Ling-Wei Wu, Yan-Fang Yao, Shi-Yin Xu, Xu-You Cao, Yan-Wei Ren, Li-Ping Si, Hai Liu
The study of the hydrogen evolution reaction (HER) by non-noble transition metals is of great significance for the production of hydrogen energy. In this work, a new 5,15-bis-(pentafluorophenyl)-10-[4-(1H-imidazole) phenyl]-corrole and its metal complexes (metal = Co, Cu, Fe) were synthesized and used for electrocatalyzed HER in DMF organic solvent and aqueous media. The prepared cobalt corrole showed the best catalytic performance in both media. Its turnover frequency (TOF) and catalytic efficiency (C.E) could reach 265 s−1 and 1.04 when TsOH was used as the proton source in a DMF solvent. In aqueous media, its TOF could also reach 405 h−1. The catalytic HER may go through an EECEC or ECEC (E: electron transfer, C: chemical step) pathway for these catalysts, depending on the acidity and concentration of the proton source. The present work successfully demonstrates that imidazole at a meso-phenyl group may improve the electrocatalytic HER activity of transition metal corroles.
{"title":"Electrocatalytic Hydrogen Evolution of Transition Metal (Fe, Co and Cu)–Corrole Complexes Bearing an Imidazole Group","authors":"Ling-Wei Wu, Yan-Fang Yao, Shi-Yin Xu, Xu-You Cao, Yan-Wei Ren, Li-Ping Si, Hai Liu","doi":"10.3390/catal14010005","DOIUrl":"https://doi.org/10.3390/catal14010005","url":null,"abstract":"The study of the hydrogen evolution reaction (HER) by non-noble transition metals is of great significance for the production of hydrogen energy. In this work, a new 5,15-bis-(pentafluorophenyl)-10-[4-(1H-imidazole) phenyl]-corrole and its metal complexes (metal = Co, Cu, Fe) were synthesized and used for electrocatalyzed HER in DMF organic solvent and aqueous media. The prepared cobalt corrole showed the best catalytic performance in both media. Its turnover frequency (TOF) and catalytic efficiency (C.E) could reach 265 s−1 and 1.04 when TsOH was used as the proton source in a DMF solvent. In aqueous media, its TOF could also reach 405 h−1. The catalytic HER may go through an EECEC or ECEC (E: electron transfer, C: chemical step) pathway for these catalysts, depending on the acidity and concentration of the proton source. The present work successfully demonstrates that imidazole at a meso-phenyl group may improve the electrocatalytic HER activity of transition metal corroles.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":" 16","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This Editorial refers to the Special Issue entitled “Photocatalysis and Sonocatalysis for Environmental Applications: Synergy or Competition [...]
本社论涉及题为 "光催化和声催化在环境中的应用:协同还是竞争 [...]
{"title":"Photocatalysis and Sonocatalysis for Environmental Applications: Synergy or Competition?","authors":"Sergey I. Nikitenko","doi":"10.3390/catal14010002","DOIUrl":"https://doi.org/10.3390/catal14010002","url":null,"abstract":"This Editorial refers to the Special Issue entitled “Photocatalysis and Sonocatalysis for Environmental Applications: Synergy or Competition [...]","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"178 12","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139172472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kartik Patel, Nilam Vaghamshi, Kamlesh Shah, S. Duggirala, A. Ghelani, P. Dudhagara, D. Shyu
The continuous requirement for pre-bleaching processes on kraft pulp, employing a range of compatible enzymes, aims to mitigate the pollution caused by chemical bleaching agents. In the present study, the laccase-producing bacterium Bacillus licheniformis BK-1 was isolated from the Bakreshwar hot spring in India and tested for laccase production using different lignocellulosic substrates. The isolate was found to produce maximum laccase (8.25 IU/mL) in the presence of rice bran as a substrate, followed by 5.14 IU/mL using sawdust over a 48 h period. Laccase production doubled when medium parameters were optimized using a central composite design. The bleaching of rice straw pulp was accomplished using a laccase, xylanase (previously extracted from the same bacteria), and laccase–xylanase mixture. The mix-wood kraft pulp treated with the enzyme mixture at pH 7.0 and 50 °C temperature for up to 180 min reduced the chlorine amount by 50% compared to the control. The results also revealed that the enzyme mixture improved the pulp’s optical (brightness 10.39%) and physical (tear index 39.77%, burst index 22.82%, and tensile strength 14.28%) properties with 50% chlorine dose. These exceptional properties underscore the enzyme mixture’s suitability for pulp pre-bleaching in paper manufacturing, offering a safer and more environmentally friendly process.
{"title":"Synergistic Use of Thermostable Laccase and Xylanase in Optimizing the Pre-Bleaching of Kraft Pulp","authors":"Kartik Patel, Nilam Vaghamshi, Kamlesh Shah, S. Duggirala, A. Ghelani, P. Dudhagara, D. Shyu","doi":"10.3390/catal14010001","DOIUrl":"https://doi.org/10.3390/catal14010001","url":null,"abstract":"The continuous requirement for pre-bleaching processes on kraft pulp, employing a range of compatible enzymes, aims to mitigate the pollution caused by chemical bleaching agents. In the present study, the laccase-producing bacterium Bacillus licheniformis BK-1 was isolated from the Bakreshwar hot spring in India and tested for laccase production using different lignocellulosic substrates. The isolate was found to produce maximum laccase (8.25 IU/mL) in the presence of rice bran as a substrate, followed by 5.14 IU/mL using sawdust over a 48 h period. Laccase production doubled when medium parameters were optimized using a central composite design. The bleaching of rice straw pulp was accomplished using a laccase, xylanase (previously extracted from the same bacteria), and laccase–xylanase mixture. The mix-wood kraft pulp treated with the enzyme mixture at pH 7.0 and 50 °C temperature for up to 180 min reduced the chlorine amount by 50% compared to the control. The results also revealed that the enzyme mixture improved the pulp’s optical (brightness 10.39%) and physical (tear index 39.77%, burst index 22.82%, and tensile strength 14.28%) properties with 50% chlorine dose. These exceptional properties underscore the enzyme mixture’s suitability for pulp pre-bleaching in paper manufacturing, offering a safer and more environmentally friendly process.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":" 15","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138960937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Truszkiewicz, Klaudia Latoszek, Milena Ojrzyńska, A. Ostrowski, L. Kępiński
The stable activity of catalysts is an important characteristic, which determines their suitability for industrial applications. The purpose of this study was to investigate the stability of ruthenium systems deposited on carbon under conditions simulating long-term operation in CO methanation. Two series of Ru/carbon catalysts were prepared and studied during CO methanation in a hydrogen-rich gas stream. Two graphitized carbons substantially differing in their surface area (23 and 1457 m2/g) were used as supports, and Ru loadings of 3 and 6 wt.% were applied. The stability of Ru/C catalysts was examined in a 240 h time-on-stream test. The samples were characterized by CO chemisorption, XRD, TEM, Raman spectroscopy, TG–MS studies and CO-TPD. The stability of the catalysts over 240 h in the CO + H2 mixture depended on the support type and Ru loading. The highest CO conversion and increased activity was observed for both catalysts with Ru dispersion above 80%. The tested systems were also resistant to carbon deposition. Interestingly, a similar level of activity was obtained for 3 wt.% Ru supported on the low surface area carbon. It is presumed that the similar activity observed for systems with such different ruthenium dispersion is related to the presence of active sites of different strength and structure on the surface of both small and large Ru particles.
{"title":"Stability of Ruthenium/Carbon Catalytic Materials during Operation in Carbon Monoxide Methanation Process","authors":"E. Truszkiewicz, Klaudia Latoszek, Milena Ojrzyńska, A. Ostrowski, L. Kępiński","doi":"10.3390/catal13121518","DOIUrl":"https://doi.org/10.3390/catal13121518","url":null,"abstract":"The stable activity of catalysts is an important characteristic, which determines their suitability for industrial applications. The purpose of this study was to investigate the stability of ruthenium systems deposited on carbon under conditions simulating long-term operation in CO methanation. Two series of Ru/carbon catalysts were prepared and studied during CO methanation in a hydrogen-rich gas stream. Two graphitized carbons substantially differing in their surface area (23 and 1457 m2/g) were used as supports, and Ru loadings of 3 and 6 wt.% were applied. The stability of Ru/C catalysts was examined in a 240 h time-on-stream test. The samples were characterized by CO chemisorption, XRD, TEM, Raman spectroscopy, TG–MS studies and CO-TPD. The stability of the catalysts over 240 h in the CO + H2 mixture depended on the support type and Ru loading. The highest CO conversion and increased activity was observed for both catalysts with Ru dispersion above 80%. The tested systems were also resistant to carbon deposition. Interestingly, a similar level of activity was obtained for 3 wt.% Ru supported on the low surface area carbon. It is presumed that the similar activity observed for systems with such different ruthenium dispersion is related to the presence of active sites of different strength and structure on the surface of both small and large Ru particles.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"121 ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139175450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hierarchical Beta zeolites with interconnected intracrystalline mesopores and high structural stability are highly attractive for catalytic applications involving bulky reactants. Here, by introducing a suitable amount of polydiallyldimethylammonium chloride into the initial synthesis system, micron-sized Beta zeolite crystals with abundant hierarchical porosity (Beta-H) were hydrothermally synthesized. The sample named Beta-H_1 exhibited very high catalytic activity and durability for the Friedel–Crafts acylation of anisole with acetic anhydride. A 92% conversion rate of acetic anhydride could be achieved after 1 h of reaction in a fixed bed reactor, and 71% conversion still remained after 10 h, much better than the rate for conventional Beta zeolite (which decreased rapidly from 85% to 37% within 10 h). The enhanced catalytic performance of Beta-H zeolites could be mainly attributed to the relatively lower strong acid density and the faster transport rate of the hierarchical zeolites. In addition, Beta-H showed high structural stability and could be easily regenerated via high-temperature calcination without obvious loss in catalytic activity, demonstrating its great potential for catalytic applications in the industrially important Friedel–Crafts acylation process.
{"title":"Micron-Sized Hierarchical Beta Zeolites Templated by Mesoscale Cationic Polymers as Robust Catalysts for Acylation of Anisole with Acetic Anhydride","authors":"Songsong Miao, Shuaishuai Sun, Zhenyu Lei, Yuting Sun, Chen Zhao, Junling Zhan, Wenxiang Zhang, Mingjun Jia","doi":"10.3390/catal13121517","DOIUrl":"https://doi.org/10.3390/catal13121517","url":null,"abstract":"Hierarchical Beta zeolites with interconnected intracrystalline mesopores and high structural stability are highly attractive for catalytic applications involving bulky reactants. Here, by introducing a suitable amount of polydiallyldimethylammonium chloride into the initial synthesis system, micron-sized Beta zeolite crystals with abundant hierarchical porosity (Beta-H) were hydrothermally synthesized. The sample named Beta-H_1 exhibited very high catalytic activity and durability for the Friedel–Crafts acylation of anisole with acetic anhydride. A 92% conversion rate of acetic anhydride could be achieved after 1 h of reaction in a fixed bed reactor, and 71% conversion still remained after 10 h, much better than the rate for conventional Beta zeolite (which decreased rapidly from 85% to 37% within 10 h). The enhanced catalytic performance of Beta-H zeolites could be mainly attributed to the relatively lower strong acid density and the faster transport rate of the hierarchical zeolites. In addition, Beta-H showed high structural stability and could be easily regenerated via high-temperature calcination without obvious loss in catalytic activity, demonstrating its great potential for catalytic applications in the industrially important Friedel–Crafts acylation process.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"229 4","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138995094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katarzyna Maresz, A. Ciemięga, P. Bezkosty, Kamil Kornaus, Maciej Sitarz, M. Krzywiecki, J. Mrowiec-Białoń
Zirconia–silica monolithic catalysts with hierarchical micro/macroporous structure were obtained in a sol-gel process combined with phase separation using inorganic salts, i.e., oxychloride, oxynitrate and sulphate, as a zirconium source. It was found that the use of zirconium oxychloride and prehydrolysis of tetraethoxysilane (TEOS) resulted in materials characterized by a well-developed continuous structure of macropores with a diameter of ca. 10 μm. For zirconium oxynitrate and sulfate modified materials, the prehydrolysis hardly affected the macropore size. The micropores with a diameter of 1.5 nm in the skeleton of all materials provided a large surface area of 550–590 m2/g. A high dispersion of zirconia in the silica skeleton in all studied materials was shown. However, the largest surface concentration of Lewis and Brönsted acid sites was found in the monolith synthesized with zirconium oxychloride. The monoliths were used as a core for continuous-flow microreactors and high catalytic activity was confirmed in the deacetalization of benzylaldehyde dimethyl acetal. The process was characterized by a high efficiency at low temperature, i.e., 35 °C.
{"title":"Insight into Structural and Physicochemical Properties of ZrO2-SiO2 Monolithic Catalysts with Hierarchical Pore Structure: Effect of Zirconium Precursor","authors":"Katarzyna Maresz, A. Ciemięga, P. Bezkosty, Kamil Kornaus, Maciej Sitarz, M. Krzywiecki, J. Mrowiec-Białoń","doi":"10.3390/catal13121516","DOIUrl":"https://doi.org/10.3390/catal13121516","url":null,"abstract":"Zirconia–silica monolithic catalysts with hierarchical micro/macroporous structure were obtained in a sol-gel process combined with phase separation using inorganic salts, i.e., oxychloride, oxynitrate and sulphate, as a zirconium source. It was found that the use of zirconium oxychloride and prehydrolysis of tetraethoxysilane (TEOS) resulted in materials characterized by a well-developed continuous structure of macropores with a diameter of ca. 10 μm. For zirconium oxynitrate and sulfate modified materials, the prehydrolysis hardly affected the macropore size. The micropores with a diameter of 1.5 nm in the skeleton of all materials provided a large surface area of 550–590 m2/g. A high dispersion of zirconia in the silica skeleton in all studied materials was shown. However, the largest surface concentration of Lewis and Brönsted acid sites was found in the monolith synthesized with zirconium oxychloride. The monoliths were used as a core for continuous-flow microreactors and high catalytic activity was confirmed in the deacetalization of benzylaldehyde dimethyl acetal. The process was characterized by a high efficiency at low temperature, i.e., 35 °C.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"18 4","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138967469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Osipowicz, A. Koniuszy, Viktar Taustyka, K. Abramek, Ł. Mozga
This article discusses the potential applications of the Fuel Shot liquid catalyst in compression ignition (CI) engines for reducing toxic substances in exhaust gases. Incorporating catalysts into fuel can optimize the combustion process, consequently reducing the emission of toxic substances into the atmosphere. Toxic compounds, such as nitrogen oxides, particulate matter, and hydrocarbons, adversely affect flora and fauna. Various methods are known for reducing their concentration in engine exhaust gases, one of which is the Fuel Shot liquid catalyst. The authors conducted experiments on a Fiat 1.3 JTD engine with a Common Rail system. The results indicate that the application of the liquid catalyst reduces the content of nitrogen oxides and hydrocarbons in the exhaust gases and slightly decreases fuel consumption. Additionally, investigations were carried out on the engine’s injection apparatus, which was fueled with modified fuel. The findings demonstrate that the fuel additive does not affect the wear of precision parts of fuel injectors and high-pressure pumps.
{"title":"Evaluation of Ecological Parameters of a Compression Ignition Engine Fueled by Diesel Oil with an Eco Fuel Shot Liquid Catalyst","authors":"T. Osipowicz, A. Koniuszy, Viktar Taustyka, K. Abramek, Ł. Mozga","doi":"10.3390/catal13121513","DOIUrl":"https://doi.org/10.3390/catal13121513","url":null,"abstract":"This article discusses the potential applications of the Fuel Shot liquid catalyst in compression ignition (CI) engines for reducing toxic substances in exhaust gases. Incorporating catalysts into fuel can optimize the combustion process, consequently reducing the emission of toxic substances into the atmosphere. Toxic compounds, such as nitrogen oxides, particulate matter, and hydrocarbons, adversely affect flora and fauna. Various methods are known for reducing their concentration in engine exhaust gases, one of which is the Fuel Shot liquid catalyst. The authors conducted experiments on a Fiat 1.3 JTD engine with a Common Rail system. The results indicate that the application of the liquid catalyst reduces the content of nitrogen oxides and hydrocarbons in the exhaust gases and slightly decreases fuel consumption. Additionally, investigations were carried out on the engine’s injection apparatus, which was fueled with modified fuel. The findings demonstrate that the fuel additive does not affect the wear of precision parts of fuel injectors and high-pressure pumps.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"39 5","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138995695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuangyu Liu, Wenyu Tu, Ye Ni, Yuanyi Guo, Ruizhi Han
d-Tagatose is a rare sugar with low calories, and is extensively used in food, beverage, and drug additives. In this study, an in vitro multienzyme cascade route for d-tagatose synthesis from sucrose (MCTS) was designed, which contains five enzymes (sucrose phosphorylase, fructokinase, d-fructose 6-phosphate 4-epimerase, d-tagatose 6-phosphate phosphatase, and polyphosphate kinase). The whole MCTS route comprised a sucrose phosphorylation reaction, and a phosphorylation–dephosphorylation reaction coupled with an ATP regeneration system. After optimization, the conversion of d-tagatose from 10 mM sucrose reached 82.3%. At an elevated sucrose concentration of 50 mM, 72.4% of d-tagatose conversion and 0.27 g·L–1·h−1 of space–time yield were obtained. Furthermore, ADP consumption decreased to 1% of the sucrose concentration after introducing the ATP regeneration system. The MCTS strategy is an efficient and cost-effective approach for d-tagatose production.
d-塔格糖是一种低热量的稀有糖类,被广泛应用于食品、饮料和药物添加剂中。本研究设计了一条从蔗糖合成 d-塔格糖的体外多酶级联路线(MCTS),该路线包含五种酶(蔗糖磷酸化酶、果糖激酶、d-6-果糖磷酸 4-酰亚胺酶、d-6-塔格糖磷酸酶和多聚磷酸激酶)。整个 MCTS 途径包括蔗糖磷酸化反应和磷酸化-磷酸化反应以及 ATP 再生系统。经过优化,10 mM 蔗糖中 d-tagatose 的转化率达到 82.3%。当蔗糖浓度提高到 50 mM 时,d-塔格糖的转化率为 72.4%,时空产量为 0.27 g-L-1-h-1。此外,引入 ATP 再生系统后,ADP 消耗量降至蔗糖浓度的 1%。MCTS 策略是一种高效、经济的 d-塔格糖生产方法。
{"title":"Novel In Vitro Multienzyme Cascade for Efficient Synthesis of d-Tagatose from Sucrose","authors":"Shuangyu Liu, Wenyu Tu, Ye Ni, Yuanyi Guo, Ruizhi Han","doi":"10.3390/catal13121515","DOIUrl":"https://doi.org/10.3390/catal13121515","url":null,"abstract":"d-Tagatose is a rare sugar with low calories, and is extensively used in food, beverage, and drug additives. In this study, an in vitro multienzyme cascade route for d-tagatose synthesis from sucrose (MCTS) was designed, which contains five enzymes (sucrose phosphorylase, fructokinase, d-fructose 6-phosphate 4-epimerase, d-tagatose 6-phosphate phosphatase, and polyphosphate kinase). The whole MCTS route comprised a sucrose phosphorylation reaction, and a phosphorylation–dephosphorylation reaction coupled with an ATP regeneration system. After optimization, the conversion of d-tagatose from 10 mM sucrose reached 82.3%. At an elevated sucrose concentration of 50 mM, 72.4% of d-tagatose conversion and 0.27 g·L–1·h−1 of space–time yield were obtained. Furthermore, ADP consumption decreased to 1% of the sucrose concentration after introducing the ATP regeneration system. The MCTS strategy is an efficient and cost-effective approach for d-tagatose production.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"13 1","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138997829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mazhar Ahmed Memon, Yanan Jiang, Muhammad Azher Hassan, Muhammad Ajmal, Hong Wang, Yuan Liu
CO2 methanation offers a promising route for converting CO2 into valuable chemicals and energy fuels at the same time as hydrogen is stored in methane, so the development of suitable catalysts is crucial. In this review, the performance of catalysts for CO2 methanation is presented and discussed, including noble metal-based catalysts and non-noble metal-based catalysts. Among the noble metal-based catalysts (Ru, Rh, and Pd), Ru-based catalysts show the best catalytic performance. In the non-noble metal catalysts, Ni-based catalysts are the best among Ni-, Co-, and Fe-based catalysts. The factors predominantly affecting catalytic performance are the dispersion of the active metal; the synergy of the active metal with support; and the addition of dopants. Further comprehensive investigations into (i) catalytic performance under industrial conditions, (ii) stability over a much longer period and (iii) activity enhancement at low reaction temperatures are anticipated to meet the industrial applications of CO2 methanation.
{"title":"Heterogeneous Catalysts for Carbon Dioxide Methanation: A View on Catalytic Performance","authors":"Mazhar Ahmed Memon, Yanan Jiang, Muhammad Azher Hassan, Muhammad Ajmal, Hong Wang, Yuan Liu","doi":"10.3390/catal13121514","DOIUrl":"https://doi.org/10.3390/catal13121514","url":null,"abstract":"CO2 methanation offers a promising route for converting CO2 into valuable chemicals and energy fuels at the same time as hydrogen is stored in methane, so the development of suitable catalysts is crucial. In this review, the performance of catalysts for CO2 methanation is presented and discussed, including noble metal-based catalysts and non-noble metal-based catalysts. Among the noble metal-based catalysts (Ru, Rh, and Pd), Ru-based catalysts show the best catalytic performance. In the non-noble metal catalysts, Ni-based catalysts are the best among Ni-, Co-, and Fe-based catalysts. The factors predominantly affecting catalytic performance are the dispersion of the active metal; the synergy of the active metal with support; and the addition of dopants. Further comprehensive investigations into (i) catalytic performance under industrial conditions, (ii) stability over a much longer period and (iii) activity enhancement at low reaction temperatures are anticipated to meet the industrial applications of CO2 methanation.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"119 21","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138999365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the development of coal chemical technology, a large amount of gasification slag and wastewater are produced through coal gasification. Efficient gasification slag utilization and wastewater treatment have attracted much attention. In this study, gasification slag was modified and used as a low-cost and efficient catalyst to activate persulfate for acetaminophen degradation. Via the analysis of high-resolution X-ray photoelectron spectroscopy, the surfaces of nitric acid and calcined modified gasification slag retained a considerable number of carbonyl and graphite N functional groups. These proved to be effective active sites for the activation of persulfate. X-ray diffraction analysis revealed that the gasification slag was composed of carbon and SiO2. The evaluation of catalytic activity and application of density functional theory proved that the interaction between carbonyl and graphitic nitrogen significantly affected the catalyst activity. When the ratio of graphitic nitrogen to carbonyl was 1:3, the adsorption and activation of persulfate were significantly enhanced. The results of the quenching experiments also confirmed that the non-free radical pathway is the main pathway to activate persulfate using the gasification slag. This study provides a new approach to industrial waste utilization in wastewater treatment.
随着煤化工技术的发展,煤气化过程中会产生大量气化渣和废水。气化渣的高效利用和废水处理备受关注。本研究将气化渣改性并用作一种低成本、高效的催化剂,以激活对乙酰氨基酚降解过程中的过硫酸盐。通过高分辨率 X 射线光电子能谱分析,硝酸和煅烧改性气化炉渣表面保留了大量的羰基和石墨 N 官能团。事实证明,这些都是活化过硫酸盐的有效活性位点。X 射线衍射分析表明,气化渣由碳和二氧化硅组成。催化活性评估和密度泛函理论的应用证明,羰基和石墨氮之间的相互作用对催化剂活性有显著影响。当石墨氮与羰基的比例为 1:3 时,过硫酸盐的吸附和活化能力明显增强。淬火实验结果也证实,非自由基途径是利用气化渣活化过硫酸盐的主要途径。这项研究为废水处理中的工业废物利用提供了一种新方法。
{"title":"Modified Gasification-Slag-Driven Persulfate Activation for Highly Efficient Degradation of Acetaminophen: N/O Active Site Regulation and Nonradical Oxidation","authors":"Wenhao Si, Fei Qi, Kangjun Wang, Qiang Wang, Zequan Zeng, Yuting Niu, Zhanggen Huang","doi":"10.3390/catal13121512","DOIUrl":"https://doi.org/10.3390/catal13121512","url":null,"abstract":"With the development of coal chemical technology, a large amount of gasification slag and wastewater are produced through coal gasification. Efficient gasification slag utilization and wastewater treatment have attracted much attention. In this study, gasification slag was modified and used as a low-cost and efficient catalyst to activate persulfate for acetaminophen degradation. Via the analysis of high-resolution X-ray photoelectron spectroscopy, the surfaces of nitric acid and calcined modified gasification slag retained a considerable number of carbonyl and graphite N functional groups. These proved to be effective active sites for the activation of persulfate. X-ray diffraction analysis revealed that the gasification slag was composed of carbon and SiO2. The evaluation of catalytic activity and application of density functional theory proved that the interaction between carbonyl and graphitic nitrogen significantly affected the catalyst activity. When the ratio of graphitic nitrogen to carbonyl was 1:3, the adsorption and activation of persulfate were significantly enhanced. The results of the quenching experiments also confirmed that the non-free radical pathway is the main pathway to activate persulfate using the gasification slag. This study provides a new approach to industrial waste utilization in wastewater treatment.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":"12 19","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138970768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}