Polo-like kinase 1 (PLK1), which has been shown to have a critical role in mitosis, is one possible target for cancer therapeutic intervention. PLK1, at least in Xenopus, starts the mitotic cascade by phosphorylating and activating cdc25C phosphatase. Also, loss of PLK1 function has been shown to induce mitotic catastrophe in a HeLa cervical carcinoma cell line but not in normal Hs68 fibroblasts. We wanted to understand whether the selective mitotic catastrophe in HeLa cells could be extended to other tumor types, and, if so, whether it could be attributable to a tumor-specific loss of dependence on PLK1 for cdc25C activation. When PLK1 function was blocked through adenovirus delivery of a dominant-negative gene, we observed tumor-selective apoptosis in most tumor cell lines. In some lines, dominant-negative PLK1 induced a mitotic catastrophe similar to that published in HeLa cells (K. E. Mundt et al., Biochem. Biophys Res. Commun., 239: 377-385, 1997). Normal human mammary epithelial cells, although arrested in mitosis, appeared to escape the loss of centrosome maturation and mitotic catastrophe seen in tumor lines. Mitotic phosphorylation of cdc25C and activation of cdk1 was blocked by dominant-negative PLK1 in human mammary epithelial cells as well as in the tumor lines regardless of whether they underwent mitotic catastrophe. These data strongly argue that the mitotic catastrophe is not attributable to a lack of dependence for PLK1 in activating cdc25C.
polo样激酶1 (PLK1)已被证明在有丝分裂中起关键作用,是癌症治疗干预的一个可能靶点。至少在非洲爪蟾中,PLK1通过磷酸化和激活cdc25C磷酸酶来启动有丝分裂级联。此外,PLK1功能的丧失已被证明在HeLa宫颈癌细胞系中诱导有丝分裂灾难,但在正常的Hs68成纤维细胞中没有。我们想了解HeLa细胞中的选择性有丝分裂突变是否可以扩展到其他肿瘤类型,如果是这样,它是否可以归因于肿瘤特异性的cdc25C活化对PLK1依赖性的丧失。当PLK1功能通过腺病毒传递的显性阴性基因被阻断时,我们在大多数肿瘤细胞系中观察到肿瘤选择性凋亡。在一些细胞系中,显性阴性PLK1诱导了类似于HeLa细胞的有丝分裂灾难(K. E. Mundt et al, Biochem)。生物物理学:普通。科学通报,23(3):377-385,1997)。正常的人乳腺上皮细胞,虽然在有丝分裂中被阻止,但似乎逃脱了中心体成熟的丧失和肿瘤系有丝分裂的灾难。在人乳腺上皮细胞和肿瘤细胞系中,无论是否发生有丝分裂突变,cdc25C的有丝分裂磷酸化和cdk1的激活都被显性阴性PLK1阻断。这些数据有力地证明,有丝分裂灾难不是由于缺乏对PLK1激活cdc25C的依赖性。
{"title":"Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function.","authors":"J P Cogswell, C E Brown, J E Bisi, S D Neill","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Polo-like kinase 1 (PLK1), which has been shown to have a critical role in mitosis, is one possible target for cancer therapeutic intervention. PLK1, at least in Xenopus, starts the mitotic cascade by phosphorylating and activating cdc25C phosphatase. Also, loss of PLK1 function has been shown to induce mitotic catastrophe in a HeLa cervical carcinoma cell line but not in normal Hs68 fibroblasts. We wanted to understand whether the selective mitotic catastrophe in HeLa cells could be extended to other tumor types, and, if so, whether it could be attributable to a tumor-specific loss of dependence on PLK1 for cdc25C activation. When PLK1 function was blocked through adenovirus delivery of a dominant-negative gene, we observed tumor-selective apoptosis in most tumor cell lines. In some lines, dominant-negative PLK1 induced a mitotic catastrophe similar to that published in HeLa cells (K. E. Mundt et al., Biochem. Biophys Res. Commun., 239: 377-385, 1997). Normal human mammary epithelial cells, although arrested in mitosis, appeared to escape the loss of centrosome maturation and mitotic catastrophe seen in tumor lines. Mitotic phosphorylation of cdc25C and activation of cdk1 was blocked by dominant-negative PLK1 in human mammary epithelial cells as well as in the tumor lines regardless of whether they underwent mitotic catastrophe. These data strongly argue that the mitotic catastrophe is not attributable to a lack of dependence for PLK1 in activating cdc25C.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 12","pages":"615-23"},"PeriodicalIF":0.0,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21969365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D S Smith, G Leone, J DeGregori, M N Ahmed, M B Qumsiyeh, J R Nevins
In adult organisms, a range of proliferative capacities are exhibited by different cell types. Stem cell populations in many tissues readily enter the cell cycle when presented with serum growth factors or other proliferative cues, whereas "terminally" postmitotic cells, such as cardiac myocytes and neurons, fail to do so. Although they rarely show evidence of a proliferative capacity in vivo, there is accumulating evidence to suggest that DNA synthesis can be triggered in postmitotic cells. We now show that cultured adult rat sensory neurons can replicate DNA in response to ectopic expression of E2F1 or E2F2 and that this is augmented by expression of cyclin-dependent kinase activities. We also find that addition of serum and laminin inhibits the E2F-induced S-phase in neurons but not in nonneuronal cells in the same cultures. We conclude that, although terminally differentiated neurons possess the capacity to reinitiate DNA replication in response to G1 regulatory activities, they fail to do so in the presence of signals that do not inhibit S-phase in other cell types in the same cultures. This suggests the existence of cell type-specific inhibitory pathways induced by these signals.
{"title":"Induction of DNA replication in adult rat neurons by deregulation of the retinoblastoma/E2F G1 cell cycle pathway.","authors":"D S Smith, G Leone, J DeGregori, M N Ahmed, M B Qumsiyeh, J R Nevins","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In adult organisms, a range of proliferative capacities are exhibited by different cell types. Stem cell populations in many tissues readily enter the cell cycle when presented with serum growth factors or other proliferative cues, whereas \"terminally\" postmitotic cells, such as cardiac myocytes and neurons, fail to do so. Although they rarely show evidence of a proliferative capacity in vivo, there is accumulating evidence to suggest that DNA synthesis can be triggered in postmitotic cells. We now show that cultured adult rat sensory neurons can replicate DNA in response to ectopic expression of E2F1 or E2F2 and that this is augmented by expression of cyclin-dependent kinase activities. We also find that addition of serum and laminin inhibits the E2F-induced S-phase in neurons but not in nonneuronal cells in the same cultures. We conclude that, although terminally differentiated neurons possess the capacity to reinitiate DNA replication in response to G1 regulatory activities, they fail to do so in the presence of signals that do not inhibit S-phase in other cell types in the same cultures. This suggests the existence of cell type-specific inhibitory pathways induced by these signals.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 12","pages":"625-33"},"PeriodicalIF":0.0,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21969366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The p53 tumor suppressor protein can induce both apoptosis and cell cycle arrest. Moreover, we and others have shown previously that p53 is a potent mediator of differentiation. For example, expression of ptsp53, a temperature-inducible form of p53, induces differentiation of leukemic monoblastic U-937 cells. The functions of p53 have for long been believed to be dependent on the transactivating capacity of p53. However, recent data show that both p53-induced cell cycle arrest and apoptosis can be induced independently of p53-mediated transcriptional activation, indicating alternative pathways for p53-induced apoptosis and cell cycle arrest. The bcl-2 proto-oncogene contributes to the development of certain malignancies, probably by inhibition of apoptosis. Interestingly, Bcl-2 has been shown to inhibit p53-mediated apoptosis as well as p53-mediated transcriptional activation. Asking whether Bcl-2 would interfere with the p53-mediated differentiation of U-937 cells, we stably transfected bcl-2 to U-937 cells inducibly expressing p53. Although the established Bcl-2-expressing clones were resistant to p53-mediated apoptosis, we did not observe any interference of Bcl-2 with the p53-mediated differentiation, suggesting separable pathways for p53 in mediating apoptosis and differentiation of U-937 cells. Neither did expression of Bcl-2 interfere with p53-induced expression of endogenous p21, suggesting that p53-induced differentiation might be dependent on the transcriptional activity of p53. To further investigate whether the p53-mediated differentiation of U-937 cells depends on the transcriptional activity of p53, we overexpressed transactivation-deficient p53, a transcriptionally inactive p53 mutant in these cells. However, in contrast to the effects of wild-type p53, expression of trans-activation-deficient p53 did neither induce signs of apoptosis nor of differentiation in U-937 cells. Our results indicate that the transcriptional activity of p53 is essential both for p53-mediated apoptosis and differentiation of U-937 cells.
{"title":"Characterization of the molecular mechanisms for p53-mediated differentiation.","authors":"K Chylicki, M Ehinger, H Svedberg, U Gullberg","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The p53 tumor suppressor protein can induce both apoptosis and cell cycle arrest. Moreover, we and others have shown previously that p53 is a potent mediator of differentiation. For example, expression of ptsp53, a temperature-inducible form of p53, induces differentiation of leukemic monoblastic U-937 cells. The functions of p53 have for long been believed to be dependent on the transactivating capacity of p53. However, recent data show that both p53-induced cell cycle arrest and apoptosis can be induced independently of p53-mediated transcriptional activation, indicating alternative pathways for p53-induced apoptosis and cell cycle arrest. The bcl-2 proto-oncogene contributes to the development of certain malignancies, probably by inhibition of apoptosis. Interestingly, Bcl-2 has been shown to inhibit p53-mediated apoptosis as well as p53-mediated transcriptional activation. Asking whether Bcl-2 would interfere with the p53-mediated differentiation of U-937 cells, we stably transfected bcl-2 to U-937 cells inducibly expressing p53. Although the established Bcl-2-expressing clones were resistant to p53-mediated apoptosis, we did not observe any interference of Bcl-2 with the p53-mediated differentiation, suggesting separable pathways for p53 in mediating apoptosis and differentiation of U-937 cells. Neither did expression of Bcl-2 interfere with p53-induced expression of endogenous p21, suggesting that p53-induced differentiation might be dependent on the transcriptional activity of p53. To further investigate whether the p53-mediated differentiation of U-937 cells depends on the transcriptional activity of p53, we overexpressed transactivation-deficient p53, a transcriptionally inactive p53 mutant in these cells. However, in contrast to the effects of wild-type p53, expression of trans-activation-deficient p53 did neither induce signs of apoptosis nor of differentiation in U-937 cells. Our results indicate that the transcriptional activity of p53 is essential both for p53-mediated apoptosis and differentiation of U-937 cells.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 11","pages":"561-71"},"PeriodicalIF":0.0,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21920267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Antoine, M Daum, R Köhl, V Blecken, M J Close, G Peters, P Kiefer
Fibroblast growth factor 3 (FGF3) was originally identified as the mouse proto-oncogene Int-2, which is activated by proviral insertion in tumors induced by mouse mammary tumor virus. To facilitate the biological characterization of the ligand, we have analyzed its homologue in Xenopus laevis, XFGF3. Here we confirm that the X. laevis genome contains two distinct FGF3 alleles, neither of which is capable of encoding the NH2-terminally extended forms specified by the mouse and human FGF3 genes. Unlike the mammalian proteins, XFGF3 is efficiently secreted as a Mr 31,000 glycoprotein, gp31, which undergoes proteolytic cleavage to produce an NH2-terminally truncated product, gp27. Processing removes a segment of 18 amino acids immediately distal to the signal peptide that is not present in the mammalian homologues. By inserting an epitope-tag adjacent to the cleavage site, we show that a substantial amount of the gp27 is generated intracellularly, although processing can also occur in the extracellular matrix. Two residues are also removed from the COOH terminus. To compare the biological properties of the different forms, cDNAs were constructed that selectively give rise to the larger, gp31, or smaller, gp27, forms of XFGF3. As judged by their ability to cause morphological transformation of NIH3T3 cells, their mitogenicity on specific cell types, and their affinity for the IIIb and IIIc isoforms of Xenopus FGF receptors, gp27 has a much higher biological activity than gp31. Sequence comparison revealed an intriguing similar cleavage motif immediately downstream of the signal peptide cleavage site in the NH2-terminus of mouse and human FGF3. Analysis of secreted mutant mouse FGF3 confirmed an additional NH2-terminal processing at the corresponding sequence motif. NH2-terminal trimming of Xenopus and mammalian FGF3s may therefore be a prerequisite of optimal biological activity.
{"title":"NH2-terminal cleavage of xenopus fibroblast growth factor 3 is necessary for optimal biological activity and receptor binding.","authors":"M Antoine, M Daum, R Köhl, V Blecken, M J Close, G Peters, P Kiefer","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Fibroblast growth factor 3 (FGF3) was originally identified as the mouse proto-oncogene Int-2, which is activated by proviral insertion in tumors induced by mouse mammary tumor virus. To facilitate the biological characterization of the ligand, we have analyzed its homologue in Xenopus laevis, XFGF3. Here we confirm that the X. laevis genome contains two distinct FGF3 alleles, neither of which is capable of encoding the NH2-terminally extended forms specified by the mouse and human FGF3 genes. Unlike the mammalian proteins, XFGF3 is efficiently secreted as a Mr 31,000 glycoprotein, gp31, which undergoes proteolytic cleavage to produce an NH2-terminally truncated product, gp27. Processing removes a segment of 18 amino acids immediately distal to the signal peptide that is not present in the mammalian homologues. By inserting an epitope-tag adjacent to the cleavage site, we show that a substantial amount of the gp27 is generated intracellularly, although processing can also occur in the extracellular matrix. Two residues are also removed from the COOH terminus. To compare the biological properties of the different forms, cDNAs were constructed that selectively give rise to the larger, gp31, or smaller, gp27, forms of XFGF3. As judged by their ability to cause morphological transformation of NIH3T3 cells, their mitogenicity on specific cell types, and their affinity for the IIIb and IIIc isoforms of Xenopus FGF receptors, gp27 has a much higher biological activity than gp31. Sequence comparison revealed an intriguing similar cleavage motif immediately downstream of the signal peptide cleavage site in the NH2-terminus of mouse and human FGF3. Analysis of secreted mutant mouse FGF3 confirmed an additional NH2-terminal processing at the corresponding sequence motif. NH2-terminal trimming of Xenopus and mammalian FGF3s may therefore be a prerequisite of optimal biological activity.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 11","pages":"593-605"},"PeriodicalIF":0.0,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21919542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Capone, V Visco, F Belleudi, C Marchese, G Cardinali, M Bellocci, M Picardo, L Frati, M R Torrisi
Keratinocyte growth factor (KGF) is involved in the control of proliferation and differentiation of human keratinocytes. It binds to, and activates, the tyrosine kinase KGF receptor (KGFR), a splicing transcript variant of the fibroblast growth factor receptor 2. We have previously shown (C. Marchese et al., Cell Growth Differ., 8: 989-997, 1997) that differentiation of primary cultured keratinocytes triggered by high Ca2+ concentrations in the growing medium induced up-regulation of KGFR expression, which suggested that KGFR may play a crucial role in the control of the proliferative/differentiative program during transition from basal to suprabasal cells. Here we analyzed the process of modulation of the expression of KGFRs in the human keratinocyte cell line HaCaT, widely used as a model to study keratinocyte differentiation. Western blot and double immunofluorescence for KGFR and the K1 differentiation marker showed that cell differentiation and stratification induced by confluence and high cell density correlated with an increase in KGFR expression. KGFRs, present on suprabasal differentiated cells, appeared to be efficiently tyrosine-phosphorylated by KGF, which indicated that the receptors up-regulated by differentiation can be functionally activated by ligand binding. Bromodeoxyuridine incorporation assay revealed that a significant portion of suprabasal differentiated cells expressing KGFR seemed to be still able to synthesize DNA and to proliferate in response to KGF, which suggested that increased KGFR expression may be required for retention of the proliferative activity.
{"title":"Up-modulation of the expression of functional keratinocyte growth factor receptors induced by high cell density in the human keratinocyte HaCaT cell line.","authors":"A Capone, V Visco, F Belleudi, C Marchese, G Cardinali, M Bellocci, M Picardo, L Frati, M R Torrisi","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Keratinocyte growth factor (KGF) is involved in the control of proliferation and differentiation of human keratinocytes. It binds to, and activates, the tyrosine kinase KGF receptor (KGFR), a splicing transcript variant of the fibroblast growth factor receptor 2. We have previously shown (C. Marchese et al., Cell Growth Differ., 8: 989-997, 1997) that differentiation of primary cultured keratinocytes triggered by high Ca2+ concentrations in the growing medium induced up-regulation of KGFR expression, which suggested that KGFR may play a crucial role in the control of the proliferative/differentiative program during transition from basal to suprabasal cells. Here we analyzed the process of modulation of the expression of KGFRs in the human keratinocyte cell line HaCaT, widely used as a model to study keratinocyte differentiation. Western blot and double immunofluorescence for KGFR and the K1 differentiation marker showed that cell differentiation and stratification induced by confluence and high cell density correlated with an increase in KGFR expression. KGFRs, present on suprabasal differentiated cells, appeared to be efficiently tyrosine-phosphorylated by KGF, which indicated that the receptors up-regulated by differentiation can be functionally activated by ligand binding. Bromodeoxyuridine incorporation assay revealed that a significant portion of suprabasal differentiated cells expressing KGFR seemed to be still able to synthesize DNA and to proliferate in response to KGF, which suggested that increased KGFR expression may be required for retention of the proliferative activity.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 11","pages":"607-14"},"PeriodicalIF":0.0,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21919543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The c-fes proto-oncogene encodes a Mr 93,000 protein-tyrosine kinase (Fes) that is strongly expressed in myeloid cells and has been implicated in myelomonocytic differentiation. Fes autophosphorylation and transforming activity are highly restrained after ectopic expression in fibroblasts, indicating tight negative regulation of Fes kinase activity in vivo. Here we investigated the regulatory role of the Fes Src homology 2 (SH2) domain by producing a series of chimeric constructs in which the Fes SH2 domain was replaced with those of the transforming oncogenes v-Fps and v-Src or by the NH2-terminal SH2 domain of the Ras GTPase-activating protein. Wild-type and chimeric Fes proteins readily underwent tyrosine autophosphorylation in vitro and produced identical cyanogen bromide phosphopeptide cleavage patterns, indicating that the SH2 substitutions did not influence overall kinase activity or autophosphorylation site selection. However, metabolic labeling of Rat-2 fibroblasts expressing each construct showed that only the Fes/Src SH2 chimera was active in vivo. Consistent with this result, the Fes/Src SH2 domain chimera exhibited potent transforming activity in fibroblasts and enhanced differentiation-inducing activity in K-562 myeloid leukemia cells. In addition, the Fes/Src SH2 chimera exhibited constitutive localization to focal adhesions in Rat-2 fibroblasts and induced the attachment and spreading of TF-1 myeloid cells. These data demonstrate a central role for the SH2 domain in the regulation of Fes kinase activity and biological function in vivo.
{"title":"Src homology 2 domain substitution modulates the kinase and transforming activities of the Fes protein-tyrosine kinase.","authors":"J A Rogers, H Y Cheng, T E Smithgall","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The c-fes proto-oncogene encodes a Mr 93,000 protein-tyrosine kinase (Fes) that is strongly expressed in myeloid cells and has been implicated in myelomonocytic differentiation. Fes autophosphorylation and transforming activity are highly restrained after ectopic expression in fibroblasts, indicating tight negative regulation of Fes kinase activity in vivo. Here we investigated the regulatory role of the Fes Src homology 2 (SH2) domain by producing a series of chimeric constructs in which the Fes SH2 domain was replaced with those of the transforming oncogenes v-Fps and v-Src or by the NH2-terminal SH2 domain of the Ras GTPase-activating protein. Wild-type and chimeric Fes proteins readily underwent tyrosine autophosphorylation in vitro and produced identical cyanogen bromide phosphopeptide cleavage patterns, indicating that the SH2 substitutions did not influence overall kinase activity or autophosphorylation site selection. However, metabolic labeling of Rat-2 fibroblasts expressing each construct showed that only the Fes/Src SH2 chimera was active in vivo. Consistent with this result, the Fes/Src SH2 domain chimera exhibited potent transforming activity in fibroblasts and enhanced differentiation-inducing activity in K-562 myeloid leukemia cells. In addition, the Fes/Src SH2 chimera exhibited constitutive localization to focal adhesions in Rat-2 fibroblasts and induced the attachment and spreading of TF-1 myeloid cells. These data demonstrate a central role for the SH2 domain in the regulation of Fes kinase activity and biological function in vivo.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 11","pages":"581-92"},"PeriodicalIF":0.0,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21919541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Z Kadri, E Petitfrère, C Boudot, J M Freyssinier, S Fichelson, P Mayeux, H Emonard, W Hornebeck, B Haye, C Billat
In the present study, we demonstrate that erythropoietin (Epo) induces the expression and the release of tissue inhibitors of metalloproteinase-1 (TIMP-1) in a time- and dose-dependent manner in Epo-dependent cell line UT-7 cells and in normal human erythroid progenitor cells from cord blood (CD36+) and required de novo protein synthesis. TIMP-1 was not expressed in the absence of Epo. Inhibition of the mitogen-activated protein kinase pathway by the specific inhibitors PD98059 and U0126 and of phosphatidylinositol 3-kinase by LY294002, strongly inhibited Epo-induced TIMP-1 expression and secretion. In the absence of Epo, both latent and active forms of matrix metalloproteinase-9 (MMP-9) were secreted into media. Upon Epo stimulation, MMP-9 and pro-MMP-9 secretion was inhibited in a dose-dependent manner parallel to TIMP-1 induction. The addition of PD98059, U0126, and LY294002 in the presence of Epo restored MMP-9 production in UT-7 and CD36+ cells. Our findings strongly suggest an inversely coordinated regulation of the TIMP-1 gene and MMP-9 production by Epo via mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways.
{"title":"Erythropoietin induction of tissue inhibitors of metalloproteinase-1 expression and secretion is mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways.","authors":"Z Kadri, E Petitfrère, C Boudot, J M Freyssinier, S Fichelson, P Mayeux, H Emonard, W Hornebeck, B Haye, C Billat","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>In the present study, we demonstrate that erythropoietin (Epo) induces the expression and the release of tissue inhibitors of metalloproteinase-1 (TIMP-1) in a time- and dose-dependent manner in Epo-dependent cell line UT-7 cells and in normal human erythroid progenitor cells from cord blood (CD36+) and required de novo protein synthesis. TIMP-1 was not expressed in the absence of Epo. Inhibition of the mitogen-activated protein kinase pathway by the specific inhibitors PD98059 and U0126 and of phosphatidylinositol 3-kinase by LY294002, strongly inhibited Epo-induced TIMP-1 expression and secretion. In the absence of Epo, both latent and active forms of matrix metalloproteinase-9 (MMP-9) were secreted into media. Upon Epo stimulation, MMP-9 and pro-MMP-9 secretion was inhibited in a dose-dependent manner parallel to TIMP-1 induction. The addition of PD98059, U0126, and LY294002 in the presence of Epo restored MMP-9 production in UT-7 and CD36+ cells. Our findings strongly suggest an inversely coordinated regulation of the TIMP-1 gene and MMP-9 production by Epo via mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 11","pages":"573-80"},"PeriodicalIF":0.0,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21920268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L Farhana, M Boyanapalli, S H Tschang, R J Sun, C K Hsu, Y X Zhang, J A Fontana, A K Rishi
Signal transduction via modulation of phosphorylation after selective inhibition of protein phosphatase (PP) 1 and/or PP2A appears to play a role in okadaic acid (OA)-mediated effects. Treatment of several estrogen receptor-negative human breast carcinoma (HBC) cells with 100 nM OA resulted in induction of c-fos, c-myc, and cyclin-dependent kinase inhibitor p21WAF1/CIP1 genes. Transfections of various luciferase reporter constructs in HBC cells revealed involvement of activator protein-1-dependent as well as -independent pathways in induction of the c-fos gene by OA. MDA-MB-468 HBC cells were stably transfected with plasmids expressing luciferase, chimeric luciferase- c-fos 3' untranslated region (3'UTR), or chimeric luciferase-p21WAF1/CIP 3'UTR mRNAs. Expression of chimeric luciferase-c-fos and luciferase-p21WAF1/CIP1 mRNAs was elevated by OA in several independent sublines. Actinomycin D chase experiments revealed an enhanced rate of decay of luciferase-c-fos mRNA, whereas treatment with OA caused approximately 3.5-fold enhanced stability of the chimeric luciferase-c-fos mRNA only. By transfecting different plasmids containing deletions of c-fos 3'UTR, OA-responsive sequences were mapped to an 86-nucleotide, AU-rich region. UV cross-linking experiments using HBC cell cytosolic proteins showed multiple complexes with the AU-rich region subfragments of c-fos, as well as c-myc and p21WAF1/CIP1 mRNAs. OA enhanced binding of a novel Mr approximately 75,000 protein present in the cytosolic extracts of HBC cells to the AU-rich RNA probes of all of the above three genes. Taken together, OA regulation of HBC cell gene expression involves the activator protein-1 pathway, as well as enhanced binding of a novel Mr approximately 75,000 protein to an AU-rich region of the 3'UTRs of the target genes.
{"title":"Okadaic acid-mediated induction of the c-fos gene in estrogen receptor-negative human breast carcinoma cells utilized, in part, posttranscriptional mechanisms involving adenosine-uridine-rich elements.","authors":"L Farhana, M Boyanapalli, S H Tschang, R J Sun, C K Hsu, Y X Zhang, J A Fontana, A K Rishi","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Signal transduction via modulation of phosphorylation after selective inhibition of protein phosphatase (PP) 1 and/or PP2A appears to play a role in okadaic acid (OA)-mediated effects. Treatment of several estrogen receptor-negative human breast carcinoma (HBC) cells with 100 nM OA resulted in induction of c-fos, c-myc, and cyclin-dependent kinase inhibitor p21WAF1/CIP1 genes. Transfections of various luciferase reporter constructs in HBC cells revealed involvement of activator protein-1-dependent as well as -independent pathways in induction of the c-fos gene by OA. MDA-MB-468 HBC cells were stably transfected with plasmids expressing luciferase, chimeric luciferase- c-fos 3' untranslated region (3'UTR), or chimeric luciferase-p21WAF1/CIP 3'UTR mRNAs. Expression of chimeric luciferase-c-fos and luciferase-p21WAF1/CIP1 mRNAs was elevated by OA in several independent sublines. Actinomycin D chase experiments revealed an enhanced rate of decay of luciferase-c-fos mRNA, whereas treatment with OA caused approximately 3.5-fold enhanced stability of the chimeric luciferase-c-fos mRNA only. By transfecting different plasmids containing deletions of c-fos 3'UTR, OA-responsive sequences were mapped to an 86-nucleotide, AU-rich region. UV cross-linking experiments using HBC cell cytosolic proteins showed multiple complexes with the AU-rich region subfragments of c-fos, as well as c-myc and p21WAF1/CIP1 mRNAs. OA enhanced binding of a novel Mr approximately 75,000 protein present in the cytosolic extracts of HBC cells to the AU-rich RNA probes of all of the above three genes. Taken together, OA regulation of HBC cell gene expression involves the activator protein-1 pathway, as well as enhanced binding of a novel Mr approximately 75,000 protein to an AU-rich region of the 3'UTRs of the target genes.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 10","pages":"541-50"},"PeriodicalIF":0.0,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21889473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D Escalante-Alcalde, F Recillas-Targa, C Valencia, J Santa-Olalla, P Chávez, A Marroquín, Gutiérrez-X, P Gariglio, L Covarrubias
Hair follicle growth cycle proceeds through a series of stages in which strict control of cell proliferation, differentiation, and cell death occurs. Transgenic mice expressing human papillomavirus type 16 E6/E7 papillomavirus oncogenes in the outer root sheath (ORS) display a fur phenotype characterized by lower hair density and the ability to regenerate hair much faster than wild-type mice. Regenerating hair follicles of transgenic mice show a longer growth phase (anagen), and although bulb regression (catagen) occurs, rest at telogen was not observed. No abnormalities were detected during the first cycle of hair follicle growth, but by the second cycle, initiation of catagen was delayed, and rest at telogen was again not attained, even in the presence of estradiol, a telogen resting signal. In conclusion, expression of E6/E7 in the ORS delays entrance to catagen and makes cells of the ORS insensitive to telogen resting signals bearing to a continuous hair follicle cycling in transgenic mice.
{"title":"Expression of E6 and E7 papillomavirus oncogenes in the outer root sheath of hair follicles extends the growth phase and bypasses resting at telogen.","authors":"D Escalante-Alcalde, F Recillas-Targa, C Valencia, J Santa-Olalla, P Chávez, A Marroquín, Gutiérrez-X, P Gariglio, L Covarrubias","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Hair follicle growth cycle proceeds through a series of stages in which strict control of cell proliferation, differentiation, and cell death occurs. Transgenic mice expressing human papillomavirus type 16 E6/E7 papillomavirus oncogenes in the outer root sheath (ORS) display a fur phenotype characterized by lower hair density and the ability to regenerate hair much faster than wild-type mice. Regenerating hair follicles of transgenic mice show a longer growth phase (anagen), and although bulb regression (catagen) occurs, rest at telogen was not observed. No abnormalities were detected during the first cycle of hair follicle growth, but by the second cycle, initiation of catagen was delayed, and rest at telogen was again not attained, even in the presence of estradiol, a telogen resting signal. In conclusion, expression of E6/E7 in the ORS delays entrance to catagen and makes cells of the ORS insensitive to telogen resting signals bearing to a continuous hair follicle cycling in transgenic mice.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 10","pages":"527-39"},"PeriodicalIF":0.0,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21889990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A M Aguirre-Arteta, I Grunewald, M C Cardoso, H Leonhardt
The methylation pattern of genomic DNA undergoes dramatic changes during mammalian development, with extensive de novo methylation occurring during gametogenesis and after implantation. We identified an alternative Dnmt1 transcript in skeletal muscle by Northern blot analysis and cloned the corresponding cDNA by rapid amplification of cDNA ends and reverse transcription-PCR. Using an in vitro skeletal muscle differentiation system, we show that this alternative Dnmt1 isoform is specifically expressed in differentiated myotubes, whereas the ubiquitously expressed isoform is down-regulated during myogenesis. Sequence analysis showed that this skeletal Dnmt1 isoform is identical to the one present in testis, which had been described as untranslatable. Here we present evidence that this alternative Dnmt1 transcript present in testis and skeletal muscle is translated despite the presence of several out-of-frame upstream ATGs and gives rise to a shorter Dnmt1 isoform, which could play an active role in the change of DNA methylation patterns during gametogenesis and myogenesis.
{"title":"Expression of an alternative Dnmt1 isoform during muscle differentiation.","authors":"A M Aguirre-Arteta, I Grunewald, M C Cardoso, H Leonhardt","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The methylation pattern of genomic DNA undergoes dramatic changes during mammalian development, with extensive de novo methylation occurring during gametogenesis and after implantation. We identified an alternative Dnmt1 transcript in skeletal muscle by Northern blot analysis and cloned the corresponding cDNA by rapid amplification of cDNA ends and reverse transcription-PCR. Using an in vitro skeletal muscle differentiation system, we show that this alternative Dnmt1 isoform is specifically expressed in differentiated myotubes, whereas the ubiquitously expressed isoform is down-regulated during myogenesis. Sequence analysis showed that this skeletal Dnmt1 isoform is identical to the one present in testis, which had been described as untranslatable. Here we present evidence that this alternative Dnmt1 transcript present in testis and skeletal muscle is translated despite the presence of several out-of-frame upstream ATGs and gives rise to a shorter Dnmt1 isoform, which could play an active role in the change of DNA methylation patterns during gametogenesis and myogenesis.</p>","PeriodicalId":9753,"journal":{"name":"Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research","volume":"11 10","pages":"551-9"},"PeriodicalIF":0.0,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21889474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}