Pub Date : 2024-08-24DOI: 10.1038/s41417-024-00824-1
Christopher Zhang, Benson Z. Wu, Caterina Di Ciano-Oliveira, Yin Fang Wu, Sharon S. Khavkine Binstock, Isabel Soria-Bretones, Nhu-An Pham, Andrew J. Elia, Raj Chari, Wan L. Lam, Mark R. Bray, Tak W. Mak, Ming-Sound Tsao, David W. Cescon, Kelsie L. Thu
Centrosome amplification (CA), an abnormal increase in the number of centrosomes in the cell, is a recurrent phenomenon in lung and other malignancies. Although CA promotes tumor development and progression by inducing genomic instability (GIN), it also induces mitotic stress that jeopardizes cellular integrity. CA leads to the formation of multipolar mitotic spindles that can cause lethal chromosome segregation errors. To sustain the benefits of CA by mitigating its consequences, malignant cells are dependent on adaptive mechanisms that represent therapeutic vulnerabilities. We aimed to discover genetic dependencies associated with CA in lung cancer. Combining a CRISPR/Cas9 functional genomics screen with tumor genomic analyses, we identified the motor protein KIFC1, also known as HSET, as a putative vulnerability specifically in lung adenocarcinoma (LUAD) with CA. KIFC1 expression was positively correlated with CA in LUAD and associated with worse patient outcomes, smoking history, and indicators of GIN. KIFC1 loss-of-function sensitized LUAD cells with high basal KIFC1 expression to potentiation of CA, which was associated with a diminished ability to cluster extra centrosomes into pseudo-bipolar mitotic spindles. Our work suggests that KIFC1 inhibition represents a novel approach for potentiating GIN to lethal levels in LUAD with CA by forcing cells to divide with multipolar spindles, rationalizing further studies to investigate its therapeutic potential.
中心体扩增(CA)是细胞中中心体数量的异常增加,是肺部和其他恶性肿瘤中经常出现的一种现象。尽管中心体扩增会诱发基因组不稳定性(GIN),从而促进肿瘤的发展和恶化,但它也会诱发有丝分裂压力,危及细胞的完整性。CA 会导致多极有丝分裂纺锤体的形成,从而造成致命的染色体分离错误。为了通过减轻 CA 的后果来维持 CA 的益处,恶性细胞依赖于代表治疗脆弱性的适应机制。我们旨在发现肺癌中与CA相关的遗传依赖性。结合 CRISPR/Cas9 功能基因组学筛选和肿瘤基因组分析,我们发现了运动蛋白 KIFC1(又称 HSET),它是肺腺癌(LUAD)与 CA 的特异性易感基因。KIFC1 的表达与 LUAD 中的 CA 呈正相关,并与患者的预后、吸烟史和 GIN 指标相关。KIFC1功能缺失会使基础KIFC1表达量高的LUAD细胞对CA的增效作用敏感,这与将额外的中心体聚集成假双极有丝分裂轴的能力减弱有关。我们的研究表明,KIFC1抑制是一种新方法,可通过迫使细胞以多极纺锤体方式分裂,将LUAD细胞中的GIN增效至致死水平,从而进一步研究其治疗潜力。
{"title":"Identification of KIFC1 as a putative vulnerability in lung cancers with centrosome amplification","authors":"Christopher Zhang, Benson Z. Wu, Caterina Di Ciano-Oliveira, Yin Fang Wu, Sharon S. Khavkine Binstock, Isabel Soria-Bretones, Nhu-An Pham, Andrew J. Elia, Raj Chari, Wan L. Lam, Mark R. Bray, Tak W. Mak, Ming-Sound Tsao, David W. Cescon, Kelsie L. Thu","doi":"10.1038/s41417-024-00824-1","DOIUrl":"10.1038/s41417-024-00824-1","url":null,"abstract":"Centrosome amplification (CA), an abnormal increase in the number of centrosomes in the cell, is a recurrent phenomenon in lung and other malignancies. Although CA promotes tumor development and progression by inducing genomic instability (GIN), it also induces mitotic stress that jeopardizes cellular integrity. CA leads to the formation of multipolar mitotic spindles that can cause lethal chromosome segregation errors. To sustain the benefits of CA by mitigating its consequences, malignant cells are dependent on adaptive mechanisms that represent therapeutic vulnerabilities. We aimed to discover genetic dependencies associated with CA in lung cancer. Combining a CRISPR/Cas9 functional genomics screen with tumor genomic analyses, we identified the motor protein KIFC1, also known as HSET, as a putative vulnerability specifically in lung adenocarcinoma (LUAD) with CA. KIFC1 expression was positively correlated with CA in LUAD and associated with worse patient outcomes, smoking history, and indicators of GIN. KIFC1 loss-of-function sensitized LUAD cells with high basal KIFC1 expression to potentiation of CA, which was associated with a diminished ability to cluster extra centrosomes into pseudo-bipolar mitotic spindles. Our work suggests that KIFC1 inhibition represents a novel approach for potentiating GIN to lethal levels in LUAD with CA by forcing cells to divide with multipolar spindles, rationalizing further studies to investigate its therapeutic potential.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 10","pages":"1559-1570"},"PeriodicalIF":4.8,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-024-00824-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1038/s41417-024-00816-1
Midhun Malla, Sachin Kumar Deshmukh, Sharon Wu, Timothy Samec, Dane C. Olevian, Reima El Naili, Bassel El-Rayes, Joanne Xiu, Alex Farrell, Heinz-Josef Lenz, Emil Lou, Sanjay Goel, David Spetzler, Richard M. Goldberg, Lori Hazlehurst
The expression of the protein Mesothelin (MSLN) is highly variable in several malignancies, including colorectal cancer (CRC), and high levels are associated with aggressive clinicopathological features and worse patient survival. Colorectal cancer is both a common and deadly cancer; being the third most common in incidence and second most common cause of cancer-related death. While systemic therapy remains the primary therapeutic option for most patients with stage IV (metastatic; m) CRC, their disease eventually becomes treatment refractory, and 85% succumb within 5 years. Microsatellite-stable (MSS) CRC tumors, which constitute more than 90% of patients with mCRC, are generally refractory to immunotherapeutic interventions. In our current work, we characterize MSLN levels in CRC, specifically correlating expression with clinical outcomes in relevant CRC subtypes, and explore how MSLN expression impacts the status of immune activation and suppression in the peritumoral microenvironment. Higher MSLN expression is prevalent in CMS1 and CMS4 CRC subtypes and correlates with higher gene mutation rates across the patient cohorts. Further, MSLN-high patients exhibit increased M1/M2 macrophage infiltration, PD-L1 staining, immune-inhibitory gene expression, enrichment in inflammatory, TGF-β, IL6/JAK/STAT3, IL2/STAT5 signaling pathways, and mutation in KRAS and FBXW7. Together, these results suggest that MSLN protein is a potential target for antigen-specific therapy and supports investigation into its tumorigenic effects to identify possible therapeutic interventions for patients with high MSLN expressing MSS CRC.
{"title":"Mesothelin expression correlates with elevated inhibitory immune activity in patients with colorectal cancer","authors":"Midhun Malla, Sachin Kumar Deshmukh, Sharon Wu, Timothy Samec, Dane C. Olevian, Reima El Naili, Bassel El-Rayes, Joanne Xiu, Alex Farrell, Heinz-Josef Lenz, Emil Lou, Sanjay Goel, David Spetzler, Richard M. Goldberg, Lori Hazlehurst","doi":"10.1038/s41417-024-00816-1","DOIUrl":"10.1038/s41417-024-00816-1","url":null,"abstract":"The expression of the protein Mesothelin (MSLN) is highly variable in several malignancies, including colorectal cancer (CRC), and high levels are associated with aggressive clinicopathological features and worse patient survival. Colorectal cancer is both a common and deadly cancer; being the third most common in incidence and second most common cause of cancer-related death. While systemic therapy remains the primary therapeutic option for most patients with stage IV (metastatic; m) CRC, their disease eventually becomes treatment refractory, and 85% succumb within 5 years. Microsatellite-stable (MSS) CRC tumors, which constitute more than 90% of patients with mCRC, are generally refractory to immunotherapeutic interventions. In our current work, we characterize MSLN levels in CRC, specifically correlating expression with clinical outcomes in relevant CRC subtypes, and explore how MSLN expression impacts the status of immune activation and suppression in the peritumoral microenvironment. Higher MSLN expression is prevalent in CMS1 and CMS4 CRC subtypes and correlates with higher gene mutation rates across the patient cohorts. Further, MSLN-high patients exhibit increased M1/M2 macrophage infiltration, PD-L1 staining, immune-inhibitory gene expression, enrichment in inflammatory, TGF-β, IL6/JAK/STAT3, IL2/STAT5 signaling pathways, and mutation in KRAS and FBXW7. Together, these results suggest that MSLN protein is a potential target for antigen-specific therapy and supports investigation into its tumorigenic effects to identify possible therapeutic interventions for patients with high MSLN expressing MSS CRC.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 10","pages":"1547-1558"},"PeriodicalIF":4.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-024-00816-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1038/s41417-024-00822-3
Annika Kohvakka, Mina Sattari, Janika Nättinen, Ulla Aapola, Pavlína Gregorová, Teuvo L. J. Tammela, Hannu Uusitalo, L. Peter Sarin, Tapio Visakorpi, Leena Latonen
While hundreds of cancer-associated long noncoding RNAs (lncRNAs) have been discovered, their functional role in cancer cells is still largely a mystery. An increasing number of lncRNAs are recognized to function in the cytoplasm, e.g., as modulators of translation. Here, we investigated the detailed molecular identity and functional role of EPCART, a lncRNA we previously discovered to be a potential oncogene in prostate cancer (PCa). First, we interrogated the transcript structure of EPCART and then confirmed EPCART to be a non-peptide-coding lncRNA using in silico methods. Pathway analysis of differentially expressed protein-coding genes in EPCART knockout cells implied that EPCART modulates the translational machinery of PCa cells. EPCART was also largely located in the cytoplasm and at the sites of translation. With quantitative proteome analysis on EPCART knockout cells we discovered PDCD4, an inhibitor of protein translation, to be increased by EPCART reduction. Further studies indicated that the inhibitory effect of EPCART silencing on translation was mediated by reduced activation of AKT and inhibition of the mTORC1 pathway. Together, our findings identify EPCART as a translation-associated lncRNA that functions via modulation of the PI3K/AKT/mTORC1 pathway in PCa cells. Furthermore, we provide evidence for the prognostic potential of PDCD4 in PCa tumors in connection with EPCART.
{"title":"Long noncoding RNA EPCART regulates translation through PI3K/AKT/mTOR pathway and PDCD4 in prostate cancer","authors":"Annika Kohvakka, Mina Sattari, Janika Nättinen, Ulla Aapola, Pavlína Gregorová, Teuvo L. J. Tammela, Hannu Uusitalo, L. Peter Sarin, Tapio Visakorpi, Leena Latonen","doi":"10.1038/s41417-024-00822-3","DOIUrl":"10.1038/s41417-024-00822-3","url":null,"abstract":"While hundreds of cancer-associated long noncoding RNAs (lncRNAs) have been discovered, their functional role in cancer cells is still largely a mystery. An increasing number of lncRNAs are recognized to function in the cytoplasm, e.g., as modulators of translation. Here, we investigated the detailed molecular identity and functional role of EPCART, a lncRNA we previously discovered to be a potential oncogene in prostate cancer (PCa). First, we interrogated the transcript structure of EPCART and then confirmed EPCART to be a non-peptide-coding lncRNA using in silico methods. Pathway analysis of differentially expressed protein-coding genes in EPCART knockout cells implied that EPCART modulates the translational machinery of PCa cells. EPCART was also largely located in the cytoplasm and at the sites of translation. With quantitative proteome analysis on EPCART knockout cells we discovered PDCD4, an inhibitor of protein translation, to be increased by EPCART reduction. Further studies indicated that the inhibitory effect of EPCART silencing on translation was mediated by reduced activation of AKT and inhibition of the mTORC1 pathway. Together, our findings identify EPCART as a translation-associated lncRNA that functions via modulation of the PI3K/AKT/mTORC1 pathway in PCa cells. Furthermore, we provide evidence for the prognostic potential of PDCD4 in PCa tumors in connection with EPCART.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 10","pages":"1536-1546"},"PeriodicalIF":4.8,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-024-00822-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to investigate the expression of SF3B1 in non-small cell lung cancer, and its clinical significance, biological function, and molecular mechanisms. SF3B1 mRNA and protein levels were elevated in both lung squamous cell carcinoma and lung adenocarcinoma (LUAD) tissues based on TCGA data and immunohistochemistry. Notably, high SF3B1 expression in LUAD was significantly associated with increased lymph node metastasis. Functional experiments involving SF3B1 knockdown and overexpression demonstrated that SF3B1 facilitated the proliferation, invasion, and migration of LUAD cells. Additionally, the SF3B1 inhibitor pladienolide-B attenuated the aggressive behavior of LUAD cells both in vitro and in vivo. RNA sequencing analysis indicated that differentially expressed genes in the SF3B1 knockdown and SF3B1 inhibitor groups were enriched in ferroptosis-related pathways compared to their respective control groups. The antiferroptotic role of SF3B1 in LUAD cells was validated by detecting glutathione depletion, lipid peroxidation, and observing morphological changes using transmission electron microscopy. This process was confirmed to be independent of apoptosis and autophagy, as evidenced by the effects of the ferroptosis inducer erastin, the apoptosis inhibitor Z-VAD-FMK, and the autophagy inhibitor 3-methyladenine. Rescue experiments indicated that the antiferroptotic role of SF3B1 in LUAD is partially mediated by upregulating the expression of SLC7A11.
{"title":"The splicing factor SF3B1 confers ferroptosis resistance and promotes lung adenocarcinoma progression via upregulation of SLC7A11","authors":"Yanlin Guo, Xiaohui Wang, Yu Du, Yixuan Zhao, Lvye Gao, Yanlong Hao, Dou Lv, Xuefei Feng, Yuanfang Zhai, Binbin Zou, Jinli Han, Enwei Xu, Yue Yang, Bin Yang, Yanfeng Xi, Ling Zhang","doi":"10.1038/s41417-024-00817-0","DOIUrl":"10.1038/s41417-024-00817-0","url":null,"abstract":"This study aimed to investigate the expression of SF3B1 in non-small cell lung cancer, and its clinical significance, biological function, and molecular mechanisms. SF3B1 mRNA and protein levels were elevated in both lung squamous cell carcinoma and lung adenocarcinoma (LUAD) tissues based on TCGA data and immunohistochemistry. Notably, high SF3B1 expression in LUAD was significantly associated with increased lymph node metastasis. Functional experiments involving SF3B1 knockdown and overexpression demonstrated that SF3B1 facilitated the proliferation, invasion, and migration of LUAD cells. Additionally, the SF3B1 inhibitor pladienolide-B attenuated the aggressive behavior of LUAD cells both in vitro and in vivo. RNA sequencing analysis indicated that differentially expressed genes in the SF3B1 knockdown and SF3B1 inhibitor groups were enriched in ferroptosis-related pathways compared to their respective control groups. The antiferroptotic role of SF3B1 in LUAD cells was validated by detecting glutathione depletion, lipid peroxidation, and observing morphological changes using transmission electron microscopy. This process was confirmed to be independent of apoptosis and autophagy, as evidenced by the effects of the ferroptosis inducer erastin, the apoptosis inhibitor Z-VAD-FMK, and the autophagy inhibitor 3-methyladenine. Rescue experiments indicated that the antiferroptotic role of SF3B1 in LUAD is partially mediated by upregulating the expression of SLC7A11.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 10","pages":"1498-1510"},"PeriodicalIF":4.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gastric cancer (GC) is characterized with differentiation disorders, the precise mechanisms of which remain unknown. Our previous study showed that PHF10 exhibits oncogenic properties in GC, with its histological presentation indicating a potential role in the modulation of differentiation disorders in GC. This study reveals a significant upregulation of PHF10 in GC tissues, showing a negative correlation with differentiation level. PHF10 was found to impede the differentiation of GC cells while promoting their stemness properties. This was attributed to the formation of a positive feedback loop between PHF10 and E2F1, resulting in dysregulated expression levels in GC. Additionally, PHF10 was found to mediate the transcriptional repression of the target gene DUSP5 in GC cells through the assembly of the SWI/SNF complex, leading to an elevation in pERK1/2 levels. In GC tissues, a negative association was noted between the expression of E2F1 or PHF10 and DUSP5, whereas a positive correlation was observed between the expression of E2F1 or PHF10 and pERK1/2. Additional rescue experiments confirmed that the inhibitory effect on differentiation of GC cells by PHF10 is dependent on the DUSP5-pERK1/2 axis. The signaling cascade involving E2F1-PHF10-DUSP5-pERK1/2 was identified as an important player in regulating differentiation and stemness in GC cells. PHF10 emerges as a promising target for differentiation induction therapy in GC.
{"title":"PHF10 inhibits gastric epithelium differentiation and induces gastric cancer carcinogenesis","authors":"Zhiyuan Fan, Wenjing Yan, Jianfang Li, Min Yan, Bingya Liu, Zhongyin Yang, Beiqin Yu","doi":"10.1038/s41417-024-00820-5","DOIUrl":"10.1038/s41417-024-00820-5","url":null,"abstract":"Gastric cancer (GC) is characterized with differentiation disorders, the precise mechanisms of which remain unknown. Our previous study showed that PHF10 exhibits oncogenic properties in GC, with its histological presentation indicating a potential role in the modulation of differentiation disorders in GC. This study reveals a significant upregulation of PHF10 in GC tissues, showing a negative correlation with differentiation level. PHF10 was found to impede the differentiation of GC cells while promoting their stemness properties. This was attributed to the formation of a positive feedback loop between PHF10 and E2F1, resulting in dysregulated expression levels in GC. Additionally, PHF10 was found to mediate the transcriptional repression of the target gene DUSP5 in GC cells through the assembly of the SWI/SNF complex, leading to an elevation in pERK1/2 levels. In GC tissues, a negative association was noted between the expression of E2F1 or PHF10 and DUSP5, whereas a positive correlation was observed between the expression of E2F1 or PHF10 and pERK1/2. Additional rescue experiments confirmed that the inhibitory effect on differentiation of GC cells by PHF10 is dependent on the DUSP5-pERK1/2 axis. The signaling cascade involving E2F1-PHF10-DUSP5-pERK1/2 was identified as an important player in regulating differentiation and stemness in GC cells. PHF10 emerges as a promising target for differentiation induction therapy in GC.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 10","pages":"1511-1524"},"PeriodicalIF":4.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-024-00820-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HER2-positive (HER2+) breast cancer accounts for 20–30% of all breast cancers. Although trastuzumab has significantly improved the survival of patients with HER2+ breast cancer, more than 70% of patients develop drug resistance within one year of treatment. Differential-gene-expression analysis of trastuzumab-sensitive and resistant HER2+ breast cancer cell lines from GSE15043 was performed to identify the biomarkers associated with trastuzumab resistance. Differential biomarker expression was confirmed in FFPE tissues collected from clinical HER2+ breast cancer tumor samples that were sensitive or resistant to trastuzumab treatment. UGT1A7, a member of the uronic acid transferase family, was associated with trastuzumab resistance. UGT1A7 expression was downregulated in trastuzumab-resistant tumor tissues and in a cell line that developed trastuzumab resistance (BT474TR). Overexpressing UGT1A7 in BT474TR restored their sensitivity to trastuzumab treatment, whereas downregulating UGT1A7 expression in parental cells led to trastuzumab resistance. Importantly, UGT1A7 localized to the endoplasmic reticulum and altered stress responses. Furthermore, downregulating UGT1A7 expression promoted epithelial-to-mesenchymal transition (EMT) by affecting TWIST, SNAIL, and GRP78 expression and the AMP-activated protein kinase signaling pathway, thus contributing to trastuzumab resistance. This study demonstrated the important role and novel mechanisms of UGT1A7 in tumor responses to trastuzumab. Low UGT1A7 expression plays an important role in EMT and contributes to trastuzumab resistance. UGT1A7 has the potential to be developed as a biomarker for identifying patients who are resistant to trastuzumab treatment.
{"title":"UGT1A7 altered HER2-positive breast cancer response to trastuzumab by affecting epithelial-to-mesenchymal transition: A potential biomarker to identify patients resistant to trastuzumab treatment","authors":"Cong Wang, Chenguang Bai, Zhe Zhang, Hao Zhou, Huanyao Gao, Siwei Wang, Yuan Yuan","doi":"10.1038/s41417-024-00819-y","DOIUrl":"10.1038/s41417-024-00819-y","url":null,"abstract":"HER2-positive (HER2+) breast cancer accounts for 20–30% of all breast cancers. Although trastuzumab has significantly improved the survival of patients with HER2+ breast cancer, more than 70% of patients develop drug resistance within one year of treatment. Differential-gene-expression analysis of trastuzumab-sensitive and resistant HER2+ breast cancer cell lines from GSE15043 was performed to identify the biomarkers associated with trastuzumab resistance. Differential biomarker expression was confirmed in FFPE tissues collected from clinical HER2+ breast cancer tumor samples that were sensitive or resistant to trastuzumab treatment. UGT1A7, a member of the uronic acid transferase family, was associated with trastuzumab resistance. UGT1A7 expression was downregulated in trastuzumab-resistant tumor tissues and in a cell line that developed trastuzumab resistance (BT474TR). Overexpressing UGT1A7 in BT474TR restored their sensitivity to trastuzumab treatment, whereas downregulating UGT1A7 expression in parental cells led to trastuzumab resistance. Importantly, UGT1A7 localized to the endoplasmic reticulum and altered stress responses. Furthermore, downregulating UGT1A7 expression promoted epithelial-to-mesenchymal transition (EMT) by affecting TWIST, SNAIL, and GRP78 expression and the AMP-activated protein kinase signaling pathway, thus contributing to trastuzumab resistance. This study demonstrated the important role and novel mechanisms of UGT1A7 in tumor responses to trastuzumab. Low UGT1A7 expression plays an important role in EMT and contributes to trastuzumab resistance. UGT1A7 has the potential to be developed as a biomarker for identifying patients who are resistant to trastuzumab treatment.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 10","pages":"1525-1535"},"PeriodicalIF":4.8,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.1038/s41417-024-00815-2
Tancredi Didier Bazan Russo, Clarissa Mujacic, Emilia Di Giovanni, Maria Concetta Vitale, Carla Ferrante Bannera, Ugo Randazzo, Silvia Contino, Marco Bono, Valerio Gristina, Antonio Galvano, Alessandro Perez, Giuseppe Badalamenti, Antonio Russo, Viviana Bazan, Lorena Incorvaia
The most remarkable finding in synthetic lethality (SL) is the hypersensitivity to PARP inhibitors (PARPis) of the tumors harboring defects in genes involved in homologous repair (HR) such as BRCA1/2. Despite initial responsiveness to PARPi, the penetrance of the synthetic lethal interactions between BRCA1/2 genes and PARPi is incomplete. Thus, a significant proportion of HR-defective tumors experience intrinsic or acquired resistance, representing a key challenge of clinical research. An expanded concept of SL is opening new ways and includes novel forms of genetic interactions, investigating not only traditional SL of pairs genes but also SL between biological pathways that regulate the same essential survival cell function. In this context, recent research showed that HR and theta-mediated end-joining (TMEJ) pathways exhibit SL. DNA polymerase theta (Polθ) is encoded by the POLQ gene and is a key component of the TMEJ, an essential backup pathway, intrinsically mutagenic, to repair resected double-strand breaks (DSBs) when the non-homologous end joining (NHEJ) and HR are impaired. Polθ is broadly expressed in normal tissues, overexpressed in several cancers, and typically associated with poor outcomes and shorter relapse-free survival. Notably, HR-deficient tumor cells present the characteristic mutational signatures of the error-prone TMEJ pathway. According to this observation, the loss of HR proteins, such as BRCA1 or BRCA2, contributes to increasing the TMEJ-specific genomic profile, suggesting synthetic lethal interactions between loss of the POLQ and HR genes, and resulting in the emerging interest for Polθ as a potential therapeutic target in BRCA1/2-associated tumors. This review summarizes the converging roles of the POLQ and HR genes in DNA DSB repair, the early-stage clinical trials using Polθ inhibitor to treat HR-defective tumors and to overcome BRCA-reversion mutations responsible for therapeutic resistance, and the novel pleiotropic effects of Polθ, paving the way for the development of unexplored synthetic lethality strategies.
{"title":"Polθ: emerging synthetic lethal partner in homologous recombination-deficient tumors","authors":"Tancredi Didier Bazan Russo, Clarissa Mujacic, Emilia Di Giovanni, Maria Concetta Vitale, Carla Ferrante Bannera, Ugo Randazzo, Silvia Contino, Marco Bono, Valerio Gristina, Antonio Galvano, Alessandro Perez, Giuseppe Badalamenti, Antonio Russo, Viviana Bazan, Lorena Incorvaia","doi":"10.1038/s41417-024-00815-2","DOIUrl":"10.1038/s41417-024-00815-2","url":null,"abstract":"The most remarkable finding in synthetic lethality (SL) is the hypersensitivity to PARP inhibitors (PARPis) of the tumors harboring defects in genes involved in homologous repair (HR) such as BRCA1/2. Despite initial responsiveness to PARPi, the penetrance of the synthetic lethal interactions between BRCA1/2 genes and PARPi is incomplete. Thus, a significant proportion of HR-defective tumors experience intrinsic or acquired resistance, representing a key challenge of clinical research. An expanded concept of SL is opening new ways and includes novel forms of genetic interactions, investigating not only traditional SL of pairs genes but also SL between biological pathways that regulate the same essential survival cell function. In this context, recent research showed that HR and theta-mediated end-joining (TMEJ) pathways exhibit SL. DNA polymerase theta (Polθ) is encoded by the POLQ gene and is a key component of the TMEJ, an essential backup pathway, intrinsically mutagenic, to repair resected double-strand breaks (DSBs) when the non-homologous end joining (NHEJ) and HR are impaired. Polθ is broadly expressed in normal tissues, overexpressed in several cancers, and typically associated with poor outcomes and shorter relapse-free survival. Notably, HR-deficient tumor cells present the characteristic mutational signatures of the error-prone TMEJ pathway. According to this observation, the loss of HR proteins, such as BRCA1 or BRCA2, contributes to increasing the TMEJ-specific genomic profile, suggesting synthetic lethal interactions between loss of the POLQ and HR genes, and resulting in the emerging interest for Polθ as a potential therapeutic target in BRCA1/2-associated tumors. This review summarizes the converging roles of the POLQ and HR genes in DNA DSB repair, the early-stage clinical trials using Polθ inhibitor to treat HR-defective tumors and to overcome BRCA-reversion mutations responsible for therapeutic resistance, and the novel pleiotropic effects of Polθ, paving the way for the development of unexplored synthetic lethality strategies.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 11","pages":"1619-1631"},"PeriodicalIF":4.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-024-00815-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arsenic trioxide (ATO) has exhibited remarkable efficacy in treating acute promyelocytic leukemia (APL), primarily through promoting the degradation of the PML-RARα fusion protein. However, ATO alone fails to confer any survival benefit to non-APL acute myeloid leukemia (AML) patients and exhibits limited efficacy when used in combination with other agents. Here, we explored the general toxicity mechanisms of ATO in APL and potential drugs that could be combined with ATO to exhibit synergistic lethal effects on other AML. We demonstrated that PML-RARα degradation and ROS upregulation were insufficient to cause APL cell death. Based on the protein synthesis of different AML cells and their sensitivity to ATO, we established a correlation between ATO-induced cell death and protein synthesis. Our findings indicated that ATO induced cell death by damaging nascent polypeptides and causing ribosome stalling, accompanied by the activation of the ZAKα-JNK pathway. Furthermore, ATO-induced stress activated the GCN2–ATF4 pathway, and ribosome-associated quality control cleared damaged proteins with the assistance of p97. Importantly, our data revealed that inhibiting p97 enhanced the effectiveness of ATO in killing AML cells. These explorations paved the way for identifying optimal synthetic lethal drugs to enhance ATO treatment on non-APL AML.
三氧化二砷(ATO)主要通过促进 PML-RARα 融合蛋白的降解来治疗急性早幼粒细胞白血病(APL),疗效显著。然而,单独使用 ATO 无法为非 APL 急性髓性白血病(AML)患者带来任何生存益处,与其他药物联合使用时疗效有限。在此,我们探讨了 ATO 在 APL 中的一般毒性机制,以及与 ATO 联用可对其他 AML 产生协同致死效应的潜在药物。我们证明,PML-RARα降解和ROS上调不足以导致APL细胞死亡。根据不同 AML 细胞的蛋白质合成及其对 ATO 的敏感性,我们建立了 ATO 诱导的细胞死亡与蛋白质合成之间的相关性。我们的研究结果表明,ATO 通过破坏新生多肽并导致核糖体停滞,同时激活 ZAKα-JNK 通路,诱导细胞死亡。此外,ATO诱导的应激激活了GCN2-ATF4通路,核糖体相关质量控制在p97的协助下清除了受损蛋白质。重要的是,我们的数据显示,抑制 p97 能增强 ATO 杀死 AML 细胞的效果。这些探索为确定最佳合成致死药物铺平了道路,以增强ATO对非APL AML的治疗效果。
{"title":"Arsenic trioxide and p97 inhibitor synergize against acute myeloid leukemia by targeting nascent polypeptides and activating the ZAKα–JNK pathway","authors":"Shufeng Xie, Hui Liu, Shouhai Zhu, Zhihong Chen, Ruiheng Wang, Wenjie Zhang, Huajian Xian, Rufang Xiang, Xiaoli Xia, Yong Sun, Jinlan Long, Yuanli Wang, Minghui Wang, Yixin Wang, Yaoyifu Yu, Zixuan Huang, Chaoqun Lu, Zhenshu Xu, Han Liu","doi":"10.1038/s41417-024-00818-z","DOIUrl":"10.1038/s41417-024-00818-z","url":null,"abstract":"Arsenic trioxide (ATO) has exhibited remarkable efficacy in treating acute promyelocytic leukemia (APL), primarily through promoting the degradation of the PML-RARα fusion protein. However, ATO alone fails to confer any survival benefit to non-APL acute myeloid leukemia (AML) patients and exhibits limited efficacy when used in combination with other agents. Here, we explored the general toxicity mechanisms of ATO in APL and potential drugs that could be combined with ATO to exhibit synergistic lethal effects on other AML. We demonstrated that PML-RARα degradation and ROS upregulation were insufficient to cause APL cell death. Based on the protein synthesis of different AML cells and their sensitivity to ATO, we established a correlation between ATO-induced cell death and protein synthesis. Our findings indicated that ATO induced cell death by damaging nascent polypeptides and causing ribosome stalling, accompanied by the activation of the ZAKα-JNK pathway. Furthermore, ATO-induced stress activated the GCN2–ATF4 pathway, and ribosome-associated quality control cleared damaged proteins with the assistance of p97. Importantly, our data revealed that inhibiting p97 enhanced the effectiveness of ATO in killing AML cells. These explorations paved the way for identifying optimal synthetic lethal drugs to enhance ATO treatment on non-APL AML.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 10","pages":"1486-1497"},"PeriodicalIF":4.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-024-00818-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141911864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1038/s41417-024-00812-5
Arun Khattri, Sheikh Nizamuddin, Nikhil Agrawal, Sandeep Kaushik, Sara Kochanny, Daniel Ginat, Mark W. Lingen, Elizabeth Blair, Tanguy Y. Seiwert
Cetuximab induces responses in about 13% of head and neck squamous cell carcinomas (HNSCC). We describe the molecular mechanism of acquired resistance to cetuximab, which could be overcome by switching to a different anti-EGFR antibody. Biopsies were collected at three different time points: before the start of cetuximab (PRE-cetux), at acquired resistance to cetuximab (AR-cetux), and at acquired resistance to duligotuzumab (AR-duligo). Biopsies were analyzed using tumor and normal whole-exome sequencing, RNASeq, and targeted panel sequencing with ultra-deep coverage to generate differential mutation and expression profiles. WES and targeted sequencing analysis identified an EGFR p.G465R extracellular domain mutation in AR-cetux biopsy. Furthermore, RNASeq confirmed the expression of this mutation in the tumor tissue. This mutation prevented the binding of cetuximab to EGFR and was not present in PRE-cetux and AR-duligo biopsies, suggesting a potential mechanism of acquired resistance to cetuximab. Molecular dynamic simulations confirmed that duligotuzumab effectively binds EGFR with a p.G465R mutation. Interestingly, the p.G465R mutation improved the stability of the duligotuzumab-EGFR complex as compared to the wild-type EGFR. This is the first report of an EGFR ECD mutation associated with acquired resistance to cetuximab, posing a need for further validation. We suggest appropriate serial mutational profiling to identify ECD mutations should be considered for select patients with initial cetuximab benefit.
{"title":"Switching anti-EGFR antibody re-sensitizes head and neck cancer patient following acquired resistance to cetuximab","authors":"Arun Khattri, Sheikh Nizamuddin, Nikhil Agrawal, Sandeep Kaushik, Sara Kochanny, Daniel Ginat, Mark W. Lingen, Elizabeth Blair, Tanguy Y. Seiwert","doi":"10.1038/s41417-024-00812-5","DOIUrl":"10.1038/s41417-024-00812-5","url":null,"abstract":"Cetuximab induces responses in about 13% of head and neck squamous cell carcinomas (HNSCC). We describe the molecular mechanism of acquired resistance to cetuximab, which could be overcome by switching to a different anti-EGFR antibody. Biopsies were collected at three different time points: before the start of cetuximab (PRE-cetux), at acquired resistance to cetuximab (AR-cetux), and at acquired resistance to duligotuzumab (AR-duligo). Biopsies were analyzed using tumor and normal whole-exome sequencing, RNASeq, and targeted panel sequencing with ultra-deep coverage to generate differential mutation and expression profiles. WES and targeted sequencing analysis identified an EGFR p.G465R extracellular domain mutation in AR-cetux biopsy. Furthermore, RNASeq confirmed the expression of this mutation in the tumor tissue. This mutation prevented the binding of cetuximab to EGFR and was not present in PRE-cetux and AR-duligo biopsies, suggesting a potential mechanism of acquired resistance to cetuximab. Molecular dynamic simulations confirmed that duligotuzumab effectively binds EGFR with a p.G465R mutation. Interestingly, the p.G465R mutation improved the stability of the duligotuzumab-EGFR complex as compared to the wild-type EGFR. This is the first report of an EGFR ECD mutation associated with acquired resistance to cetuximab, posing a need for further validation. We suggest appropriate serial mutational profiling to identify ECD mutations should be considered for select patients with initial cetuximab benefit.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 10","pages":"1477-1485"},"PeriodicalIF":4.8,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-024-00812-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1038/s41417-024-00813-4
Xiong Guo, Bin Mu, Lin Zhu, Yanli Zhuo, Ping Mu, Fu Ren, Fangjin Lu
Metastasis, the primary cause of death in lung cancer patients, is facilitated by cytoskeleton remodeling, which plays a crucial role in cancer cell migration and invasion. However, the precise regulatory mechanisms of intracellular trafficking proteins involved in cytoskeleton remodeling remain unclear. In this study, we have identified Rabenosyn-5 (Rbsn) as an inhibitor of filopodia formation and lung cancer metastasis. Mechanistically, Rbsn interacts with CDC42 and functions as a GTPase activating protein (GAP), thereby inhibiting CDC42 activity and subsequent filopodia formation. Furthermore, we have discovered that Akt phosphorylates Rbsn at the Thr253 site, and this phosphorylation negates the inhibitory effect of Rbsn on CDC42 activity. Additionally, our analysis reveals that Rbsn expression is significantly downregulated in lung cancer, and this decrease is associated with a worse prognosis. These findings provide strong evidence supporting the role of Rbsn in suppressing lung cancer progression through the inhibition of metastasis.
{"title":"Rabenosyn-5 suppresses non-small cell lung cancer metastasis via inhibiting CDC42 activity","authors":"Xiong Guo, Bin Mu, Lin Zhu, Yanli Zhuo, Ping Mu, Fu Ren, Fangjin Lu","doi":"10.1038/s41417-024-00813-4","DOIUrl":"10.1038/s41417-024-00813-4","url":null,"abstract":"Metastasis, the primary cause of death in lung cancer patients, is facilitated by cytoskeleton remodeling, which plays a crucial role in cancer cell migration and invasion. However, the precise regulatory mechanisms of intracellular trafficking proteins involved in cytoskeleton remodeling remain unclear. In this study, we have identified Rabenosyn-5 (Rbsn) as an inhibitor of filopodia formation and lung cancer metastasis. Mechanistically, Rbsn interacts with CDC42 and functions as a GTPase activating protein (GAP), thereby inhibiting CDC42 activity and subsequent filopodia formation. Furthermore, we have discovered that Akt phosphorylates Rbsn at the Thr253 site, and this phosphorylation negates the inhibitory effect of Rbsn on CDC42 activity. Additionally, our analysis reveals that Rbsn expression is significantly downregulated in lung cancer, and this decrease is associated with a worse prognosis. These findings provide strong evidence supporting the role of Rbsn in suppressing lung cancer progression through the inhibition of metastasis.","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":"31 10","pages":"1465-1476"},"PeriodicalIF":4.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41417-024-00813-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}