Pub Date : 2024-08-13DOI: 10.1007/s10565-024-09902-4
Denise Strand, Erik Nylander, Andrey Höglund, Bo Lundgren, Jonathan W Martin, Oskar Karlsson
Many persistent organic pollutants (POPs) are suspected endocrine disruptors and it is important to investigate their effects at low concentrations relevant to human exposure. Here, the OECD test guideline #456 steroidogenesis assay was downscaled to a 96-well microplate format to screen 24 POPs for their effects on viability, and testosterone and estradiol synthesis using the human adrenocortical cell line H295R. The compounds (six polyfluoroalkyl substances, five organochlorine pesticides, ten polychlorinated biphenyls and three polybrominated diphenyl ethers) were tested at human-relevant levels (1 nM to 10 µM). Increased estradiol synthesis, above the OECD guideline threshold of 1.5-fold solvent control, was shown after exposure to 10 µM PCB-156 (153%) and PCB-180 (196%). Interestingly, the base hormone synthesis varied depending on the cell batch. An alternative data analysis using a linear mixed-effects model that include multiple independent experiments and considers batch-dependent variation was therefore applied. This approach revealed small but statistically significant effects on estradiol or testosterone synthesis for 17 compounds. Increased testosterone levels were demonstrated even at 1 nM for PCB-74 (18%), PCB-99 (29%), PCB-118 (16%), PCB-138 (19%), PCB-180 (22%), and PBDE-153 (21%). The MTT assay revealed significant effects on cell viability after exposure to 1 nM of perfluoroundecanoic acid (12%), 3 nM PBDE-153 (9%), and 10 µM of PCB-156 (6%). This shows that some POPs can interfere with endocrine signaling at concentrations found in human blood, highlighting the need for further investigation into the toxicological mechanisms of POPs and their mixtures at low concentrations relevant to human exposure.
{"title":"Screening persistent organic pollutants for effects on testosterone and estrogen synthesis at human-relevant concentrations using H295R cells in 96-well plates.","authors":"Denise Strand, Erik Nylander, Andrey Höglund, Bo Lundgren, Jonathan W Martin, Oskar Karlsson","doi":"10.1007/s10565-024-09902-4","DOIUrl":"10.1007/s10565-024-09902-4","url":null,"abstract":"<p><p>Many persistent organic pollutants (POPs) are suspected endocrine disruptors and it is important to investigate their effects at low concentrations relevant to human exposure. Here, the OECD test guideline #456 steroidogenesis assay was downscaled to a 96-well microplate format to screen 24 POPs for their effects on viability, and testosterone and estradiol synthesis using the human adrenocortical cell line H295R. The compounds (six polyfluoroalkyl substances, five organochlorine pesticides, ten polychlorinated biphenyls and three polybrominated diphenyl ethers) were tested at human-relevant levels (1 nM to 10 µM). Increased estradiol synthesis, above the OECD guideline threshold of 1.5-fold solvent control, was shown after exposure to 10 µM PCB-156 (153%) and PCB-180 (196%). Interestingly, the base hormone synthesis varied depending on the cell batch. An alternative data analysis using a linear mixed-effects model that include multiple independent experiments and considers batch-dependent variation was therefore applied. This approach revealed small but statistically significant effects on estradiol or testosterone synthesis for 17 compounds. Increased testosterone levels were demonstrated even at 1 nM for PCB-74 (18%), PCB-99 (29%), PCB-118 (16%), PCB-138 (19%), PCB-180 (22%), and PBDE-153 (21%). The MTT assay revealed significant effects on cell viability after exposure to 1 nM of perfluoroundecanoic acid (12%), 3 nM PBDE-153 (9%), and 10 µM of PCB-156 (6%). This shows that some POPs can interfere with endocrine signaling at concentrations found in human blood, highlighting the need for further investigation into the toxicological mechanisms of POPs and their mixtures at low concentrations relevant to human exposure.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"69"},"PeriodicalIF":5.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322491/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Colorectal cancer progression involves complex cellular mechanisms. This study examines the effects of Lactobacillus plantarum-derived extracellular vesicles (LEVs) on the SIRT5/p53 axis, focusing on glycolytic metabolic reprogramming and abnormal proliferation in intestinal epithelial cells.
Methods: LEVs were isolated from Lactobacillus plantarum and incubated with Caco-2 cells. Differential gene expression was analyzed through RNA sequencing and compared with TCGA-COAD data. Key target genes and pathways were identified using PPI network and pathway enrichment analysis. Various assays, including RT-qPCR, EdU staining, colony formation, flow cytometry, and Western blotting, were used to assess gene expression, cell proliferation, and metabolic changes. Co-immunoprecipitation confirmed the interaction between SIRT5 and p53, and animal models were employed to validate in vivo effects.
Results: Bioinformatics analysis indicated the SIRT5/p53 axis as a critical pathway in LEVs' modulation of colorectal cancer. LEVs were found to inhibit colorectal cancer cell proliferation and glycolytic metabolism by downregulating SIRT5, influencing p53 desuccinylation. In vivo, LEVs regulated this axis, reducing tumor formation in mice. Clinical sample analysis showed that SIRT5 and p53 succinylation levels correlated with patient prognosis.
Conclusion: Lactobacillus-derived extracellular vesicles play a pivotal role in suppressing colonic tumor formation by modulating the SIRT5/p53 axis. This results in decreased glycolytic metabolic reprogramming and reduced proliferation in intestinal epithelial cells.
{"title":"Antitumorigenic potential of Lactobacillus-derived extracellular vesicles: p53 succinylation and glycolytic reprogramming in intestinal epithelial cells via SIRT5 modulation.","authors":"Jingbo Zhang, Xiumei Huang, Tingting Zhang, Chongqi Gu, Wei Zuo, Lijuan Fu, Yiping Dong, Hao Liu","doi":"10.1007/s10565-024-09897-y","DOIUrl":"10.1007/s10565-024-09897-y","url":null,"abstract":"<p><strong>Objective: </strong>Colorectal cancer progression involves complex cellular mechanisms. This study examines the effects of Lactobacillus plantarum-derived extracellular vesicles (LEVs) on the SIRT5/p53 axis, focusing on glycolytic metabolic reprogramming and abnormal proliferation in intestinal epithelial cells.</p><p><strong>Methods: </strong>LEVs were isolated from Lactobacillus plantarum and incubated with Caco-2 cells. Differential gene expression was analyzed through RNA sequencing and compared with TCGA-COAD data. Key target genes and pathways were identified using PPI network and pathway enrichment analysis. Various assays, including RT-qPCR, EdU staining, colony formation, flow cytometry, and Western blotting, were used to assess gene expression, cell proliferation, and metabolic changes. Co-immunoprecipitation confirmed the interaction between SIRT5 and p53, and animal models were employed to validate in vivo effects.</p><p><strong>Results: </strong>Bioinformatics analysis indicated the SIRT5/p53 axis as a critical pathway in LEVs' modulation of colorectal cancer. LEVs were found to inhibit colorectal cancer cell proliferation and glycolytic metabolism by downregulating SIRT5, influencing p53 desuccinylation. In vivo, LEVs regulated this axis, reducing tumor formation in mice. Clinical sample analysis showed that SIRT5 and p53 succinylation levels correlated with patient prognosis.</p><p><strong>Conclusion: </strong>Lactobacillus-derived extracellular vesicles play a pivotal role in suppressing colonic tumor formation by modulating the SIRT5/p53 axis. This results in decreased glycolytic metabolic reprogramming and reduced proliferation in intestinal epithelial cells.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"66"},"PeriodicalIF":5.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.1007/s10565-024-09908-y
Yiying Bian, Qiushuo Jin, Jinrui He, Thien Ngo, Ok-Nam Bae, Liguo Xing, Jingbo Pi, Han Young Chung, Yuanyuan Xu
Background: Titanium dioxide nanoparticles (TiO2NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular.
Methods: Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO2NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively.
Results: Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO2NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO2NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO2NP treatment, which were crucial in TiO2NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO2NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT.
Conclusions: Together, our study provides evidence for an ignored health risk caused by TiO2NPs, specifically TiO2NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.
{"title":"Biomedical application of TiO<sub>2</sub>NPs can cause arterial thrombotic risks through triggering procoagulant activity, activation and aggregation of platelets.","authors":"Yiying Bian, Qiushuo Jin, Jinrui He, Thien Ngo, Ok-Nam Bae, Liguo Xing, Jingbo Pi, Han Young Chung, Yuanyuan Xu","doi":"10.1007/s10565-024-09908-y","DOIUrl":"10.1007/s10565-024-09908-y","url":null,"abstract":"<p><strong>Background: </strong>Titanium dioxide nanoparticles (TiO<sub>2</sub>NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular.</p><p><strong>Methods: </strong>Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO<sub>2</sub>NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively.</p><p><strong>Results: </strong>Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO<sub>2</sub>NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO<sub>2</sub>NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO<sub>2</sub>NP treatment, which were crucial in TiO<sub>2</sub>NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO<sub>2</sub>NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT.</p><p><strong>Conclusions: </strong>Together, our study provides evidence for an ignored health risk caused by TiO<sub>2</sub>NPs, specifically TiO<sub>2</sub>NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"67"},"PeriodicalIF":5.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.1007/s10565-024-09909-x
Chaobang Ma, Caili Gou, Shiyu Sun, Junmin Wang, Xin Wei, Fei Xing, Na Xing, Jingjing Yuan, Zhongyu Wang
The primary aim of this research was to explore the functions of Wtap and Ythdf1 in regulating neuronal Lipocalin-2 (Lcn2) through m6A modification in traumatic brain injury (TBI). By employing transcriptome sequencing and enrichment analysis, we identified the Wtap/Ythdf1-mediated Lcn2 m6A modification pathway as crucial in TBI. In our in vitro experiments using primary cortical neurons, knockout of Wtap and Ythdf1 led to the inhibition of Lcn2 m6A modification, resulting in reduced neuronal death and inflammation. Furthermore, overexpression of Lcn2 in cortical neurons induced the activation of reactive astrocytes and M1-like microglial cells, causing neuronal apoptosis. In vivo experiments confirmed the activation of reactive astrocytes and microglial cells in TBI and importantly demonstrated that Wtap knockdown improved neuroinflammation and functional impairment. These findings underscore the significance of Wtap/Ythdf1-mediated Lcn2 regulation in TBI secondary injury and suggest potential therapeutic implications for combating TBI-induced neuroinflammation and neuronal damage.
{"title":"Unraveling the molecular complexity: Wtap/Ythdf1 and Lcn2 in novel traumatic brain injury secondary injury mechanisms.","authors":"Chaobang Ma, Caili Gou, Shiyu Sun, Junmin Wang, Xin Wei, Fei Xing, Na Xing, Jingjing Yuan, Zhongyu Wang","doi":"10.1007/s10565-024-09909-x","DOIUrl":"10.1007/s10565-024-09909-x","url":null,"abstract":"<p><p>The primary aim of this research was to explore the functions of Wtap and Ythdf1 in regulating neuronal Lipocalin-2 (Lcn2) through m6A modification in traumatic brain injury (TBI). By employing transcriptome sequencing and enrichment analysis, we identified the Wtap/Ythdf1-mediated Lcn2 m6A modification pathway as crucial in TBI. In our in vitro experiments using primary cortical neurons, knockout of Wtap and Ythdf1 led to the inhibition of Lcn2 m6A modification, resulting in reduced neuronal death and inflammation. Furthermore, overexpression of Lcn2 in cortical neurons induced the activation of reactive astrocytes and M1-like microglial cells, causing neuronal apoptosis. In vivo experiments confirmed the activation of reactive astrocytes and microglial cells in TBI and importantly demonstrated that Wtap knockdown improved neuroinflammation and functional impairment. These findings underscore the significance of Wtap/Ythdf1-mediated Lcn2 regulation in TBI secondary injury and suggest potential therapeutic implications for combating TBI-induced neuroinflammation and neuronal damage.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"65"},"PeriodicalIF":5.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306654/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1007/s10565-024-09889-y
Xusheng Nie, Tingting Zhang, Xiumei Huang, Chongqi Gu, Wei Zuo, Li-Juan Fu, Yiping Dong, Hao Liu
Background and purpose
Colorectal cancer (CRC) is a widespread malignancy with a complex and not entirely elucidated pathogenesis. This study aims to explore the role of Bifidobacterium in the urea cycle (UC) and its influence on the progression of CRC, a topic not extensively studied previously.
Experimental approach
Utilizing both bioinformatics and experimental methodologies, this research involved analyzing bacterial abundance in CRC patients in comparison to healthy individuals. The study particularly focused on the abundance of BA. Additionally, transcriptomic data analysis and cellular experiments were conducted to investigate the impact of Bifidobacterium on ammonia metabolism and mitochondrial function, specifically examining its regulation of the key UC gene, ALB.
Key results
The analysis revealed a significant decrease in Bifidobacterium abundance in CRC patients. Furthermore, Bifidobacterium was found to suppress ammonia metabolism and induce mitochondrial dysfunction through the regulation of the ALB gene, which is essential in the context of UC. These impacts contributed to the suppression of CRC cell proliferation, a finding corroborated by animal experimental results.
Conclusions and implications
This study elucidates the molecular mechanism by which Bifidobacterium impacts CRC progression, highlighting its role in regulating key metabolic pathways. These findings provide potential targets for novel therapeutic strategies in CRC treatment, emphasizing the importance of microbiota in cancer progression.
{"title":"Novel therapeutic targets: bifidobacterium-mediated urea cycle regulation in colorectal cancer","authors":"Xusheng Nie, Tingting Zhang, Xiumei Huang, Chongqi Gu, Wei Zuo, Li-Juan Fu, Yiping Dong, Hao Liu","doi":"10.1007/s10565-024-09889-y","DOIUrl":"https://doi.org/10.1007/s10565-024-09889-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and purpose</h3><p>Colorectal cancer (CRC) is a widespread malignancy with a complex and not entirely elucidated pathogenesis. This study aims to explore the role of Bifidobacterium in the urea cycle (UC) and its influence on the progression of CRC, a topic not extensively studied previously.</p><h3 data-test=\"abstract-sub-heading\">Experimental approach</h3><p>Utilizing both bioinformatics and experimental methodologies, this research involved analyzing bacterial abundance in CRC patients in comparison to healthy individuals. The study particularly focused on the abundance of BA. Additionally, transcriptomic data analysis and cellular experiments were conducted to investigate the impact of Bifidobacterium on ammonia metabolism and mitochondrial function, specifically examining its regulation of the key UC gene, ALB.</p><h3 data-test=\"abstract-sub-heading\">Key results</h3><p>The analysis revealed a significant decrease in Bifidobacterium abundance in CRC patients. Furthermore, Bifidobacterium was found to suppress ammonia metabolism and induce mitochondrial dysfunction through the regulation of the ALB gene, which is essential in the context of UC. These impacts contributed to the suppression of CRC cell proliferation, a finding corroborated by animal experimental results.</p><h3 data-test=\"abstract-sub-heading\">Conclusions and implications</h3><p>This study elucidates the molecular mechanism by which Bifidobacterium impacts CRC progression, highlighting its role in regulating key metabolic pathways. These findings provide potential targets for novel therapeutic strategies in CRC treatment, emphasizing the importance of microbiota in cancer progression.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"54 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1007/s10565-024-09899-w
Jianfa Li, Shuangchen Chen, Jing Xiao, Jiayuan Ji, Chenchen Huang, Ge Shu
Background: Increased activity of the transcription factor FOXC1 leads to elevated transcription of target genes, ultimately facilitating the progression of various cancer types. However, there are currently no literature reports on the role of FOXC1 in renal cell carcinoma.
Methods: By using RT-qPCR, immunohistochemistry and Western blotting, FOXC1 mRNA and protein expression was evaluated. Gain of function experiments were utilized to assess the proliferation and metastasis ability of cells. A nude mouse model was created for transplanting tumors and establishing a lung metastasis model to observe cell proliferation and spread in a living organism. Various techniques including biological analysis, CHIP assay, luciferase assay, RT-qRCR and Western blotting experiments were utilized to investigate how FOXC1 contributes to the transcription of ABHD5 on a molecular level. FOXC1 was assessed by Western blot for its impact on AMPK/mTOR signaling pathway.
Results: FOXC1 is down-regulated in RCC, causing unfavorable prognosis of patients with RCC. Further experiments showed that forced FOXC1 expression significantly restrains RCC cell growth and cell metastasis. Mechanically, FOXC1 promotes the transcription of ABHD5 to activate AMPK signal pathway to inhibit mTOR signal pathway. Finally, knockdown of ABHD5 recovered the inhibitory role of FOXC1 overexpression induced cell growth and metastasis suppression.
Conclusion: In general, our study demonstrates that FOXC1 exerts its tumor suppressor role by promoting ABHD5 transcription to regulating AMPK/mTOR signal pathway. FOXC1 could serve as both a diagnostic indicator and potential treatment focus for RCC.
{"title":"FOXC1 transcriptionally suppresses ABHD5 to inhibit the progression of renal cell carcinoma through AMPK/mTOR pathway.","authors":"Jianfa Li, Shuangchen Chen, Jing Xiao, Jiayuan Ji, Chenchen Huang, Ge Shu","doi":"10.1007/s10565-024-09899-w","DOIUrl":"10.1007/s10565-024-09899-w","url":null,"abstract":"<p><strong>Background: </strong>Increased activity of the transcription factor FOXC1 leads to elevated transcription of target genes, ultimately facilitating the progression of various cancer types. However, there are currently no literature reports on the role of FOXC1 in renal cell carcinoma.</p><p><strong>Methods: </strong>By using RT-qPCR, immunohistochemistry and Western blotting, FOXC1 mRNA and protein expression was evaluated. Gain of function experiments were utilized to assess the proliferation and metastasis ability of cells. A nude mouse model was created for transplanting tumors and establishing a lung metastasis model to observe cell proliferation and spread in a living organism. Various techniques including biological analysis, CHIP assay, luciferase assay, RT-qRCR and Western blotting experiments were utilized to investigate how FOXC1 contributes to the transcription of ABHD5 on a molecular level. FOXC1 was assessed by Western blot for its impact on AMPK/mTOR signaling pathway.</p><p><strong>Results: </strong>FOXC1 is down-regulated in RCC, causing unfavorable prognosis of patients with RCC. Further experiments showed that forced FOXC1 expression significantly restrains RCC cell growth and cell metastasis. Mechanically, FOXC1 promotes the transcription of ABHD5 to activate AMPK signal pathway to inhibit mTOR signal pathway. Finally, knockdown of ABHD5 recovered the inhibitory role of FOXC1 overexpression induced cell growth and metastasis suppression.</p><p><strong>Conclusion: </strong>In general, our study demonstrates that FOXC1 exerts its tumor suppressor role by promoting ABHD5 transcription to regulating AMPK/mTOR signal pathway. FOXC1 could serve as both a diagnostic indicator and potential treatment focus for RCC.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"62"},"PeriodicalIF":5.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1007/s10565-024-09895-0
Haiyan Sun, Yisi Shan, Liyan Cao, Xiping Wu, Jiangdong Chen, Rong Yuan, Min Qian
Anesthetic-induced developmental neurotoxicity (AIDN) can arise due to various factors, among which aberrant nerve cell death is a prominent risk factor. Animal studies have reported that repeated or prolonged anesthetic exposure can cause significant neuroapoptosis in the developing brain. Lately, non-apoptotic programmed cell deaths (PCDs), characterized by inflammation and oxidative stress, have gained increasing attention. Substantial evidence suggests that non-apoptotic PCDs are essential for neuronal cell death in AIDN compared to apoptosis. This article examines relevant publications in the PubMed database until April 2024. Only original articles in English that investigated the potential manifestations of non-apoptotic PCD in AIDN were analysed. Specifically, it investigates necroptosis, pyroptosis, ferroptosis, and parthanatos, elucidating the signaling mechanisms associated with each form. Furthermore, this study explores the potential relevance of these non-apoptotic PCDs pathways to the pathological mechanisms underlying AIDN, drawing upon their distinctive characteristics. Despite the considerable challenges involved in translating fundamental scientific knowledge into clinical therapeutic interventions, this comprehensive review offers a theoretical foundation for developing innovative preventive and treatment strategies targeting non-apoptotic PCDs in the context of AIDN.
{"title":"Unveiling the hidden dangers: a review of non-apoptotic programmed cell death in anesthetic-induced developmental neurotoxicity.","authors":"Haiyan Sun, Yisi Shan, Liyan Cao, Xiping Wu, Jiangdong Chen, Rong Yuan, Min Qian","doi":"10.1007/s10565-024-09895-0","DOIUrl":"10.1007/s10565-024-09895-0","url":null,"abstract":"<p><p>Anesthetic-induced developmental neurotoxicity (AIDN) can arise due to various factors, among which aberrant nerve cell death is a prominent risk factor. Animal studies have reported that repeated or prolonged anesthetic exposure can cause significant neuroapoptosis in the developing brain. Lately, non-apoptotic programmed cell deaths (PCDs), characterized by inflammation and oxidative stress, have gained increasing attention. Substantial evidence suggests that non-apoptotic PCDs are essential for neuronal cell death in AIDN compared to apoptosis. This article examines relevant publications in the PubMed database until April 2024. Only original articles in English that investigated the potential manifestations of non-apoptotic PCD in AIDN were analysed. Specifically, it investigates necroptosis, pyroptosis, ferroptosis, and parthanatos, elucidating the signaling mechanisms associated with each form. Furthermore, this study explores the potential relevance of these non-apoptotic PCDs pathways to the pathological mechanisms underlying AIDN, drawing upon their distinctive characteristics. Despite the considerable challenges involved in translating fundamental scientific knowledge into clinical therapeutic interventions, this comprehensive review offers a theoretical foundation for developing innovative preventive and treatment strategies targeting non-apoptotic PCDs in the context of AIDN.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"63"},"PeriodicalIF":5.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297112/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1007/s10565-024-09907-z
Mobina Bayat, Javid Sadri Nahand
Advancements in the CRISPR technology, a game-changer in experimental research, have revolutionized various fields of life sciences and more profoundly, cancer research. Cell death pathways are among the most deregulated in cancer cells and are considered as critical aspects in cancer development. Through decades, our knowledge of the mechanisms orchestrating programmed cellular death has increased substantially, attributed to the revolution of cutting-edge technologies. The heroic appearance of CRISPR systems have expanded the available screening platform and genome engineering toolbox to detect mutations and create precise genome edits. In that context, the precise ability of this system for identification and targeting of mutations in cell death signaling pathways that result in cancer development and therapy resistance is an auspicious choice to transform and accelerate the individualized cancer therapy. The concept of personalized cancer therapy stands on the identification of molecular characterization of the individual tumor and its microenvironment in order to provide a precise treatment with the highest possible outcome and minimum toxicity. This study explored the potential of CRISPR technology in precision cancer treatment by identifying and targeting specific cell death pathways. It showed the promise of CRISPR in finding key components and mutations involved in programmed cell death, making it a potential tool for targeted cancer therapy. However, this study also highlighted the challenges and limitations that need to be addressed in future research to fully realize the potential of CRISPR in cancer treatment.
{"title":"Let's make it personal: CRISPR tools in manipulating cell death pathways for cancer treatment.","authors":"Mobina Bayat, Javid Sadri Nahand","doi":"10.1007/s10565-024-09907-z","DOIUrl":"10.1007/s10565-024-09907-z","url":null,"abstract":"<p><p>Advancements in the CRISPR technology, a game-changer in experimental research, have revolutionized various fields of life sciences and more profoundly, cancer research. Cell death pathways are among the most deregulated in cancer cells and are considered as critical aspects in cancer development. Through decades, our knowledge of the mechanisms orchestrating programmed cellular death has increased substantially, attributed to the revolution of cutting-edge technologies. The heroic appearance of CRISPR systems have expanded the available screening platform and genome engineering toolbox to detect mutations and create precise genome edits. In that context, the precise ability of this system for identification and targeting of mutations in cell death signaling pathways that result in cancer development and therapy resistance is an auspicious choice to transform and accelerate the individualized cancer therapy. The concept of personalized cancer therapy stands on the identification of molecular characterization of the individual tumor and its microenvironment in order to provide a precise treatment with the highest possible outcome and minimum toxicity. This study explored the potential of CRISPR technology in precision cancer treatment by identifying and targeting specific cell death pathways. It showed the promise of CRISPR in finding key components and mutations involved in programmed cell death, making it a potential tool for targeted cancer therapy. However, this study also highlighted the challenges and limitations that need to be addressed in future research to fully realize the potential of CRISPR in cancer treatment.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"61"},"PeriodicalIF":5.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Triptolide (TP) is a major active and toxic composition of the Chinese medicine Tripterygium wilfordii Hook. F. (TWHF), exhibiting various therapeutic bioactivities. Among the toxic effects, the hepatotoxicity of TP deserves serious attention. Previously, our research group proposed a new view of TP-related hepatotoxicity: hepatic hypersensitivity under lipopolysaccharide (LPS) stimulation. However, the mechanism of TP/LPS-induced hepatic hypersensitivity remains unclear. In this study, we investigated the mechanism underlying TP/LPS-induced hypersensitivity from the perspective of the inhibition of proteasome activity, activated endoplasmic reticulum stress (ERS)-related apoptosis, and the accumulation of reactive oxygen species (ROS). Our results showed that N-acetylcysteine (NAC), a common ROS inhibitor, decreased the expression of cleaved caspase-3 and cleaved PARP, which are associated with FLIP enhancement. Moreover, 4-phenylbutyric acid (4-PBA), an ERS inhibitor, was able to alleviate TP/LPS-induced hepatotoxicity by reducing ERS-related apoptosis protein expression (GRP78, p-eIF2α/eIF2α, ATF4, CHOP, cleaved caspase-3 and cleaved PARP) and ROS levels, with ATF4 being an indispensable mediator. In addition, the proteasome activity inhibitor MG-132 further aggravated ERS-related apoptosis, which indicated that the inhibition of proteasome activity also plays an important role in TP/LPS-related liver injuries. In summary, we propose that TP/LPS may upregulate the activation of ERS-associated apoptosis by inhibiting proteasome activity and enhancing ROS production through ATF4.
{"title":"Proteasome activity inhibition mediates endoplasmic reticulum stress-apoptosis in triptolide/lipopolysaccharide-induced hepatotoxicity.","authors":"Ruohan Cheng, Yihan Jiang, Yue Zhang, Mohammed Ismail, Luyong Zhang, Zhenzhou Jiang, Qinwei Yu","doi":"10.1007/s10565-024-09903-3","DOIUrl":"10.1007/s10565-024-09903-3","url":null,"abstract":"<p><p>Triptolide (TP) is a major active and toxic composition of the Chinese medicine Tripterygium wilfordii Hook. F. (TWHF), exhibiting various therapeutic bioactivities. Among the toxic effects, the hepatotoxicity of TP deserves serious attention. Previously, our research group proposed a new view of TP-related hepatotoxicity: hepatic hypersensitivity under lipopolysaccharide (LPS) stimulation. However, the mechanism of TP/LPS-induced hepatic hypersensitivity remains unclear. In this study, we investigated the mechanism underlying TP/LPS-induced hypersensitivity from the perspective of the inhibition of proteasome activity, activated endoplasmic reticulum stress (ERS)-related apoptosis, and the accumulation of reactive oxygen species (ROS). Our results showed that N-acetylcysteine (NAC), a common ROS inhibitor, decreased the expression of cleaved caspase-3 and cleaved PARP, which are associated with FLIP enhancement. Moreover, 4-phenylbutyric acid (4-PBA), an ERS inhibitor, was able to alleviate TP/LPS-induced hepatotoxicity by reducing ERS-related apoptosis protein expression (GRP78, p-eIF2α/eIF2α, ATF4, CHOP, cleaved caspase-3 and cleaved PARP) and ROS levels, with ATF4 being an indispensable mediator. In addition, the proteasome activity inhibitor MG-132 further aggravated ERS-related apoptosis, which indicated that the inhibition of proteasome activity also plays an important role in TP/LPS-related liver injuries. In summary, we propose that TP/LPS may upregulate the activation of ERS-associated apoptosis by inhibiting proteasome activity and enhancing ROS production through ATF4.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"40 1","pages":"60"},"PeriodicalIF":5.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286718/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}