receptor sialoadhesin (Siglec1, CD169) confers innate immunity against the encapsulated pathogen group B Streptococcus (GBS). Newborn lung macrophages have lower expression levels of sialoadhesin at birth compared with the postnatal period, increasing their susceptibility to GBS infection. In this study, we investigate the mechanisms regulating sialoadhesin expression in the newborn mouse lung. In both neonatal and adult mice, GBS lung infection reduced Siglec1 expression, potentially delaying acquisition of immunity in neonates. Suppression of Siglec1 expression required interactions between sialic acid on the GBS capsule and the inhibitory host receptor Siglec-E. The Siglec1 gene contains multiple STAT binding motifs, which could regulate expression of sialoadhesin downstream of innate immune signals. Although GBS infection reduced STAT1 expression in the lungs of wild-type newborn mice, we observed increased numbers of STAT1+ cells in Siglece-/- lungs. To test if innate immune activation could increase sialoadhesin at birth, we first demonstrated that treatment of neonatal lung macrophages ex vivo with inflammatory activators increased sialoadhesin expression. However, overcoming the low sialoadhesin expression at birth using in vivo prenatal exposures or treatments with inflammatory stimuli were not successful. The suppression of sialoadhesin expression by GBS-Siglec-E engagement may therefore contribute to disease pathogenesis in newborns and represent a challenging but potentially appealing therapeutic opportunity to augment immunity at birth.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 5","pages":"384-396"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150127/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4049/immunohorizons.2300084
Nora Céspedes, Abigail M Fellows, Erinn L Donnelly, Hannah L Kaylor, Taylor A Coles, Ryan Wild, Megan Dobson, Joseph Schauer, Judy Van de Water, Shirley Luckhart
Our previous work demonstrated that basophils regulate a suite of malaria phenotypes, including intestinal mastocytosis and permeability, the immune response to infection, gametocytemia, and parasite transmission to the malaria mosquito Anopheles stephensi. Given that activated basophils are primary sources of the regulatory cytokines IL-4 and IL-13, we sought to examine the contributions of these mediators to basophil-dependent phenotypes in malaria. We generated mice with basophils depleted for IL-4 and IL-13 (baso IL-4/IL-13 (-)) and genotype controls (baso IL-4/IL-13 (+)) by crossing mcpt8-Cre and Il4/Il13fl/fl mice and infected them with Plasmodium yoelii yoelii 17XNL. Conditional deletion was associated with ileal mastocytosis and mast cell (MC) activation, increased intestinal permeability, and increased bacterial 16S levels in blood, but it had no effect on neutrophil activation, parasitemia, or transmission to A. stephensi. Increased intestinal permeability in baso IL-4/IL-13 (-) mice was correlated with elevated plasma eotaxin (CCL11), a potent eosinophil chemoattractant, and increased ileal MCs, proinflammatory IL-17A, and the chemokines MIP-1α (CCL3) and MIP-1β (CCL4). Blood bacterial 16S copies were positively but weakly correlated with plasma proinflammatory cytokines IFN-γ and IL-12p40, suggesting that baso IL-4/IL-13 (-) mice failed to control bacterial translocation into the blood during malaria infection. These observations suggest that basophil-derived IL-4 and IL-13 do not contribute to basophil-dependent regulation of parasite transmission, but these cytokines do orchestrate protection of intestinal barrier integrity after P. yoelii infection. Specifically, basophil-dependent IL-4/IL-13 control MC activation and prevent infection-induced intestinal barrier damage and bacteremia, perhaps via regulation of eosinophils, macrophages, and Th17-mediated inflammation.
{"title":"Basophil-Derived IL-4 and IL-13 Protect Intestinal Barrier Integrity and Control Bacterial Translocation during Malaria.","authors":"Nora Céspedes, Abigail M Fellows, Erinn L Donnelly, Hannah L Kaylor, Taylor A Coles, Ryan Wild, Megan Dobson, Joseph Schauer, Judy Van de Water, Shirley Luckhart","doi":"10.4049/immunohorizons.2300084","DOIUrl":"10.4049/immunohorizons.2300084","url":null,"abstract":"<p><p>Our previous work demonstrated that basophils regulate a suite of malaria phenotypes, including intestinal mastocytosis and permeability, the immune response to infection, gametocytemia, and parasite transmission to the malaria mosquito Anopheles stephensi. Given that activated basophils are primary sources of the regulatory cytokines IL-4 and IL-13, we sought to examine the contributions of these mediators to basophil-dependent phenotypes in malaria. We generated mice with basophils depleted for IL-4 and IL-13 (baso IL-4/IL-13 (-)) and genotype controls (baso IL-4/IL-13 (+)) by crossing mcpt8-Cre and Il4/Il13fl/fl mice and infected them with Plasmodium yoelii yoelii 17XNL. Conditional deletion was associated with ileal mastocytosis and mast cell (MC) activation, increased intestinal permeability, and increased bacterial 16S levels in blood, but it had no effect on neutrophil activation, parasitemia, or transmission to A. stephensi. Increased intestinal permeability in baso IL-4/IL-13 (-) mice was correlated with elevated plasma eotaxin (CCL11), a potent eosinophil chemoattractant, and increased ileal MCs, proinflammatory IL-17A, and the chemokines MIP-1α (CCL3) and MIP-1β (CCL4). Blood bacterial 16S copies were positively but weakly correlated with plasma proinflammatory cytokines IFN-γ and IL-12p40, suggesting that baso IL-4/IL-13 (-) mice failed to control bacterial translocation into the blood during malaria infection. These observations suggest that basophil-derived IL-4 and IL-13 do not contribute to basophil-dependent regulation of parasite transmission, but these cytokines do orchestrate protection of intestinal barrier integrity after P. yoelii infection. Specifically, basophil-dependent IL-4/IL-13 control MC activation and prevent infection-induced intestinal barrier damage and bacteremia, perhaps via regulation of eosinophils, macrophages, and Th17-mediated inflammation.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 5","pages":"371-383"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.4049/immunohorizons.2400025
Blake W Dieckmann, Marcell E Paguaga, Gary W McCollum, John S Penn, Md Imam Uddin
Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1β protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1β mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1β.
{"title":"Role of NLRP3 Inflammasomes in Monocyte and Microglial Recruitments in Choroidal Neovascularization.","authors":"Blake W Dieckmann, Marcell E Paguaga, Gary W McCollum, John S Penn, Md Imam Uddin","doi":"10.4049/immunohorizons.2400025","DOIUrl":"10.4049/immunohorizons.2400025","url":null,"abstract":"<p><p>Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1β protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1β mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1β.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 5","pages":"363-370"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150128/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141077415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.4049/immunohorizons.2400029
Madison L Schanz, Abigail M Bitters, Kamryn E Zadeii, Dana Joulani, Angela K Chamberlain, Américo H López-Yglesias
To defend against intracellular pathogens such as Toxoplasma gondii, the host generates a robust type 1 immune response. Specifically, host defense against T. gondii is defined by an IL-12-dependent IFN-γ response that is critical for host resistance. Previously, we demonstrated that host resistance is mediated by T-bet-dependent ILC-derived IFN-γ by maintaining IRF8+ conventional type 1 dendritic cells during parasitic infection. Therefore, we hypothesized that innate lymphoid cells are indispensable for host survival. Surprisingly, we observed that T-bet-deficient mice succumb to infection quicker than do mice lacking lymphocytes, suggesting an unknown T-bet-dependent-mediated host defense pathway. Analysis of parasite-mediated inflammatory myeloid cells revealed a novel subpopulation of T-bet+ myeloid cells (TMCs). Our results reveal that TMCs have the largest intracellular parasite burden compared with other professional phagocytes, suggesting they are associated with active killing of T. gondii. Mechanistically, we established that IL-12 is necessary for the induction of inflammatory TMCs during infection and these cells are linked to a role in host survival.
{"title":"IL-12 Mediates T-bet-Expressing Myeloid Cell-Dependent Host Resistance against Toxoplasma gondii.","authors":"Madison L Schanz, Abigail M Bitters, Kamryn E Zadeii, Dana Joulani, Angela K Chamberlain, Américo H López-Yglesias","doi":"10.4049/immunohorizons.2400029","DOIUrl":"10.4049/immunohorizons.2400029","url":null,"abstract":"<p><p>To defend against intracellular pathogens such as Toxoplasma gondii, the host generates a robust type 1 immune response. Specifically, host defense against T. gondii is defined by an IL-12-dependent IFN-γ response that is critical for host resistance. Previously, we demonstrated that host resistance is mediated by T-bet-dependent ILC-derived IFN-γ by maintaining IRF8+ conventional type 1 dendritic cells during parasitic infection. Therefore, we hypothesized that innate lymphoid cells are indispensable for host survival. Surprisingly, we observed that T-bet-deficient mice succumb to infection quicker than do mice lacking lymphocytes, suggesting an unknown T-bet-dependent-mediated host defense pathway. Analysis of parasite-mediated inflammatory myeloid cells revealed a novel subpopulation of T-bet+ myeloid cells (TMCs). Our results reveal that TMCs have the largest intracellular parasite burden compared with other professional phagocytes, suggesting they are associated with active killing of T. gondii. Mechanistically, we established that IL-12 is necessary for the induction of inflammatory TMCs during infection and these cells are linked to a role in host survival.</p>","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"8 4","pages":"355-362"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11066714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140873962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.4049/immunohorizons.2300096
Sarah A Thomas, H. Yong, Ana M Rule, N. Gour, Stephane Lajoie
Urban particulate matter (PM; uPM) poses significant health risks, particularly to the respiratory system. Fine particles, such as PM2.5, can penetrate deep into the lungs and exacerbate a range of health problems, including emphysema, asthma, and lung cancer. PM exposure is also linked to extrapulmonary disorders such as heart and neurodegenerative diseases. Moreover, prolonged exposure to elevated PM levels can reduce overall life expectancy. Senescence is a dysfunctional cell state typically associated with age but can also be precipitated by environmental stressors. This study aimed to determine whether uPM could drive senescence in macrophages, an essential cell type involved in particulate phagocytosis-mediated clearance. Although it is known that uPM exposure impairs immune function, this deficit is multifaceted and incompletely understood, partly because of the use of particulates such as diesel exhaust particles as a surrogate for true uPM. uPM was collected from several locations in the United States, including Baltimore, Houston, and Phoenix. Bone marrow-derived macrophages were stimulated with uPM or reference particulates (e.g., diesel exhaust particles) to assess senescence-related parameters. We report that uPM-exposed bone marrow-derived macrophages adopt a senescent phenotype characterized by increased IL-1α secretion, senescence-associated β-galactosidase activity, and diminished proliferation. Exposure to allergens failed to elicit such a response, supporting a distinction between different types of environmental exposure. uPM-induced senescence was independent of key macrophage activation pathways, specifically inflammasome and scavenger receptors. However, inhibition of the phagolysosome pathway abrogated senescence markers, supporting this phenotype's attribution to uPM phagocytosis. These data suggest that uPM exposure leads to macrophage senescence, which may contribute to immunopathology.
{"title":"Air Pollution Drives Macrophage Senescence through a Phagolysosome-15-Lipoxygenase Pathway.","authors":"Sarah A Thomas, H. Yong, Ana M Rule, N. Gour, Stephane Lajoie","doi":"10.4049/immunohorizons.2300096","DOIUrl":"https://doi.org/10.4049/immunohorizons.2300096","url":null,"abstract":"Urban particulate matter (PM; uPM) poses significant health risks, particularly to the respiratory system. Fine particles, such as PM2.5, can penetrate deep into the lungs and exacerbate a range of health problems, including emphysema, asthma, and lung cancer. PM exposure is also linked to extrapulmonary disorders such as heart and neurodegenerative diseases. Moreover, prolonged exposure to elevated PM levels can reduce overall life expectancy. Senescence is a dysfunctional cell state typically associated with age but can also be precipitated by environmental stressors. This study aimed to determine whether uPM could drive senescence in macrophages, an essential cell type involved in particulate phagocytosis-mediated clearance. Although it is known that uPM exposure impairs immune function, this deficit is multifaceted and incompletely understood, partly because of the use of particulates such as diesel exhaust particles as a surrogate for true uPM. uPM was collected from several locations in the United States, including Baltimore, Houston, and Phoenix. Bone marrow-derived macrophages were stimulated with uPM or reference particulates (e.g., diesel exhaust particles) to assess senescence-related parameters. We report that uPM-exposed bone marrow-derived macrophages adopt a senescent phenotype characterized by increased IL-1α secretion, senescence-associated β-galactosidase activity, and diminished proliferation. Exposure to allergens failed to elicit such a response, supporting a distinction between different types of environmental exposure. uPM-induced senescence was independent of key macrophage activation pathways, specifically inflammasome and scavenger receptors. However, inhibition of the phagolysosome pathway abrogated senescence markers, supporting this phenotype's attribution to uPM phagocytosis. These data suggest that uPM exposure leads to macrophage senescence, which may contribute to immunopathology.","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"145 ","pages":"307-316"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140767739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.4049/immunohorizons.2300078
Lee C. Brackman, Matthew S. Jung, Eseoghene I Ogaga, Nikhita Joshi, Lydia E. Wroblewski, M. Piazuelo, R. Peek, Y. Choksi, H. Algood
Helicobacter pylori is a Gram-negative pathogen that colonizes the stomach, induces inflammation, and drives pathological changes in the stomach tissue, including gastric cancer. As the principal cytokine produced by Th17 cells, IL-17 mediates protective immunity against pathogens by inducing the activation and mobilization of neutrophils. Whereas IL-17A is largely produced by lymphocytes, the IL-17 receptor is expressed in epithelial cells, fibroblasts, and hematopoietic cells. Loss of the IL-17RA in mice results in impaired antimicrobial responses to extracellular bacteria. In the context of H. pylori infection, this is compounded by extensive inflammation in Il17ra-/- mice. In this study, Foxa3creIl17rafl/fl (Il17raΔGI-Epi) and Il17rafl/fl (control) mice were used to test the hypothesis that IL-17RA signaling, specifically in epithelial cells, protects against severe inflammation after H. pylori infection. The data indicate that Il17raΔGI-Epi mice develop increased inflammation compared with controls. Despite reduced Pigr expression, levels of IgA increased in the gastric wash, suggesting significant increase in Ag-specific activation of the T follicular helper/B cell axis. Gene expression analysis of stomach tissues indicate that both acute and chronic responses are significantly increased in Il17raΔGI-Epi mice compared with controls. These data suggest that a deficiency of IL-17RA in epithelial cells is sufficient to drive chronic inflammation and hyperactivation of the Th17/T follicular helper/B cell axis but is not required for recruitment of polymorphonuclear neutrophils. Furthermore, the data suggest that fibroblasts can produce chemokines in response to IL-17 and may contribute to H. pylori-induced inflammation through this pathway.
幽门螺杆菌是一种革兰氏阴性病原体,它在胃中定植,诱发炎症,导致胃组织发生病理变化,包括胃癌。作为 Th17 细胞产生的主要细胞因子,IL-17 通过诱导中性粒细胞的活化和动员,介导针对病原体的保护性免疫。IL-17A 主要由淋巴细胞产生,而 IL-17 受体则在上皮细胞、成纤维细胞和造血细胞中表达。小鼠体内 IL-17RA 的缺失会导致对细胞外细菌的抗菌反应受损。在幽门螺杆菌感染的情况下,Il17ra-/-小鼠的广泛炎症会加剧这种情况。本研究利用 Foxa3creIl17rafl/fl(Il17raΔGI-Epi)和 Il17rafl/fl(对照组)小鼠来验证这样一个假设:IL-17RA 信号(尤其是上皮细胞中的信号)在幽门螺杆菌感染后可防止严重炎症。数据表明,与对照组相比,Il17raΔGI-Epi小鼠的炎症程度加重。尽管 Pigr 表达减少,但胃洗液中的 IgA 水平却升高了,这表明 T 滤泡辅助细胞/B 细胞轴的 Ag 特异性激活显著增加。胃组织的基因表达分析表明,与对照组相比,Il17raΔGI-Epi 小鼠的急性和慢性反应均显著增加。这些数据表明,上皮细胞中 IL-17RA 的缺乏足以驱动慢性炎症和 Th17/T 滤泡辅助细胞/B 细胞轴的过度激活,但不需要多形核中性粒细胞的招募。此外,数据还表明,成纤维细胞可对 IL-17 产生趋化因子反应,并可能通过这一途径促进幽门螺杆菌诱发的炎症。
{"title":"IL-17RA-Mediated Epithelial Cell Activity Prevents Severe Inflammatory Response to Helicobacter pylori Infection.","authors":"Lee C. Brackman, Matthew S. Jung, Eseoghene I Ogaga, Nikhita Joshi, Lydia E. Wroblewski, M. Piazuelo, R. Peek, Y. Choksi, H. Algood","doi":"10.4049/immunohorizons.2300078","DOIUrl":"https://doi.org/10.4049/immunohorizons.2300078","url":null,"abstract":"Helicobacter pylori is a Gram-negative pathogen that colonizes the stomach, induces inflammation, and drives pathological changes in the stomach tissue, including gastric cancer. As the principal cytokine produced by Th17 cells, IL-17 mediates protective immunity against pathogens by inducing the activation and mobilization of neutrophils. Whereas IL-17A is largely produced by lymphocytes, the IL-17 receptor is expressed in epithelial cells, fibroblasts, and hematopoietic cells. Loss of the IL-17RA in mice results in impaired antimicrobial responses to extracellular bacteria. In the context of H. pylori infection, this is compounded by extensive inflammation in Il17ra-/- mice. In this study, Foxa3creIl17rafl/fl (Il17raΔGI-Epi) and Il17rafl/fl (control) mice were used to test the hypothesis that IL-17RA signaling, specifically in epithelial cells, protects against severe inflammation after H. pylori infection. The data indicate that Il17raΔGI-Epi mice develop increased inflammation compared with controls. Despite reduced Pigr expression, levels of IgA increased in the gastric wash, suggesting significant increase in Ag-specific activation of the T follicular helper/B cell axis. Gene expression analysis of stomach tissues indicate that both acute and chronic responses are significantly increased in Il17raΔGI-Epi mice compared with controls. These data suggest that a deficiency of IL-17RA in epithelial cells is sufficient to drive chronic inflammation and hyperactivation of the Th17/T follicular helper/B cell axis but is not required for recruitment of polymorphonuclear neutrophils. Furthermore, the data suggest that fibroblasts can produce chemokines in response to IL-17 and may contribute to H. pylori-induced inflammation through this pathway.","PeriodicalId":94037,"journal":{"name":"ImmunoHorizons","volume":"55 42","pages":"339-353"},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140796094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}