首页 > 最新文献

Journal of medical imaging and radiation sciences最新文献

英文 中文
ADVANCEMENTS IN AI TRAINING AND EDUCATION FOR A FUTURE-READY HEALTHCARE SYSTEM 面向未来的医疗保健系统的人工智能培训和教育进展
Pub Date : 2023-09-01 DOI: 10.1016/j.jmir.2023.06.122
Kumar Shamie
{"title":"ADVANCEMENTS IN AI TRAINING AND EDUCATION FOR A FUTURE-READY HEALTHCARE SYSTEM","authors":"Kumar Shamie","doi":"10.1016/j.jmir.2023.06.122","DOIUrl":"https://doi.org/10.1016/j.jmir.2023.06.122","url":null,"abstract":"","PeriodicalId":94092,"journal":{"name":"Journal of medical imaging and radiation sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47064319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SAFETY AND ACCURACY OF MULTIPLE PRENATAL ULTRASOUND EXAMINATIONS FOR FETAL GENDER IDENTIFICATION: A SCOPING REVIEW 多种产前超声检查用于胎儿性别鉴定的安全性和准确性:一项范围界定综述
Pub Date : 2023-09-01 DOI: 10.1016/j.jmir.2023.06.133
F. A. Hadi, F. W. A. Zaiki
{"title":"SAFETY AND ACCURACY OF MULTIPLE PRENATAL ULTRASOUND EXAMINATIONS FOR FETAL GENDER IDENTIFICATION: A SCOPING REVIEW","authors":"F. A. Hadi, F. W. A. Zaiki","doi":"10.1016/j.jmir.2023.06.133","DOIUrl":"https://doi.org/10.1016/j.jmir.2023.06.133","url":null,"abstract":"","PeriodicalId":94092,"journal":{"name":"Journal of medical imaging and radiation sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44373998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A COMPREHENSIVE REVIEW OF INDONESIAN DIAGNOSTIC REFERENCE LEVELS (IDRLs) FOR CT SCAN EXAMINATIONS 印度尼西亚CT扫描诊断参考水平的综合评价
Pub Date : 2023-09-01 DOI: 10.1016/j.jmir.2023.06.113
P. Wulandari, Ppw Gitawiarsa, Putu Adi Susanta
{"title":"A COMPREHENSIVE REVIEW OF INDONESIAN DIAGNOSTIC REFERENCE LEVELS (IDRLs) FOR CT SCAN EXAMINATIONS","authors":"P. Wulandari, Ppw Gitawiarsa, Putu Adi Susanta","doi":"10.1016/j.jmir.2023.06.113","DOIUrl":"https://doi.org/10.1016/j.jmir.2023.06.113","url":null,"abstract":"","PeriodicalId":94092,"journal":{"name":"Journal of medical imaging and radiation sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49012753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DIAGNOSTIC REFERENCE LEVEL OF RADIATION DOSE AND IMAGE QUALITY OF ADULT CT ABDOMINAL EXAMINATIONS IN A TERTIARY HOSPITAL IN MALAYSIA 马来西亚某三级医院成人ct腹部检查放射剂量和图像质量的诊断参考水平
Pub Date : 2023-09-01 DOI: 10.1016/j.jmir.2023.06.108
Mohamad Asmawi Mohamad Ariffin, M. Karim
{"title":"DIAGNOSTIC REFERENCE LEVEL OF RADIATION DOSE AND IMAGE QUALITY OF ADULT CT ABDOMINAL EXAMINATIONS IN A TERTIARY HOSPITAL IN MALAYSIA","authors":"Mohamad Asmawi Mohamad Ariffin, M. Karim","doi":"10.1016/j.jmir.2023.06.108","DOIUrl":"https://doi.org/10.1016/j.jmir.2023.06.108","url":null,"abstract":"","PeriodicalId":94092,"journal":{"name":"Journal of medical imaging and radiation sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47236520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE APPLICATION OF ARTIFICIAL INTELLIGENCE ON SCAR SEGMENTATION IN CARDIAC MAGNETIC RESONANCE IMAGING: A SYSTEMATIC LITERATURE REVIEW 人工智能在心脏磁共振成像瘢痕分割中的应用:系统的文献综述
Pub Date : 2023-09-01 DOI: 10.1016/j.jmir.2023.06.117
Roslan Nurul Ashikin, Setiawan Agung Nugroho, Norzan Muhammad Ammar, Jasmin Nur Hayati
OBJECTIVE We aimed to assess the application of Artificial Intelligence (AI) methodologies for scar segmentation in cardiac magnetic resonance (CMR) imaging and its performance evaluation. MATERIALS & METHODS Following PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) guidelines, a systematic search of PubMed and Science Direct was undertaken from 2012 to 2022 to search for full-text publications that implemented AI methods on scar segmentation in CMR in patients with cardiovascular diseases. RESULTS A total of 21 articles out of 475 articles were selected for the final review. Supervised deep learning and unsupervised machine learning were implemented in 16 (76.2%) and 5 (23.8%) articles respectively, favouring learning methods. Dice similarity coefficient (DSC) value was used as measures of the performance of AI methods in 19 articles. Supervised and unsupervised learning models had similar DSC compared to manual segmentation with a score of 0.74, 95% confidence interval (CI) [0.67, 0.81] vs 0.71, 95% CI [0.63, 0.79], P = 0.35). The application of AI has been advanced with the emerging of sophisticated algorithms allowing for quantification of border zone and microvascular obstruction regions. The performance of AI method is highly depending on the network architecture, training strategies, and data set used for training. CONCLUSION The presence of AI methods in scar segmentation demonstrated high feasibility with good performance evaluation for quantifying myocardial scar. This study can have a huge impact on clinicians in health care by improving their experiences with scar segmentation and enhancing clinically validated application of AI in CMR imaging. We aimed to assess the application of Artificial Intelligence (AI) methodologies for scar segmentation in cardiac magnetic resonance (CMR) imaging and its performance evaluation. Following PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) guidelines, a systematic search of PubMed and Science Direct was undertaken from 2012 to 2022 to search for full-text publications that implemented AI methods on scar segmentation in CMR in patients with cardiovascular diseases. A total of 21 articles out of 475 articles were selected for the final review. Supervised deep learning and unsupervised machine learning were implemented in 16 (76.2%) and 5 (23.8%) articles respectively, favouring learning methods. Dice similarity coefficient (DSC) value was used as measures of the performance of AI methods in 19 articles. Supervised and unsupervised learning models had similar DSC compared to manual segmentation with a score of 0.74, 95% confidence interval (CI) [0.67, 0.81] vs 0.71, 95% CI [0.63, 0.79], P = 0.35). The application of AI has been advanced with the emerging of sophisticated algorithms allowing for quantification of border zone and microvascular obstruction regions. The performance of AI method is highly depending on the network architecture, training
目的探讨人工智能(AI)方法在心脏磁共振(CMR)成像中疤痕分割的应用及其性能评价。材料和方法遵循PRISMA(系统评价和荟萃分析的首选报告项目)指南,在2012年至2022年期间对PubMed和Science Direct进行了系统搜索,以搜索在心血管疾病患者的CMR中应用AI方法进行疤痕分割的全文出版物。结果475篇文献中,共有21篇入选终审稿。有监督深度学习和无监督机器学习分别在16篇(76.2%)和5篇(23.8%)文章中实现,有利于学习方法。在19篇文章中,采用骰子相似系数(DSC)值作为人工智能方法性能的度量。与人工分割相比,有监督学习和无监督学习模型的DSC相似,得分为0.74,95%置信区间(CI) [0.67, 0.81] vs 0.71, 95% CI [0.63, 0.79], P = 0.35)。随着复杂算法的出现,人工智能的应用已经取得了进展,可以对边界区和微血管阻塞区域进行量化。人工智能方法的性能高度依赖于网络架构、训练策略和用于训练的数据集。结论人工智能方法在瘢痕分割中应用于心肌瘢痕定量具有较高的可行性和良好的性能评价。这项研究可以通过改善他们在疤痕分割方面的经验和加强人工智能在CMR成像中的临床验证应用,对医疗保健临床医生产生巨大影响。我们旨在评估人工智能(AI)方法在心脏磁共振(CMR)成像中疤痕分割的应用及其性能评估。遵循PRISMA(系统评价和荟萃分析的首选报告项目)指南,从2012年到2022年,对PubMed和Science Direct进行了系统搜索,以搜索在心血管疾病患者的CMR中应用AI方法进行疤痕分割的全文出版物。从475篇文章中选出21篇文章进行最终审查。有监督深度学习和无监督机器学习分别在16篇(76.2%)和5篇(23.8%)文章中实现,有利于学习方法。在19篇文章中,采用骰子相似系数(DSC)值作为人工智能方法性能的度量。与人工分割相比,有监督学习和无监督学习模型的DSC相似,得分为0.74,95%置信区间(CI) [0.67, 0.81] vs 0.71, 95% CI [0.63, 0.79], P = 0.35)。随着复杂算法的出现,人工智能的应用已经取得了进展,可以对边界区和微血管阻塞区域进行量化。人工智能方法的性能高度依赖于网络架构、训练策略和用于训练的数据集。人工智能方法在疤痕分割中的应用,对心肌疤痕量化具有较高的可行性和良好的性能评价。这项研究可以通过改善他们在疤痕分割方面的经验和加强人工智能在CMR成像中的临床验证应用,对医疗保健临床医生产生巨大影响。
{"title":"THE APPLICATION OF ARTIFICIAL INTELLIGENCE ON SCAR SEGMENTATION IN CARDIAC MAGNETIC RESONANCE IMAGING: A SYSTEMATIC LITERATURE REVIEW","authors":"Roslan Nurul Ashikin, Setiawan Agung Nugroho, Norzan Muhammad Ammar, Jasmin Nur Hayati","doi":"10.1016/j.jmir.2023.06.117","DOIUrl":"https://doi.org/10.1016/j.jmir.2023.06.117","url":null,"abstract":"OBJECTIVE We aimed to assess the application of Artificial Intelligence (AI) methodologies for scar segmentation in cardiac magnetic resonance (CMR) imaging and its performance evaluation. MATERIALS & METHODS Following PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) guidelines, a systematic search of PubMed and Science Direct was undertaken from 2012 to 2022 to search for full-text publications that implemented AI methods on scar segmentation in CMR in patients with cardiovascular diseases. RESULTS A total of 21 articles out of 475 articles were selected for the final review. Supervised deep learning and unsupervised machine learning were implemented in 16 (76.2%) and 5 (23.8%) articles respectively, favouring learning methods. Dice similarity coefficient (DSC) value was used as measures of the performance of AI methods in 19 articles. Supervised and unsupervised learning models had similar DSC compared to manual segmentation with a score of 0.74, 95% confidence interval (CI) [0.67, 0.81] vs 0.71, 95% CI [0.63, 0.79], P = 0.35). The application of AI has been advanced with the emerging of sophisticated algorithms allowing for quantification of border zone and microvascular obstruction regions. The performance of AI method is highly depending on the network architecture, training strategies, and data set used for training. CONCLUSION The presence of AI methods in scar segmentation demonstrated high feasibility with good performance evaluation for quantifying myocardial scar. This study can have a huge impact on clinicians in health care by improving their experiences with scar segmentation and enhancing clinically validated application of AI in CMR imaging. We aimed to assess the application of Artificial Intelligence (AI) methodologies for scar segmentation in cardiac magnetic resonance (CMR) imaging and its performance evaluation. Following PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) guidelines, a systematic search of PubMed and Science Direct was undertaken from 2012 to 2022 to search for full-text publications that implemented AI methods on scar segmentation in CMR in patients with cardiovascular diseases. A total of 21 articles out of 475 articles were selected for the final review. Supervised deep learning and unsupervised machine learning were implemented in 16 (76.2%) and 5 (23.8%) articles respectively, favouring learning methods. Dice similarity coefficient (DSC) value was used as measures of the performance of AI methods in 19 articles. Supervised and unsupervised learning models had similar DSC compared to manual segmentation with a score of 0.74, 95% confidence interval (CI) [0.67, 0.81] vs 0.71, 95% CI [0.63, 0.79], P = 0.35). The application of AI has been advanced with the emerging of sophisticated algorithms allowing for quantification of border zone and microvascular obstruction regions. The performance of AI method is highly depending on the network architecture, training","PeriodicalId":94092,"journal":{"name":"Journal of medical imaging and radiation sciences","volume":"178 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136265481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EFFECT OF INDUCTION CHEMOTHERAPY ON GROSS TUMOUR VOLUME REDUCTION AND ORGAN DOSES IN ADVANCED-STAGE NASOPHARYNGEAL CARCINOMA: CORRELATION WITH EPSTEIN-BARR VIRUS DNA LEVELS 诱导化疗对晚期鼻咽癌肿瘤体积缩小和器官剂量的影响:与eb病毒DNA水平的相关性
Pub Date : 2023-09-01 DOI: 10.1016/j.jmir.2023.06.137
Chen Semaya Natalia, Ong Xue Jing, Sin Sze Yarn
{"title":"EFFECT OF INDUCTION CHEMOTHERAPY ON GROSS TUMOUR VOLUME REDUCTION AND ORGAN DOSES IN ADVANCED-STAGE NASOPHARYNGEAL CARCINOMA: CORRELATION WITH EPSTEIN-BARR VIRUS DNA LEVELS","authors":"Chen Semaya Natalia, Ong Xue Jing, Sin Sze Yarn","doi":"10.1016/j.jmir.2023.06.137","DOIUrl":"https://doi.org/10.1016/j.jmir.2023.06.137","url":null,"abstract":"","PeriodicalId":94092,"journal":{"name":"Journal of medical imaging and radiation sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47823296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RADIATION EXPOSURE RATE REDUCTION IN MOBILE X-RAY EXAMINATION EQUIPPED WITH A BLUETOOTH WIRELESS EXPOSURE SWITCH:A PRE-EXPERIMENTAL STUDY 配备蓝牙无线暴露开关的移动x线检查降低辐射暴露率的实验前研究
Pub Date : 2023-09-01 DOI: 10.1016/j.jmir.2023.06.136
Sulistiyadi Akhmad Haris, Wibowo Ardi Soesilo, Rochmayanti Dwi, Kartikasari Yeti, S. Sugiyanto, Ardiyanto Jeffri, Rasyid Rasyid, Nurbaiti Salis
{"title":"RADIATION EXPOSURE RATE REDUCTION IN MOBILE X-RAY EXAMINATION EQUIPPED WITH A BLUETOOTH WIRELESS EXPOSURE SWITCH:A PRE-EXPERIMENTAL STUDY","authors":"Sulistiyadi Akhmad Haris, Wibowo Ardi Soesilo, Rochmayanti Dwi, Kartikasari Yeti, S. Sugiyanto, Ardiyanto Jeffri, Rasyid Rasyid, Nurbaiti Salis","doi":"10.1016/j.jmir.2023.06.136","DOIUrl":"https://doi.org/10.1016/j.jmir.2023.06.136","url":null,"abstract":"","PeriodicalId":94092,"journal":{"name":"Journal of medical imaging and radiation sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47852108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MAPPING SENTENCE COMPREHENSION TASK IN HEALTHY COGNITIVE AGEING (HCA): A fMRI STUDY 健康认知衰老(HCA)中句子理解任务的映射:fMRI研究
Pub Date : 2023-09-01 DOI: 10.1016/j.jmir.2023.06.141
M. Mazlyfarina, Sallehuddin Afrina, Mohamad Ariffin Elyqa Farra, Mohamad Shahimin Mizhanim, A. R. Rogayah, A. A. Azmarul, Leong Yuh Yang, Sahnan Norshuhada
{"title":"MAPPING SENTENCE COMPREHENSION TASK IN HEALTHY COGNITIVE AGEING (HCA): A fMRI STUDY","authors":"M. Mazlyfarina, Sallehuddin Afrina, Mohamad Ariffin Elyqa Farra, Mohamad Shahimin Mizhanim, A. R. Rogayah, A. A. Azmarul, Leong Yuh Yang, Sahnan Norshuhada","doi":"10.1016/j.jmir.2023.06.141","DOIUrl":"https://doi.org/10.1016/j.jmir.2023.06.141","url":null,"abstract":"","PeriodicalId":94092,"journal":{"name":"Journal of medical imaging and radiation sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44792348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CONTRAST ENHANCEMENT AND IMAGE QUALITY ACCEPTABILITY OF COMPUTED TOMOGRAPHY PULMONARY ANGIOGRAPHY USING AUTOMATIC BOLUS TRACKING AND TEST BOLUS CONTRAST INJECTION TECHNIQUES 使用自动推注追踪和测试推注造影剂注射技术的计算机断层扫描肺血管造影术的对比度增强和图像质量可接受性
Pub Date : 2023-09-01 DOI: 10.1016/j.jmir.2023.06.118
Ahmad Sabri Afiq, M. Shafini, Nor Azman Nurul Dizyana, Mahmud Mohd Hafizi
{"title":"CONTRAST ENHANCEMENT AND IMAGE QUALITY ACCEPTABILITY OF COMPUTED TOMOGRAPHY PULMONARY ANGIOGRAPHY USING AUTOMATIC BOLUS TRACKING AND TEST BOLUS CONTRAST INJECTION TECHNIQUES","authors":"Ahmad Sabri Afiq, M. Shafini, Nor Azman Nurul Dizyana, Mahmud Mohd Hafizi","doi":"10.1016/j.jmir.2023.06.118","DOIUrl":"https://doi.org/10.1016/j.jmir.2023.06.118","url":null,"abstract":"","PeriodicalId":94092,"journal":{"name":"Journal of medical imaging and radiation sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48713004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE CONTRAST-ENHANCE SEQUENCE AND 3D TIME-OF-FLIGHT SEQUENCE COMPARISON ON ANEURISMS MR ANGIOGRAPHY EXAMINATION : STUDI LITERATURE REVIEW 增强序列与三维飞行时间序列在动脉瘤MR血管造影术检查中的比较研究文献综述
Pub Date : 2023-09-01 DOI: 10.1016/j.jmir.2023.06.128
Lutfiani Sintia Aprilina, Susanto Edy, Murniati Emi, Halim Kelvin
{"title":"THE CONTRAST-ENHANCE SEQUENCE AND 3D TIME-OF-FLIGHT SEQUENCE COMPARISON ON ANEURISMS MR ANGIOGRAPHY EXAMINATION : STUDI LITERATURE REVIEW","authors":"Lutfiani Sintia Aprilina, Susanto Edy, Murniati Emi, Halim Kelvin","doi":"10.1016/j.jmir.2023.06.128","DOIUrl":"https://doi.org/10.1016/j.jmir.2023.06.128","url":null,"abstract":"","PeriodicalId":94092,"journal":{"name":"Journal of medical imaging and radiation sciences","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48806310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of medical imaging and radiation sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1