首页 > 最新文献

Stem cells and development最新文献

英文 中文
Serine and Arginine-Rich Splicing Factor 3 Promotes the Activation of Quiescent Mouse Neural Stem Cells. 富含丝氨酸和精氨酸的剪接因子3促进静止小鼠神经干细胞的活化
Pub Date : 2024-02-01 Epub Date: 2024-01-18 DOI: 10.1089/scd.2023.0172
Guangming Wang, Jie Ren, Xinhao Zeng, Xu Chen, Aibin Liang, Xianli Wang, Jun Xu

The quiescence and activation of adult stem cells are regulated by many kinds of molecular mechanisms, and RNA alternative splicing participates in regulating many cellular processes. However, the relationship between stem cell quiescence and activation regulation and gene alternative splicing has yet to be studied. In this study, we aimed to elucidate the regulation of stem cell quiescence and activation by RNA alternative splicing. The upregulated genes in activated mouse neural stem cells (NSCs), muscle stem cells, and hematopoietic stem cells were collected for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The genes from three tissue stem cells underwent Venn analysis. The mouse NSCs were used for quiescence and reactivation induction. The immunostaining of cell-specific markers was performed to identify cell properties. The reverse transcription-polymerase chain reaction and western blotting were used to detect the gene expression and protein expression, respectively. We found that the upregulated genes in activated stem cells from three tissues were all enriched in RNA splicing-related biological processes; the upregulated RNA splicing-related genes in activated stem cells displayed tissue differences; mouse NSCs were successfully induced into quiescence and reactivation in vitro without losing differentiation potential; serine and arginine-rich splicing factor 3 (Srsf3) was highly expressed in the activated mouse NSCs, and the overexpression of SRSF3 protein promoted the activation of quiescent mouse NSCs and increased the neural cell production. Our data indicate that the alternative splicing change may underline the transition of quiescence and activation of stem cells. The manipulation of the splicing factor may benefit tissue repair by promoting the activation of quiescent stem cells.

成体干细胞的静止和活化受多种分子机制的调控,RNA替代剪接参与调控多种细胞过程。然而,干细胞的静止和活化调控与基因替代剪接之间的关系还有待研究。本研究旨在阐明 RNA 替代剪接对干细胞静止和活化的调控。我们收集了激活的小鼠神经干细胞(NSCs)、肌肉干细胞(MuSCs)和造血干细胞(HSCs)中的上调基因,进行了GO(基因本体)和KEGG(京都基因和基因组百科全书)分析。对三种组织干细胞的基因进行了维恩分析。小鼠 NSCs 用于静止和再激活诱导。对细胞特异性标记物进行免疫染色以确定细胞特性。反转录聚合酶链反应(RT-PCR)和免疫印迹法分别用于检测基因表达和蛋白质表达。我们发现,三种组织活化干细胞中的上调基因都富集在RNA剪接相关的生物学过程中;活化干细胞中RNA剪接相关基因的上调表现出组织差异;在体外成功诱导小鼠NSCs进入静止期和再活化期而不丧失分化潜能;丝氨酸和精氨酸丰富的剪接因子3(Srsf3)在活化的小鼠NSCs中高表达,SRSF3蛋白的过表达促进了静止期小鼠NSCs的活化并增加了神经细胞的生成。我们的数据表明,替代剪接变化可能是干细胞静止和活化转换的关键。对剪接因子的操作可能通过促进静止干细胞的活化而有利于组织修复。
{"title":"Serine and Arginine-Rich Splicing Factor 3 Promotes the Activation of Quiescent Mouse Neural Stem Cells.","authors":"Guangming Wang, Jie Ren, Xinhao Zeng, Xu Chen, Aibin Liang, Xianli Wang, Jun Xu","doi":"10.1089/scd.2023.0172","DOIUrl":"10.1089/scd.2023.0172","url":null,"abstract":"<p><p>The quiescence and activation of adult stem cells are regulated by many kinds of molecular mechanisms, and RNA alternative splicing participates in regulating many cellular processes. However, the relationship between stem cell quiescence and activation regulation and gene alternative splicing has yet to be studied. In this study, we aimed to elucidate the regulation of stem cell quiescence and activation by RNA alternative splicing. The upregulated genes in activated mouse neural stem cells (NSCs), muscle stem cells, and hematopoietic stem cells were collected for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The genes from three tissue stem cells underwent Venn analysis. The mouse NSCs were used for quiescence and reactivation induction. The immunostaining of cell-specific markers was performed to identify cell properties. The reverse transcription-polymerase chain reaction and western blotting were used to detect the gene expression and protein expression, respectively. We found that the upregulated genes in activated stem cells from three tissues were all enriched in RNA splicing-related biological processes; the upregulated RNA splicing-related genes in activated stem cells displayed tissue differences; mouse NSCs were successfully induced into quiescence and reactivation in vitro without losing differentiation potential; serine and arginine-rich splicing factor 3 (<i>Srsf3</i>) was highly expressed in the activated mouse NSCs, and the overexpression of SRSF3 protein promoted the activation of quiescent mouse NSCs and increased the neural cell production. Our data indicate that the alternative splicing change may underline the transition of quiescence and activation of stem cells. The manipulation of the splicing factor may benefit tissue repair by promoting the activation of quiescent stem cells.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"79-88"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138811968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Histamine H3 Receptor Antagonist Pitolisant in Early Neural Differentiation of Mouse Embryonic Stem Cells. 组胺H3受体拮抗剂Pitolisant在小鼠胚胎干细胞早期神经分化中的作用。
Pub Date : 2024-02-01 Epub Date: 2024-01-08 DOI: 10.1089/scd.2023.0162
Genghua Xu, Nuoya Liu, Yaqing Qiu, Jiayu Qi, Danyan Zhu

The histamine H3 receptor, prominently expressed in neurons with a minor presence in glial cells, acts as both an autoreceptor and an alloreceptor, controlling the release of histamine and other neurotransmitters. The receptor impacts various essential physiological processes. Our team's initial investigations had demonstrated that the histamine H3 receptor antagonists could facilitate nerve regeneration by promoting the histamine H1 receptors on primary neural stem cells (NSCs) in the traumatic brain injury mouse, which suggested the potential of histamine H3 receptor as a promising target for treating neurological disorders and promoting nerve regeneration. Pitolisant (PITO) is the only histamine H3 receptor antagonist approved by the Food and Drug Administration (FDA) for treating narcolepsy. However, there is no report on Pitolisant in neural development or regeneration, and it is urgent to be further studied in strong biological activity models in vitro. The embryonic stem (ES) cells were differentiated into neural cells in vitro, which replicated the neurodevelopmental processes that occur in vivo. It also provided an alternative model for studying neurodevelopmental processes and testing drugs for neurological conditions. Therefore, we aimed to elucidate the regulatory role of Pitolisant in the early differentiation of ES cells into neural cells. Our results demonstrated that Pitolisant could promote the differentiation of ES cells toward NSCs and stimulated the formation of growth cones. Furthermore, Pitolisant was capable of inducing the polarization of NSCs through the cAMP-LKB1-SAD/MARK2 pathway, but had no significant effect on later neuronal maturation. Pitolisant altered mitochondrial morphology and upregulated the levels of mitochondrion-related proteins TOM20, Drp1, and p-Drp1, and reversed the inhibitory effect of Mdivi-1 on mitochondrial fission during the early neural differentiation of ES cells. In addition, Pitolisant induced the increase in cytosolic Ca2+. Our study provided an experimental foundation for the potential application of histamine H3 receptor-targeted modulators in the field of neuroregeneration.

组胺H3受体主要在神经元中表达,少量存在于神经胶质细胞中,它既是自身受体又是同种异体受体,控制着组胺和其他神经递质的释放。受体影响各种重要的生理过程。我们团队的初步研究表明,组胺H3受体拮抗剂可以通过促进创伤性脑损伤小鼠原代神经干细胞上的组胺H1受体促进神经再生,这表明组胺H3受体可能是治疗神经系统疾病和促进神经再生的一个有希望的靶点。Pitolisant (PITO)是唯一被FDA批准用于治疗嗜睡症的组胺H3受体拮抗剂。然而,目前尚无关于Pitolisant在神经发育或再生中的报道,迫切需要在体外强生物活性模型中进一步研究。胚胎干细胞(ES)在体外分化为神经细胞,复制了体内发生的神经发育过程。它还为研究神经发育过程和测试神经疾病药物提供了另一种模型。因此,我们旨在阐明Pitolisant在胚胎干细胞早期分化为神经细胞中的调节作用。结果表明,Pitolisant能够促进胚胎干细胞向神经干细胞(NSCs)的分化,并刺激生长锥的形成。此外,Pitolisant能够通过camp - lk_1 - sad /MARK2通路诱导NSCs的极化,但对后期神经元成熟无显著影响。Pitolisant改变了线粒体形态,上调了线粒体相关蛋白TOM20、Drp1和p-Drp1的水平,逆转了Mdivi-1对ES细胞早期神经分化过程中线粒体分裂的抑制作用。此外,Pitolisant诱导细胞质Ca2+的增加。本研究为组胺H3受体靶向调节剂在神经再生领域的潜在应用提供了实验基础。
{"title":"Role of Histamine H<sub>3</sub> Receptor Antagonist Pitolisant in Early Neural Differentiation of Mouse Embryonic Stem Cells.","authors":"Genghua Xu, Nuoya Liu, Yaqing Qiu, Jiayu Qi, Danyan Zhu","doi":"10.1089/scd.2023.0162","DOIUrl":"10.1089/scd.2023.0162","url":null,"abstract":"<p><p>The histamine H<sub>3</sub> receptor, prominently expressed in neurons with a minor presence in glial cells, acts as both an autoreceptor and an alloreceptor, controlling the release of histamine and other neurotransmitters. The receptor impacts various essential physiological processes. Our team's initial investigations had demonstrated that the histamine H<sub>3</sub> receptor antagonists could facilitate nerve regeneration by promoting the histamine H<sub>1</sub> receptors on primary neural stem cells (NSCs) in the traumatic brain injury mouse, which suggested the potential of histamine H<sub>3</sub> receptor as a promising target for treating neurological disorders and promoting nerve regeneration. Pitolisant (PITO) is the only histamine H<sub>3</sub> receptor antagonist approved by the Food and Drug Administration (FDA) for treating narcolepsy. However, there is no report on Pitolisant in neural development or regeneration, and it is urgent to be further studied in strong biological activity models in vitro. The embryonic stem (ES) cells were differentiated into neural cells in vitro, which replicated the neurodevelopmental processes that occur in vivo. It also provided an alternative model for studying neurodevelopmental processes and testing drugs for neurological conditions. Therefore, we aimed to elucidate the regulatory role of Pitolisant in the early differentiation of ES cells into neural cells. Our results demonstrated that Pitolisant could promote the differentiation of ES cells toward NSCs and stimulated the formation of growth cones. Furthermore, Pitolisant was capable of inducing the polarization of NSCs through the cAMP-LKB1-SAD/MARK2 pathway, but had no significant effect on later neuronal maturation. Pitolisant altered mitochondrial morphology and upregulated the levels of mitochondrion-related proteins TOM20, Drp1, and p-Drp1, and reversed the inhibitory effect of Mdivi-1 on mitochondrial fission during the early neural differentiation of ES cells. In addition, Pitolisant induced the increase in cytosolic Ca<sup>2+</sup>. Our study provided an experimental foundation for the potential application of histamine H<sub>3</sub> receptor-targeted modulators in the field of neuroregeneration.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"67-78"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138465294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual Strategy with Adipose-Derived Stem Cells and l-arginine Recovered Cavernosal Functions in a Rat Model of Radical Prostatectomy. 脂肪来源干细胞和L-精氨酸双重策略在大鼠前列腺癌根治术模型中恢复海绵体功能。
Pub Date : 2024-01-01 Epub Date: 2023-12-22 DOI: 10.1089/scd.2023.0178
Didem Yilmaz-Oral, Sena F Sezen, Damla Turkcan, Heba Asker, Ecem Kaya-Sezginer, Omer Faruk Kirlangic, Cagla Zubeyde Kopru, Mualla Pınar Elci, Fatma Zeynep Ozen, Petek Korkusuz, Sema Oren, Cetin Volkan Oztekin, Ilker Ates, Serap Gur

As standard therapy for prostate cancer, radical prostatectomy causes cavernous nerve (CN) injury and increases fibrosis and hypoxia-induced penile structural alterations. This study aimed to determine the potential beneficial effects of adipose-derived stem cells (ADSCs) and l-arginine alone or in combination on the penile erection in a rat model of erectile dysfunction caused by bilateral cavernous nerve transection (CNT). Male rats (n = 35) were randomized into five groups: Sham-operated; CNT (4-weeks); CNT plus ADSCs (1 × 106 cells by intracavernosal injection); CNT plus l-arginine (4 weeks, 10 mg/kg/day, oral); and ADSCs combined with l-arginine in CNT. In vivo erectile responses and in vitro relaxant responses were measured. Western blot and immunohistochemistry analyses were used to determine the expression and localization of endothelial nitric oxide synthase, neuronal nitric oxide synthase, transforming growth factor-beta 1, hypoxia-inducible factor-1 alpha (HIF-1α), and apoptosis markers (Bax and Bcl-2). The ratio of smooth muscle to collagen and nerve regeneration were calculated using Masson's trichrome and nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase staining. The combined treatment restored diminished erectile responses, endothelium-dependent acetylcholine, and electrical field stimulation-induced relaxation of the corpus cavernosum in rats with CNT, whereas either monotherapy produced only partial improvements. All treatment regimens restored increases in the protein expression of HIF-1 and Bax in rats with CNT. The decrease in smooth muscle mass and NADPH-diaphorase-positive nerve fibers was partially ameliorated by monotherapy, whereas combined therapy led to recovery. These findings indicate that combined treatment with ADSCs and l-arginine may restore erectile function in rats with CNT by inhibiting hypoxia-induced neurotoxicity and preserving endothelium function and smooth muscle content.

作为癌症的标准治疗方法,根治性前列腺切除术(RP)会导致海绵状神经损伤,并增加纤维化和低氧诱导的阴茎结构改变。本研究旨在确定脂肪来源干细胞(ADSCs)和L-精氨酸单独或联合对双侧海绵状神经(CN)横断引起的勃起功能障碍(ED)大鼠模型阴茎勃起的潜在有益作用。雄性大鼠(n=35)随机分为五组:假手术组;CN横断(4-k);CN横断加ADSCs(通过腔内注射1x106个细胞);CN横断加L-精氨酸(4周,10 mg/kg/天,口服);以及在CN横断中ADSCs与L-精氨酸结合。测量了体内勃起反应和体外松弛剂反应。Western印迹和免疫组织化学分析用于确定内皮一氧化氮合酶(eNOS)、神经元NOS(nNOS)、转化生长因子β1(TGF-1)、缺氧诱导因子-1(HIF-1)和凋亡标记物(Bax和Bcl-2)的表达和定位。使用Masson三色染色和烟酰胺腺嘌呤二核苷酸磷酸(NADPH)-黄递酶染色计算平滑肌与胶原的比率和神经再生。联合治疗恢复了CN横断大鼠勃起反应减弱、内皮依赖性乙酰胆碱和电场刺激诱导的海绵体松弛,而任何一种单一治疗都只能产生部分改善。在CN横断的啮齿类动物中,所有治疗方案都恢复了HIF-1和Bax蛋白表达的增加。单药治疗部分改善了平滑肌质量和NADPH黄递酶阳性神经纤维的减少,而联合治疗则导致了恢复。这些发现表明,ADSCs和L-精氨酸联合治疗可以通过抑制缺氧诱导的神经毒性、保护内皮功能和平滑肌含量来恢复CN横断啮齿动物的勃起功能。
{"title":"Dual Strategy with Adipose-Derived Stem Cells and l-arginine Recovered Cavernosal Functions in a Rat Model of Radical Prostatectomy.","authors":"Didem Yilmaz-Oral, Sena F Sezen, Damla Turkcan, Heba Asker, Ecem Kaya-Sezginer, Omer Faruk Kirlangic, Cagla Zubeyde Kopru, Mualla Pınar Elci, Fatma Zeynep Ozen, Petek Korkusuz, Sema Oren, Cetin Volkan Oztekin, Ilker Ates, Serap Gur","doi":"10.1089/scd.2023.0178","DOIUrl":"10.1089/scd.2023.0178","url":null,"abstract":"<p><p>As standard therapy for prostate cancer, radical prostatectomy causes cavernous nerve (CN) injury and increases fibrosis and hypoxia-induced penile structural alterations. This study aimed to determine the potential beneficial effects of adipose-derived stem cells (ADSCs) and l-arginine alone or in combination on the penile erection in a rat model of erectile dysfunction caused by bilateral cavernous nerve transection (CNT). Male rats (<i>n</i> = 35) were randomized into five groups: Sham-operated; CNT (4-weeks); CNT plus ADSCs (1 × 10<sup>6</sup> cells by intracavernosal injection); CNT plus l-arginine (4 weeks, 10 mg/kg/day, oral); and ADSCs combined with l-arginine in CNT. In vivo erectile responses and in vitro relaxant responses were measured. Western blot and immunohistochemistry analyses were used to determine the expression and localization of endothelial nitric oxide synthase, neuronal nitric oxide synthase, transforming growth factor-beta 1, hypoxia-inducible factor-1 alpha (HIF-1α), and apoptosis markers (Bax and Bcl-2). The ratio of smooth muscle to collagen and nerve regeneration were calculated using Masson's trichrome and nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase staining. The combined treatment restored diminished erectile responses, endothelium-dependent acetylcholine, and electrical field stimulation-induced relaxation of the corpus cavernosum in rats with CNT, whereas either monotherapy produced only partial improvements. All treatment regimens restored increases in the protein expression of HIF-1 and Bax in rats with CNT. The decrease in smooth muscle mass and NADPH-diaphorase-positive nerve fibers was partially ameliorated by monotherapy, whereas combined therapy led to recovery. These findings indicate that combined treatment with ADSCs and l-arginine may restore erectile function in rats with CNT by inhibiting hypoxia-induced neurotoxicity and preserving endothelium function and smooth muscle content.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"43-53"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41242758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Temporal Wnt Signal for Efficient Differentiation of Intestinal Stem Cells in an Organoid Model. 利用时间Wnt信号在类器官模型中有效分化肠道干细胞。
Pub Date : 2024-01-01 Epub Date: 2023-11-20 DOI: 10.1089/scd.2023.0186
Li Yang, Xulei Wang, Guoqing Zhao, Liling Deng, Xiaolei Yin

The homeostasis of the intestinal epithelium heavily relies on the self-renewal and differentiation of intestinal stem cells (ISCs). Although the orchestration of these processes by signaling pathways such as the Wnt, BMP, Notch, and MAPK signals has been extensively studied, the dynamics of their regulation remains unclear. Our study explores how the Wnt signaling pathway temporally regulates the differentiation of ISCs into various cell types in an intestinal organoid system. We report that the duration of Wnt exposure following Notch pathway inactivation significantly influences the differentiation direction of intestinal epithelial cells toward multiple secretory cell types, including goblet cells, enteroendocrine cells (EECs), and Paneth cells. This temporal regulation of Wnt signaling adds another layer of complexity to the combination of niche signals that govern cell fate. By manipulating this temporal signal, we have developed optimized protocols for the efficient in vitro differentiation of ISCs into EECs and goblet cells. These findings provide critical insights into the dynamic regulation of ISC differentiation and offer a robust platform for future investigations into intestinal biology and potential therapeutic applications.

肠上皮的稳态在很大程度上依赖于肠干细胞的自我更新和分化。尽管Wnt、BMP、Notch和MAPK信号等信号通路对这些过程的协调已经得到了广泛的研究,但其调控的动力学仍不清楚。我们的研究探索了Wnt信号通路如何在肠道类器官系统中暂时调节肠道干细胞分化为各种细胞类型。我们报道,Notch途径失活后Wnt暴露的持续时间显著影响肠上皮细胞向多种分泌细胞类型的分化方向,包括杯状细胞、肠内分泌细胞和Paneth细胞。Wnt信号的这种时间调节为控制细胞命运的小众信号的组合增加了另一层复杂性。通过操纵这种时间信号,我们开发了用于ISC体外高效分化为肠内分泌细胞和杯状细胞的优化方案。这些发现为肠道干细胞分化的动态调节提供了重要的见解,并为未来研究肠道生物学和潜在的治疗应用提供了一个强大的平台。
{"title":"Leveraging Temporal Wnt Signal for Efficient Differentiation of Intestinal Stem Cells in an Organoid Model.","authors":"Li Yang, Xulei Wang, Guoqing Zhao, Liling Deng, Xiaolei Yin","doi":"10.1089/scd.2023.0186","DOIUrl":"10.1089/scd.2023.0186","url":null,"abstract":"<p><p>The homeostasis of the intestinal epithelium heavily relies on the self-renewal and differentiation of intestinal stem cells (ISCs). Although the orchestration of these processes by signaling pathways such as the Wnt, BMP, Notch, and MAPK signals has been extensively studied, the dynamics of their regulation remains unclear. Our study explores how the Wnt signaling pathway temporally regulates the differentiation of ISCs into various cell types in an intestinal organoid system. We report that the duration of Wnt exposure following Notch pathway inactivation significantly influences the differentiation direction of intestinal epithelial cells toward multiple secretory cell types, including goblet cells, enteroendocrine cells (EECs), and Paneth cells. This temporal regulation of Wnt signaling adds another layer of complexity to the combination of niche signals that govern cell fate. By manipulating this temporal signal, we have developed optimized protocols for the efficient in vitro differentiation of ISCs into EECs and goblet cells. These findings provide critical insights into the dynamic regulation of ISC differentiation and offer a robust platform for future investigations into intestinal biology and potential therapeutic applications.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"11-26"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61567108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Mesenchymal Stem Cells in Hair Regeneration and Hair Cycle. 间充质干细胞在头发再生和头发周期中的作用。
Pub Date : 2024-01-01 Epub Date: 2023-12-27 DOI: 10.1089/scd.2023.0156
Cong Ma, Ming Cheng, Yan Wu, Xuegang Xu

The health of hair is directly related to people's health and appearance. Hair has key physiological functions, including skin protection and temperature regulation. Hair follicle (HF) is a vital mini-organ that directly impacts hair growth. Besides, various signaling pathways and molecules regulate the growth cycle transition of HFs. Hair and its regeneration studies have attracted much interest in recent years with the increasing rate of alopecia. Mesenchymal stem cells (MSCs), as pluripotent stem cells, can differentiate into fat, bone, and cartilage and stimulate regeneration and immunological regulation. MSCs have been widely employed to treat various clinical diseases, such as bone and cartilage injury, nerve injury, and lung injury. Besides, MSCs can be used for treatment of hair diseases due to their regenerative and immunomodulatory abilities. This review aimed to assess MSCs' treatment for alopecia, pertinent signaling pathways, and new material for hair regeneration in the last 5 years.

头发的健康与人的健康和外表直接相关。头发具有关键的生理功能,包括保护皮肤和调节温度。毛囊是直接影响头发生长的重要迷你器官。此外,各种信号通路和分子调节毛囊的生长周期转换。近年来,随着脱发率的上升,头发及其再生研究引起了人们的极大兴趣。间充质干细胞(MSCs)作为多能干细胞,可以分化为脂肪、骨骼和软骨,并刺激再生和免疫调节。MSCs已被广泛用于治疗各种临床疾病,如骨软骨损伤、神经损伤和肺损伤。此外,间充质干细胞由于其再生和免疫调节能力,可用于治疗毛发疾病。这篇综述旨在评估MSCs在过去五年中对脱发的治疗、相关的信号通路和用于头发再生的新材料。
{"title":"The Role of Mesenchymal Stem Cells in Hair Regeneration and Hair Cycle.","authors":"Cong Ma, Ming Cheng, Yan Wu, Xuegang Xu","doi":"10.1089/scd.2023.0156","DOIUrl":"10.1089/scd.2023.0156","url":null,"abstract":"<p><p>The health of hair is directly related to people's health and appearance. Hair has key physiological functions, including skin protection and temperature regulation. Hair follicle (HF) is a vital mini-organ that directly impacts hair growth. Besides, various signaling pathways and molecules regulate the growth cycle transition of HFs. Hair and its regeneration studies have attracted much interest in recent years with the increasing rate of alopecia. Mesenchymal stem cells (MSCs), as pluripotent stem cells, can differentiate into fat, bone, and cartilage and stimulate regeneration and immunological regulation. MSCs have been widely employed to treat various clinical diseases, such as bone and cartilage injury, nerve injury, and lung injury. Besides, MSCs can be used for treatment of hair diseases due to their regenerative and immunomodulatory abilities. This review aimed to assess MSCs' treatment for alopecia, pertinent signaling pathways, and new material for hair regeneration in the last 5 years.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41242760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2023. 鸣谢 2023 年审稿人。
Pub Date : 2024-01-01 Epub Date: 2023-12-15 DOI: 10.1089/scd.2023.29016.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/scd.2023.29016.ack","DOIUrl":"https://doi.org/10.1089/scd.2023.29016.ack","url":null,"abstract":"","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":"33 1-2","pages":"54-55"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial Cell Replacement of Human Veins, Modeling Vascular Repair and Endothelial Cell Chimerism. 人静脉内皮细胞替代、血管修复模型及内皮细胞嵌合。
Pub Date : 2024-01-01 Epub Date: 2023-12-27 DOI: 10.1089/scd.2023.0142
Hector Tejeda-Mora, Yvette den Hartog, Ivo J Schurink, Monique M A Verstegen, Jeroen de Jonge, Martijn W F van den Hoogen, Carla C Baan, Robert C Minnee, Martin J Hoogduijn, Luc J W van der Laan, Jorke Willemse

Allogeneic transplant organs are potentially highly immunogenic. The endothelial cells (ECs) located within the vascular system serve as the primary interface between the recipient's immune system and the donor organ, playing a key role in the alloimmune response. In this study, we investigated the potential use of recipient-derived ECs in a vein recellularization model. In this study, human iliac veins underwent complete decellularization using a Triton X-100 protocol. We demonstrated the feasibility of re-endothelializing acellular blood vessels using either human umbilical cord vein endothelial cell or human venous-derived ECs, with this re- endothelialization being sustainable for up to 28 days in vitro. The re-endothelialized veins exhibited the restoration of vascular barrier function, along with the restoration of innate immunoregulatory capabilities, evident through the facilitation of monocytic cell transmigration and their polarization toward a macrophage phenotype following transendothelial extravasation. Finally, we explored whether recellularization with EC of a different donor could prevent antibody-mediated rejection. We demonstrated that in chimeric vessels, allogeneic EC became a target of the humoral anti-donor response after activation of the classical immune complement pathway whereas autologous EC were spared, emphasizing their potential utility before transplantation. In conclusion, our study demonstrates that replacement of EC in transplants could reduce the immunological challenges associated with allogeneic grafts.

同种异体移植器官具有潜在的高度免疫基因性。内皮细胞(EC)位于血管系统内,是受体免疫系统和供体器官之间的主要接口,在同种异体免疫应答中起着关键作用。在这项研究中,我们研究了受体来源的内皮细胞在静脉再细胞化模型中的潜在用途。在这里,使用triton X-100方案,人髂静脉进行了完全的去细胞化。我们证明了使用HUVEC或人静脉来源的内皮细胞对非细胞血管进行再内皮化的可行性,这种再内皮化在体外可持续长达28天。再内皮化静脉表现出血管屏障功能的恢复,以及先天免疫调节能力的恢复,这可以通过单核细胞迁移的促进以及它们在跨内皮外渗后向巨噬细胞表型的极化来证明。最后,我们探讨了不同供体EC的再细胞化是否可以预防抗体介导的排斥反应。我们证明,在嵌合血管中,在激活经典免疫补体途径后,异体EC成为体液抗供体反应的靶标,而自体EC则不受影响,强调了它们在移植前的潜在效用。总之,我们的研究表明,移植中EC的替代可以减少与同种异体移植物相关的免疫挑战。
{"title":"Endothelial Cell Replacement of Human Veins, Modeling Vascular Repair and Endothelial Cell Chimerism.","authors":"Hector Tejeda-Mora, Yvette den Hartog, Ivo J Schurink, Monique M A Verstegen, Jeroen de Jonge, Martijn W F van den Hoogen, Carla C Baan, Robert C Minnee, Martin J Hoogduijn, Luc J W van der Laan, Jorke Willemse","doi":"10.1089/scd.2023.0142","DOIUrl":"10.1089/scd.2023.0142","url":null,"abstract":"<p><p>Allogeneic transplant organs are potentially highly immunogenic. The endothelial cells (ECs) located within the vascular system serve as the primary interface between the recipient's immune system and the donor organ, playing a key role in the alloimmune response. In this study, we investigated the potential use of recipient-derived ECs in a vein recellularization model. In this study, human iliac veins underwent complete decellularization using a Triton X-100 protocol. We demonstrated the feasibility of re-endothelializing acellular blood vessels using either human umbilical cord vein endothelial cell or human venous-derived ECs, with this re- endothelialization being sustainable for up to 28 days in vitro. The re-endothelialized veins exhibited the restoration of vascular barrier function, along with the restoration of innate immunoregulatory capabilities, evident through the facilitation of monocytic cell transmigration and their polarization toward a macrophage phenotype following transendothelial extravasation. Finally, we explored whether recellularization with EC of a different donor could prevent antibody-mediated rejection. We demonstrated that in chimeric vessels, allogeneic EC became a target of the humoral anti-donor response after activation of the classical immune complement pathway whereas autologous EC were spared, emphasizing their potential utility before transplantation. In conclusion, our study demonstrates that replacement of EC in transplants could reduce the immunological challenges associated with allogeneic grafts.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"27-42"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89721485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2023. 鸣谢 2023 年审稿人。
Pub Date : 2023-12-15 DOI: 10.1089/scd.2023.29016.ack
{"title":"Acknowledgment of Reviewers 2023.","authors":"","doi":"10.1089/scd.2023.29016.ack","DOIUrl":"https://doi.org/10.1089/scd.2023.29016.ack","url":null,"abstract":"","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138811899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Do We Establish a Cold Chain Preservation Process Leading to Warmed Healthy Cells? 我们如何建立冷链保存过程,从而使健康细胞变暖?
Pub Date : 2023-12-01 Epub Date: 2023-11-16 DOI: 10.1089/scd.2023.0225
Steve Oh
NA.
不。
{"title":"How Do We Establish a Cold Chain Preservation Process Leading to Warmed Healthy Cells?","authors":"Steve Oh","doi":"10.1089/scd.2023.0225","DOIUrl":"10.1089/scd.2023.0225","url":null,"abstract":"NA.","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"717-718"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41242759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Cell RNA-Seq Analysis Identifies Angiotensinogen and Galanin as Unique Molecular Markers of Acinar Cells in Murine Salivary Glands. 单细胞RNA-seq分析确定血管紧张素原和甘丙肽是小鼠唾液腺腺泡细胞的独特分子标记。
Pub Date : 2023-12-01 Epub Date: 2023-11-16 DOI: 10.1089/scd.2023.0125
Jingming Liu, Yanan Li, Yuxin Zhang, Qianyu Cheng, Huikai Liu, Liwen He, Liang Chen, Tianyu Zhao, Panpan Liang, Wenping Luo

The submandibular gland (SMG) and sublingual gland (SLG) are two of three major salivary glands in mammals and comprise serous and mucous acinar cells. The two glands share some functional properties, which are largely dependent on the types of acinar cells. In recent years, while ScRNA-seq (single-cell sequencing) with a 10 × platform has been used to explore molecular markers in salivary glands, few studies have examined the acinar heterogeneity and unique molecular markers between SMG and SLG. This study aimed to identify the molecular markers of acinar cells in the SLG and SMG. We performed ScRNA-seq analyses in 4-week-old mice and verified the screened molecular markers using reverse transcription-quantitative real-time PCR, immunohistochemistry, and immunofluorescence. Our results showed prominently heterogeneous acinar cells, although there was great similarity in the cluster composition between the two glands at 4 weeks. Furthermore, we demonstrated that Agt is a specific marker of SMG serous acinar cells, whereas Gal is a specific marker of SLG mucous acinar cells. Trajectory inference revealed that Agt and Gal represent two types of differential acinar cell clusters during late development in adults. Thus, we reveal previously unknown specific markers for salivary acinar cell diversity, which has extensive implications for their further functional research.

下颌下腺(SMG)和舌下腺(SLG)是哺乳动物三大唾液腺中的两个,由浆液性和粘液性腺泡细胞组成。这两个腺体有一些共同的功能特性,这些特性在很大程度上取决于腺泡细胞的类型。近年来,尽管具有10×平台的ScRNA-seq(单细胞测序)已被用于探索唾液腺中的分子标记,但很少有研究检测SMG和SLG之间的腺泡异质性和独特的分子标记。本研究旨在鉴定SLG和SMG腺泡细胞的分子标记。我们对4周龄(W)的小鼠进行了ScRNA-seq分析,并使用RT-qPCR、免疫组织化学和免疫荧光验证了筛选的分子标记。我们的结果显示,尽管在4W时两个腺体之间的簇组成非常相似,但腺泡细胞具有显著的异质性。此外,我们证明了Agt是SMG浆液性腺泡细胞的特异性标记,而Gal是SLG粘液性腺泡细胞的特异性标志。轨迹推断显示,Agt和Gal代表了成人发育后期两种不同类型的腺泡细胞簇。因此,我们揭示了唾液腺泡细胞多样性的先前未知的特异性标志物,这对其进一步的功能研究具有广泛的意义。
{"title":"Single-Cell RNA-Seq Analysis Identifies Angiotensinogen and Galanin as Unique Molecular Markers of Acinar Cells in Murine Salivary Glands.","authors":"Jingming Liu, Yanan Li, Yuxin Zhang, Qianyu Cheng, Huikai Liu, Liwen He, Liang Chen, Tianyu Zhao, Panpan Liang, Wenping Luo","doi":"10.1089/scd.2023.0125","DOIUrl":"10.1089/scd.2023.0125","url":null,"abstract":"<p><p>The submandibular gland (SMG) and sublingual gland (SLG) are two of three major salivary glands in mammals and comprise serous and mucous acinar cells. The two glands share some functional properties, which are largely dependent on the types of acinar cells. In recent years, while ScRNA-seq (single-cell sequencing) with a 10 × platform has been used to explore molecular markers in salivary glands, few studies have examined the acinar heterogeneity and unique molecular markers between SMG and SLG. This study aimed to identify the molecular markers of acinar cells in the SLG and SMG. We performed ScRNA-seq analyses in 4-week-old mice and verified the screened molecular markers using reverse transcription-quantitative real-time PCR, immunohistochemistry, and immunofluorescence. Our results showed prominently heterogeneous acinar cells, although there was great similarity in the cluster composition between the two glands at 4 weeks. Furthermore, we demonstrated that <i>Agt</i> is a specific marker of SMG serous acinar cells, whereas <i>Gal</i> is a specific marker of SLG mucous acinar cells. Trajectory inference revealed that <i>Agt</i> and <i>Gal</i> represent two types of differential acinar cell clusters during late development in adults. Thus, we reveal previously unknown specific markers for salivary acinar cell diversity, which has extensive implications for their further functional research.</p>","PeriodicalId":94214,"journal":{"name":"Stem cells and development","volume":" ","pages":"758-767"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41224461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stem cells and development
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1