Pub Date : 2024-02-01Epub Date: 2023-09-20DOI: 10.1111/psyp.14445
Frances R Chen, Katherine French
Integrating Polyvagal Theory and Reinforcement Sensitivity Theory (RST), we examined pre-ejection period (PEP) reward reactivity, which was suggested to index trait impulsivity, as a moderator between respiratory sinus arrhythmia (RSA) reactivity and antisocial behavior (ASB), and substance use in an urban male, adult sample. To understand the inconsistent findings between RSA reactivity and externalizing problems, we proposed to study both negatively and positively valenced tasks for RSA reactivity and to include PEP reward reactivity as a moderator for the RSA-behavior link. Data were collected from an urban sample of 131 male adults (active offenders, demographic controls, and college students). ICG (impedance cardiography) and ECG (electrocardiogram) were recorded, computing PEP (sympathetic nervous system activity marker) and RSA (parasympathetic nervous system activity marker), while participants completed the modified Trier Social Stress Test and a simple reward task. Reactivity was calculated by subtracting the baseline from the task activity. Consistent with prior studies, more RSA withdrawal to stress and less PEP shortening to reward predicted the most ASB and substance use. Less RSA withdrawal to reward and more PEP shortening to reward predicted the most ASB and substance use. We incorporated autonomic space, RST, and Polyvagal Theory to discuss our findings, and specifically highlight how clarifying what each reactivity captures based on the task demand (e.g., presence of social threat, need for vagal-mediated social affiliative behavior) can illuminate our understanding of the result patterns.
{"title":"PEP reward reactivity moderates the effects of RSA reactivity on antisocial behavior and substance use.","authors":"Frances R Chen, Katherine French","doi":"10.1111/psyp.14445","DOIUrl":"10.1111/psyp.14445","url":null,"abstract":"<p><p>Integrating Polyvagal Theory and Reinforcement Sensitivity Theory (RST), we examined pre-ejection period (PEP) reward reactivity, which was suggested to index trait impulsivity, as a moderator between respiratory sinus arrhythmia (RSA) reactivity and antisocial behavior (ASB), and substance use in an urban male, adult sample. To understand the inconsistent findings between RSA reactivity and externalizing problems, we proposed to study both negatively and positively valenced tasks for RSA reactivity and to include PEP reward reactivity as a moderator for the RSA-behavior link. Data were collected from an urban sample of 131 male adults (active offenders, demographic controls, and college students). ICG (impedance cardiography) and ECG (electrocardiogram) were recorded, computing PEP (sympathetic nervous system activity marker) and RSA (parasympathetic nervous system activity marker), while participants completed the modified Trier Social Stress Test and a simple reward task. Reactivity was calculated by subtracting the baseline from the task activity. Consistent with prior studies, more RSA withdrawal to stress and less PEP shortening to reward predicted the most ASB and substance use. Less RSA withdrawal to reward and more PEP shortening to reward predicted the most ASB and substance use. We incorporated autonomic space, RST, and Polyvagal Theory to discuss our findings, and specifically highlight how clarifying what each reactivity captures based on the task demand (e.g., presence of social threat, need for vagal-mediated social affiliative behavior) can illuminate our understanding of the result patterns.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41125510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-11-10DOI: 10.1111/psyp.14459
Kathrin Sadus, Anna-Lena Schubert, Christoph Löffler, Dirk Hagemann
It is well established that P3 latencies increase with age. Investigating these age-related differences requires numerous methodological decisions, resulting in pipelines of great variation. The aim of the present work was to investigate the effects of different analytical pipelines on the age-related differences in P3 latencies in real data. Therefore, we conducted an explorative multiverse study and varied the low-pass filter (4 Hz, 8 Hz, 16 Hz, 32 Hz, and no filter), the latency type (area vs. peak), the level of event-related potential analysis (single participant vs. jackknifing), and the extraction method (manual vs. automated). Thirty young (18-21 years) and 30 old (50-60 years) participants completed three tasks (Nback task, Switching task, Flanker task), while an EEG was recorded. The results show that different analysis strategies can have a tremendous impact on the detection and magnitude of the age effect, with effect sizes ranging from 0% to 88% explained variance. Likewise, regarding the psychometric properties of P3 latencies, we found that the reliabilities fluctuated between rtt = .20 and 1.00, while the homogeneities ranged from rh = -.12 to .90. Based on predefined criteria, we found that the most effective pipelines relied on a manual extraction based on a single participant's data. For peak latencies, manual extraction performed well for all filters except for 4 Hz, while for area latencies, filters above 8 Hz produced desirable results. Furthermore, our findings add to the evidence that jackknifing combined with peak latencies can lead to inconclusive results.
{"title":"An explorative multiverse study for extracting differences in P3 latencies between young and old adults.","authors":"Kathrin Sadus, Anna-Lena Schubert, Christoph Löffler, Dirk Hagemann","doi":"10.1111/psyp.14459","DOIUrl":"10.1111/psyp.14459","url":null,"abstract":"<p><p>It is well established that P3 latencies increase with age. Investigating these age-related differences requires numerous methodological decisions, resulting in pipelines of great variation. The aim of the present work was to investigate the effects of different analytical pipelines on the age-related differences in P3 latencies in real data. Therefore, we conducted an explorative multiverse study and varied the low-pass filter (4 Hz, 8 Hz, 16 Hz, 32 Hz, and no filter), the latency type (area vs. peak), the level of event-related potential analysis (single participant vs. jackknifing), and the extraction method (manual vs. automated). Thirty young (18-21 years) and 30 old (50-60 years) participants completed three tasks (Nback task, Switching task, Flanker task), while an EEG was recorded. The results show that different analysis strategies can have a tremendous impact on the detection and magnitude of the age effect, with effect sizes ranging from 0% to 88% explained variance. Likewise, regarding the psychometric properties of P3 latencies, we found that the reliabilities fluctuated between r<sub>tt</sub> = .20 and 1.00, while the homogeneities ranged from r<sub>h</sub> = -.12 to .90. Based on predefined criteria, we found that the most effective pipelines relied on a manual extraction based on a single participant's data. For peak latencies, manual extraction performed well for all filters except for 4 Hz, while for area latencies, filters above 8 Hz produced desirable results. Furthermore, our findings add to the evidence that jackknifing combined with peak latencies can lead to inconclusive results.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72212494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-10-09DOI: 10.1111/psyp.14453
Wenjie Liu, Yuhui Cheng, Xiangyong Yuan, Yi Jiang
The pupil of the eye responds to various salient signals from different modalities, but there is no consensus on how these pupillary responses are integrated when multiple signals appear simultaneously. Both linear and nonlinear integration have been found previously. The current study aimed to reexamine the nature of pupillary integration, and specifically focused on the early, transient pupillary responses due to its close relationship with orienting. To separate the early pupillary responses out of the pupil time series, we adopted a pupil oscillation paradigm in which sensory stimuli were periodically presented. The simulation analysis confirmed that the amplitude of the pupil oscillation, induced by stimuli repeatedly presented at relatively high rates, can precisely reflect the early, transient pupillary responses without involving the late and sustained pupillary responses. The experimental results then showed that the amplitude of pupil oscillation induced by a series of simultaneous audiovisual stimuli equaled to a linear summation of the oscillatory amplitudes when unisensory stimuli were presented alone. Moreover, the tonic arousal levels, indicated by the baseline pupil size, cannot shift the summation from linear to nonlinear. These findings together support the additive nature of multisensory pupillary integration for the early, orienting-related pupillary responses. The additive nature of pupillary integration further implies that multiple pupillary responses may be independent of each other, irrespective of their potential cognitive and neural drivers.
{"title":"Linear integration of multisensory signals in the pupil.","authors":"Wenjie Liu, Yuhui Cheng, Xiangyong Yuan, Yi Jiang","doi":"10.1111/psyp.14453","DOIUrl":"10.1111/psyp.14453","url":null,"abstract":"<p><p>The pupil of the eye responds to various salient signals from different modalities, but there is no consensus on how these pupillary responses are integrated when multiple signals appear simultaneously. Both linear and nonlinear integration have been found previously. The current study aimed to reexamine the nature of pupillary integration, and specifically focused on the early, transient pupillary responses due to its close relationship with orienting. To separate the early pupillary responses out of the pupil time series, we adopted a pupil oscillation paradigm in which sensory stimuli were periodically presented. The simulation analysis confirmed that the amplitude of the pupil oscillation, induced by stimuli repeatedly presented at relatively high rates, can precisely reflect the early, transient pupillary responses without involving the late and sustained pupillary responses. The experimental results then showed that the amplitude of pupil oscillation induced by a series of simultaneous audiovisual stimuli equaled to a linear summation of the oscillatory amplitudes when unisensory stimuli were presented alone. Moreover, the tonic arousal levels, indicated by the baseline pupil size, cannot shift the summation from linear to nonlinear. These findings together support the additive nature of multisensory pupillary integration for the early, orienting-related pupillary responses. The additive nature of pupillary integration further implies that multiple pupillary responses may be independent of each other, irrespective of their potential cognitive and neural drivers.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41184593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent evidence suggests that the autonomic nervous system can contribute to memory consolidation during sleep. Whether fluctuations in cardiac autonomic activity during sleep following physical exercise contribute to the process of memory consolidation has not been studied. We assessed the effects of a non-rapid eye movement (NREM) nap following acute exercise on cardiac autonomic regulation assessed with heart rate variability (HRV) to examine if HRV influences memory processes. Fifty-six (59% female) healthy young adults (23.14 ± 3.74 years) were randomly allocated to either the exercise plus nap (ExNap, n = 27) or nap alone (NoExNap, n = 29) groups. The ExNap group performed a 40-minute moderate-intensity cycling, while the NoExNap group was sedentary prior to learning 45 neutral pictures for a later test. Subsequently, participants underwent a 60-minute NREM nap while measuring EKG, followed by a visual recognition test. Our results indicated that heart rate did not significantly differ between the groups (p = .243), whereas vagally mediated HRV indices were lower in the ExNap group compared to the NoExNap group (p < .05). There were no significant differences in sleep variables between the groups (p > .05). Recognition accuracy was significantly higher in the ExNap group than in the NoExNap group (p = .027). In addition, the recognition accuracy of the ExNap group was negatively associated with vagally mediated HRV (p < .05). Pre-nap acute exercise appears to attenuate parasympathetic activity and to alter the relationship between memory and cardiac autonomic activity.
{"title":"The effects of acute exercise and a nap on heart rate variability and memory in young sedentary adults.","authors":"Melodee Mograss, Emmanuel Frimpong, Franck Vilcourt, Florian Chouchou, Tehila Zvionow, Thien Thanh Dang-Vu","doi":"10.1111/psyp.14454","DOIUrl":"10.1111/psyp.14454","url":null,"abstract":"<p><p>Recent evidence suggests that the autonomic nervous system can contribute to memory consolidation during sleep. Whether fluctuations in cardiac autonomic activity during sleep following physical exercise contribute to the process of memory consolidation has not been studied. We assessed the effects of a non-rapid eye movement (NREM) nap following acute exercise on cardiac autonomic regulation assessed with heart rate variability (HRV) to examine if HRV influences memory processes. Fifty-six (59% female) healthy young adults (23.14 ± 3.74 years) were randomly allocated to either the exercise plus nap (ExNap, n = 27) or nap alone (NoExNap, n = 29) groups. The ExNap group performed a 40-minute moderate-intensity cycling, while the NoExNap group was sedentary prior to learning 45 neutral pictures for a later test. Subsequently, participants underwent a 60-minute NREM nap while measuring EKG, followed by a visual recognition test. Our results indicated that heart rate did not significantly differ between the groups (p = .243), whereas vagally mediated HRV indices were lower in the ExNap group compared to the NoExNap group (p < .05). There were no significant differences in sleep variables between the groups (p > .05). Recognition accuracy was significantly higher in the ExNap group than in the NoExNap group (p = .027). In addition, the recognition accuracy of the ExNap group was negatively associated with vagally mediated HRV (p < .05). Pre-nap acute exercise appears to attenuate parasympathetic activity and to alter the relationship between memory and cardiac autonomic activity.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49686880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-10-03DOI: 10.1111/psyp.14452
Stephan Moratti, Christopher Gundlach, Javier de Echegaray, Matthias M Müller
In recent years, steady-state visual evoked potentials (SSVEPs) became an increasingly valuable tool to investigate neural dynamics of competitive attentional interactions and brain-computer interfaces. This is due to their good signal-to-noise ratio, allowing for single-trial analysis, and their ongoing oscillating nature that enables to analyze temporal dynamics of facilitation and suppression. Given the popularity of SSVEPs, it is surprising that only a few studies looked at the cortical sources of these responses. This is in particular the case when searching for studies that assessed the cortical sources of attentional SSVEP amplitude modulations. To address this issue, we used a typical spatial attention task and recorded neuromagnetic fields (MEG) while presenting frequency-tagged stimuli in the left and right visual fields, respectively. Importantly, we controlled for attentional deployment in a baseline period before the shifting cue. Subjects either attended to a central fixation cross or to two peripheral stimuli simultaneously. Results clearly showed that signal sources and attention effects were restricted to the early visual cortex: V1, V2, hMT+, precuneus, occipital-parietal, and inferior-temporal cortex. When subjects attended to central fixation first, shifting attention to one of the peripheral stimuli resulted in a significant activation increase for the to-be-attended stimulus with no activation decrease for the to-be-ignored stimulus in hMT+ and inferio-temporal cortex, but significant SSVEF decreases from V1 to occipito-parietal cortex. When attention was first deployed to both rings, shifting attention away from one ring basically resulted in a significant activation decrease in all areas for the then-to-be-ignored stimulus.
{"title":"Distinct patterns of spatial attentional modulation of steady-state visual evoked magnetic fields (SSVEFs) in subdivisions of the human early visual cortex.","authors":"Stephan Moratti, Christopher Gundlach, Javier de Echegaray, Matthias M Müller","doi":"10.1111/psyp.14452","DOIUrl":"10.1111/psyp.14452","url":null,"abstract":"<p><p>In recent years, steady-state visual evoked potentials (SSVEPs) became an increasingly valuable tool to investigate neural dynamics of competitive attentional interactions and brain-computer interfaces. This is due to their good signal-to-noise ratio, allowing for single-trial analysis, and their ongoing oscillating nature that enables to analyze temporal dynamics of facilitation and suppression. Given the popularity of SSVEPs, it is surprising that only a few studies looked at the cortical sources of these responses. This is in particular the case when searching for studies that assessed the cortical sources of attentional SSVEP amplitude modulations. To address this issue, we used a typical spatial attention task and recorded neuromagnetic fields (MEG) while presenting frequency-tagged stimuli in the left and right visual fields, respectively. Importantly, we controlled for attentional deployment in a baseline period before the shifting cue. Subjects either attended to a central fixation cross or to two peripheral stimuli simultaneously. Results clearly showed that signal sources and attention effects were restricted to the early visual cortex: V1, V2, hMT+, precuneus, occipital-parietal, and inferior-temporal cortex. When subjects attended to central fixation first, shifting attention to one of the peripheral stimuli resulted in a significant activation increase for the to-be-attended stimulus with no activation decrease for the to-be-ignored stimulus in hMT+ and inferio-temporal cortex, but significant SSVEF decreases from V1 to occipito-parietal cortex. When attention was first deployed to both rings, shifting attention away from one ring basically resulted in a significant activation decrease in all areas for the then-to-be-ignored stimulus.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41176545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-09-22DOI: 10.1111/psyp.14443
D M Pfabigan, E R Frogner, E Schéle, P M Thorsby, B S Skålhegg, S L Dickson, U Sailer
The gut hormone ghrelin drives food motivation and increases food intake, but it is also involved in the anticipation of and response to rewards other than food. This pre-registered study investigated how naturally varying ghrelin concentrations affect the processing of touch as a social reward in humans. Sixty-seven volunteers received slow caressing touch (so-called CT-targeted touch) as a social reward and control touch on their shins during 3T functional imaging on two test days. On one occasion, participants were fasted, and on another, they received a meal. On each occasion, plasma ghrelin was measured at three time points. All touch was rated as more pleasant after the meal, but there was no association between ghrelin concentrations and pleasantness. CT-targeted touch was rated as the most pleasant and activated somatosensory and reward networks (whole brain). A region-of-interest in the right medial orbitofrontal cortex (mOFC) showed lower activation during all touches, the higher the ghrelin concentrations were. During CT-targeted touch, a larger satiety response (ghrelin decrease after the meal) was associated with higher mOFC activation, and this mOFC activation was associated with higher experienced pleasantness. Overall, higher ghrelin concentrations appear to be related to a lower reward value for touch. Ghrelin may reduce the value of social stimuli, such as touch, to promote food search and intake in a state of low energy. This suggests that the role of ghrelin goes beyond assigning value to food reward.
{"title":"Ghrelin is related to lower brain reward activation during touch.","authors":"D M Pfabigan, E R Frogner, E Schéle, P M Thorsby, B S Skålhegg, S L Dickson, U Sailer","doi":"10.1111/psyp.14443","DOIUrl":"10.1111/psyp.14443","url":null,"abstract":"<p><p>The gut hormone ghrelin drives food motivation and increases food intake, but it is also involved in the anticipation of and response to rewards other than food. This pre-registered study investigated how naturally varying ghrelin concentrations affect the processing of touch as a social reward in humans. Sixty-seven volunteers received slow caressing touch (so-called CT-targeted touch) as a social reward and control touch on their shins during 3T functional imaging on two test days. On one occasion, participants were fasted, and on another, they received a meal. On each occasion, plasma ghrelin was measured at three time points. All touch was rated as more pleasant after the meal, but there was no association between ghrelin concentrations and pleasantness. CT-targeted touch was rated as the most pleasant and activated somatosensory and reward networks (whole brain). A region-of-interest in the right medial orbitofrontal cortex (mOFC) showed lower activation during all touches, the higher the ghrelin concentrations were. During CT-targeted touch, a larger satiety response (ghrelin decrease after the meal) was associated with higher mOFC activation, and this mOFC activation was associated with higher experienced pleasantness. Overall, higher ghrelin concentrations appear to be related to a lower reward value for touch. Ghrelin may reduce the value of social stimuli, such as touch, to promote food search and intake in a state of low energy. This suggests that the role of ghrelin goes beyond assigning value to food reward.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41168277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-11-08DOI: 10.1111/psyp.14458
Ting Li, Chunliang Feng, Jinhui Wang
Human costly punishment is rooted in multiple regions across large-scale functional systems, a collection of which constitutes the costly punishment network (CPN). Our previous study found that the CPN is intrinsically organized in an optimized and reliable manner to support individual costly punishment propensity. However, it remains unknown how the CPN is reconfigured in response to external cognitive demands in punishment decision-making. Here, we combined resting-state and task-functional magnetic resonance imaging to examine the task-related reconfigurations of intrinsic organizations of the CPN when participants made decisions of costly punishment in the Ultimatum Game. Although a strong consistency was observed in the overall pattern and each nodal profile between the intrinsic (task-free) and extrinsic (task-evoked) functional connectivity of the CPN, condition-general and condition-specific reconfigurations were also evident. Specifically, both unfair and fair conditions induced increases in functional connectivity between a few specific pairs of regions, and the unfair condition additionally induced increases in network efficiency of the CPN. Intriguingly, the specific changes in global efficiency of the CPN in the unfair condition were associated with individual differences in costly punishment after adjusting for the corresponding results in the fair condition, which were further identified for females but not for males. These findings were largely reproducible on independent samples. Collectively, our findings provide novel insights into how the CPN adaptively reconfigures its network architecture to support costly punishment.
{"title":"Reconfiguration of the costly punishment network architecture in punishment decision-making.","authors":"Ting Li, Chunliang Feng, Jinhui Wang","doi":"10.1111/psyp.14458","DOIUrl":"10.1111/psyp.14458","url":null,"abstract":"<p><p>Human costly punishment is rooted in multiple regions across large-scale functional systems, a collection of which constitutes the costly punishment network (CPN). Our previous study found that the CPN is intrinsically organized in an optimized and reliable manner to support individual costly punishment propensity. However, it remains unknown how the CPN is reconfigured in response to external cognitive demands in punishment decision-making. Here, we combined resting-state and task-functional magnetic resonance imaging to examine the task-related reconfigurations of intrinsic organizations of the CPN when participants made decisions of costly punishment in the Ultimatum Game. Although a strong consistency was observed in the overall pattern and each nodal profile between the intrinsic (task-free) and extrinsic (task-evoked) functional connectivity of the CPN, condition-general and condition-specific reconfigurations were also evident. Specifically, both unfair and fair conditions induced increases in functional connectivity between a few specific pairs of regions, and the unfair condition additionally induced increases in network efficiency of the CPN. Intriguingly, the specific changes in global efficiency of the CPN in the unfair condition were associated with individual differences in costly punishment after adjusting for the corresponding results in the fair condition, which were further identified for females but not for males. These findings were largely reproducible on independent samples. Collectively, our findings provide novel insights into how the CPN adaptively reconfigures its network architecture to support costly punishment.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-09-19DOI: 10.1111/psyp.14442
I Korolczuk, B Burle, J T Coull, H Ogińska, M Ociepka, M Senderecka, K Śmigasiewicz
Reacting in an unpredictable context increases error monitoring as evidenced by greater error-related negativity (ERN), an electrophysiological marker linked to an evaluation of response outcomes. We investigated whether ERN also increased when participants evaluated their responses to events that appeared in unpredictable versus predictable moments in time. We complemented electroencephalographic (EEG) analysis of cortical activity by measuring performance monitoring processes at the peripheral level using electromyography (EMG). Specifically, we used EMG data to quantify how temporal unpredictability would affect motor time (MT), the interval between the onset of muscle activity, and the mechanical response. MT increases following errors, indexing online error detection, and an attempt to stop incorrect actions. In our temporally cued version of the stop-signal task, symbolic cues predicted (temporally predictable condition) or not (temporally unpredictable condition) the onset of a target. In 25% of trials, an auditory signal occurred shortly after the target presentation, informing participants that they should inhibit their response completely. Response times were slower, and fewer inhibitory errors were made during temporally unpredictable than predictable trials, indicating enhanced control of unwanted actions when target onset time was unknown. Importantly, the ERN to inhibitory errors was greater in temporally unpredictable relative to temporally predictable conditions. Similarly, EMG data revealed prolonged MT when reactions to temporally unpredictable targets had not been stopped. Taken together, our results show that a temporally unpredictable environment increases the control of unwanted actions, both at cortical and peripheral levels, suggesting a higher subjective cost of maladaptive responses to temporally uncertain events.
{"title":"Temporal unpredictability increases error monitoring as revealed by EEG-EMG investigation.","authors":"I Korolczuk, B Burle, J T Coull, H Ogińska, M Ociepka, M Senderecka, K Śmigasiewicz","doi":"10.1111/psyp.14442","DOIUrl":"10.1111/psyp.14442","url":null,"abstract":"<p><p>Reacting in an unpredictable context increases error monitoring as evidenced by greater error-related negativity (ERN), an electrophysiological marker linked to an evaluation of response outcomes. We investigated whether ERN also increased when participants evaluated their responses to events that appeared in unpredictable versus predictable moments in time. We complemented electroencephalographic (EEG) analysis of cortical activity by measuring performance monitoring processes at the peripheral level using electromyography (EMG). Specifically, we used EMG data to quantify how temporal unpredictability would affect motor time (MT), the interval between the onset of muscle activity, and the mechanical response. MT increases following errors, indexing online error detection, and an attempt to stop incorrect actions. In our temporally cued version of the stop-signal task, symbolic cues predicted (temporally predictable condition) or not (temporally unpredictable condition) the onset of a target. In 25% of trials, an auditory signal occurred shortly after the target presentation, informing participants that they should inhibit their response completely. Response times were slower, and fewer inhibitory errors were made during temporally unpredictable than predictable trials, indicating enhanced control of unwanted actions when target onset time was unknown. Importantly, the ERN to inhibitory errors was greater in temporally unpredictable relative to temporally predictable conditions. Similarly, EMG data revealed prolonged MT when reactions to temporally unpredictable targets had not been stopped. Taken together, our results show that a temporally unpredictable environment increases the control of unwanted actions, both at cortical and peripheral levels, suggesting a higher subjective cost of maladaptive responses to temporally uncertain events.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41165636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01Epub Date: 2023-10-03DOI: 10.1111/psyp.14451
Ya Zheng, Mang Zhang, Menglin Wu
The amount of cognitive and neural resources allocated to a task is largely determined by the reward we can expect. However, it remains under-appreciated how this reward-expectation-based control allocation is modulated by effort expenditure. The present event-related potential study investigated this issue through the lens of neural dynamics. Thirty-four participants completed an effort-based monetary incentive delay task while their EEG was recorded. Effort demand was manipulated by adding no (low effort) or much (high effort) noise to the target. Behaviorally, participants exhibited reward-related speeding regardless of effort expenditure, as revealed by faster RTs for reward than neutral trials. Our ERP results demonstrated a widespread facilitatory influence of reward expectation on neural dynamics extending from cue evaluation as indexed by the cue-P3, to control preparation as indexed by the contingent negative variation (CNV), and finally to control engagement as indexed by the target-P3. Critically, the neural facilitation was discounted by effort expenditure during both the control-preparation and control-engagement stages instead of the cue-evaluation stage. Overall, this study provides neurodynamic evidence that control allocation is determined by reward and effort via a cost-benefit analysis.
{"title":"Effort discounts reward-based control allocation: A neurodynamic perspective.","authors":"Ya Zheng, Mang Zhang, Menglin Wu","doi":"10.1111/psyp.14451","DOIUrl":"10.1111/psyp.14451","url":null,"abstract":"<p><p>The amount of cognitive and neural resources allocated to a task is largely determined by the reward we can expect. However, it remains under-appreciated how this reward-expectation-based control allocation is modulated by effort expenditure. The present event-related potential study investigated this issue through the lens of neural dynamics. Thirty-four participants completed an effort-based monetary incentive delay task while their EEG was recorded. Effort demand was manipulated by adding no (low effort) or much (high effort) noise to the target. Behaviorally, participants exhibited reward-related speeding regardless of effort expenditure, as revealed by faster RTs for reward than neutral trials. Our ERP results demonstrated a widespread facilitatory influence of reward expectation on neural dynamics extending from cue evaluation as indexed by the cue-P3, to control preparation as indexed by the contingent negative variation (CNV), and finally to control engagement as indexed by the target-P3. Critically, the neural facilitation was discounted by effort expenditure during both the control-preparation and control-engagement stages instead of the cue-evaluation stage. Overall, this study provides neurodynamic evidence that control allocation is determined by reward and effort via a cost-benefit analysis.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41176550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Accurate interpretation of the emotional information conveyed by others' facial expressions is crucial for social interactions. Event-related alpha power, measured by time-frequency analysis, is a frequently used EEG index of emotional information processing. However, it is still unclear how event-related alpha power varies in emotional information processing in social anxiety groups. In the present study, we recorded event-related potentials (ERPs) while participants from the social anxiety and healthy control groups viewed facial expressions (angry, happy, neutral) preceded by contextual sentences conveying either a positive or negative evaluation of the subject. The impact of context on facial expression processing in both groups of participants was explored by assessing behavioral ratings and event-related alpha power (0-200 ms after expression presentation). In comparison to the healthy control group, the social anxiety group exhibited significantly lower occipital alpha power in response to angry facial expressions in negative contexts and neutral facial expressions in positive contexts. The influence of language context on facial expression processing in individuals with social anxiety may occur at an early stage of processing.
{"title":"Event-related alpha power in early stage of facial expression processing in social anxiety: Influence of language context.","authors":"Sutao Song, Aixin Liu, Zeyuan Gao, Xiaodong Tian, Lingkai Zhu, Haiqing Shang, Shihao Gao, Mingxian Zhang, Shimeng Zhao, Guanlai Xiao, Yuanjie Zheng, Ruiyang Ge","doi":"10.1111/psyp.14455","DOIUrl":"10.1111/psyp.14455","url":null,"abstract":"<p><p>Accurate interpretation of the emotional information conveyed by others' facial expressions is crucial for social interactions. Event-related alpha power, measured by time-frequency analysis, is a frequently used EEG index of emotional information processing. However, it is still unclear how event-related alpha power varies in emotional information processing in social anxiety groups. In the present study, we recorded event-related potentials (ERPs) while participants from the social anxiety and healthy control groups viewed facial expressions (angry, happy, neutral) preceded by contextual sentences conveying either a positive or negative evaluation of the subject. The impact of context on facial expression processing in both groups of participants was explored by assessing behavioral ratings and event-related alpha power (0-200 ms after expression presentation). In comparison to the healthy control group, the social anxiety group exhibited significantly lower occipital alpha power in response to angry facial expressions in negative contexts and neutral facial expressions in positive contexts. The influence of language context on facial expression processing in individuals with social anxiety may occur at an early stage of processing.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}