Pub Date : 2024-11-05DOI: 10.1016/j.celrep.2024.114922
Jordan J Clark, Irene Hoxie, Daniel C Adelsberg, Iden A Sapse, Robert Andreata-Santos, Jeremy S Yong, Fatima Amanat, Johnstone Tcheou, Ariel Raskin, Gagandeep Singh, Irene González-Domínguez, Julia E Edgar, Stylianos Bournazos, Weina Sun, Juan Manuel Carreño, Viviana Simon, Ali H Ellebedy, Goran Bajic, Florian Krammer
Neutralizing antibodies correlate with protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection against disease progression. Non-neutralizing antibodies cannot directly protect against infection but may recruit effector cells and thus contribute to the clearance of infected cells. Additionally, they often bind conserved epitopes across multiple variants. Here, we characterize 42 human monoclonal antibodies (mAbs) from coronavirus disease 2019 (COVID-19)-vaccinated individuals. Most of these antibodies exhibit no neutralizing activity in vitro, but several non-neutralizing antibodies provide protection against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs shows a clear dependence on Fc-mediated effector functions. We have determined the structures of three non-neutralizing antibodies, with two targeting the receptor-binding domain and one that binds the subdomain 1 region. Our data confirm the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
{"title":"Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination.","authors":"Jordan J Clark, Irene Hoxie, Daniel C Adelsberg, Iden A Sapse, Robert Andreata-Santos, Jeremy S Yong, Fatima Amanat, Johnstone Tcheou, Ariel Raskin, Gagandeep Singh, Irene González-Domínguez, Julia E Edgar, Stylianos Bournazos, Weina Sun, Juan Manuel Carreño, Viviana Simon, Ali H Ellebedy, Goran Bajic, Florian Krammer","doi":"10.1016/j.celrep.2024.114922","DOIUrl":"10.1016/j.celrep.2024.114922","url":null,"abstract":"<p><p>Neutralizing antibodies correlate with protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection against disease progression. Non-neutralizing antibodies cannot directly protect against infection but may recruit effector cells and thus contribute to the clearance of infected cells. Additionally, they often bind conserved epitopes across multiple variants. Here, we characterize 42 human monoclonal antibodies (mAbs) from coronavirus disease 2019 (COVID-19)-vaccinated individuals. Most of these antibodies exhibit no neutralizing activity in vitro, but several non-neutralizing antibodies provide protection against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs shows a clear dependence on Fc-mediated effector functions. We have determined the structures of three non-neutralizing antibodies, with two targeting the receptor-binding domain and one that binds the subdomain 1 region. Our data confirm the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114922"},"PeriodicalIF":7.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-05DOI: 10.1016/j.celrep.2024.114930
Prabal Chhibbar, Priyamvada Guha Roy, Munesh K Harioudh, Daniel J McGrail, Donghui Yang, Harinder Singh, Reinhard Hinterleitner, Yi-Nan Gong, S Stephen Yi, Nidhi Sahni, Saumendra N Sarkar, Jishnu Das
Immunomodulatory variants that lead to the loss or gain of specific protein interactions often manifest only as organismal phenotypes in infectious disease. Here, we propose a network-based approach to integrate genetic variation with a structurally resolved human protein interactome network to prioritize immunomodulatory variants in COVID-19. We find that, in addition to variants that pass genome-wide significance thresholds, variants at the interface of specific protein-protein interactions, even though they do not meet genome-wide thresholds, are equally immunomodulatory. The integration of these variants with single-cell epigenomic and transcriptomic data prioritizes myeloid and T cell subsets as the most affected by these variants across both the peripheral blood and the lung compartments. Of particular interest is a common coding variant that disrupts the OAS1-PRMT6 interaction and affects downstream interferon signaling. Critically, our framework is generalizable across infectious disease contexts and can be used to implicate immunomodulatory variants that do not meet genome-wide significance thresholds.
{"title":"Uncovering cell-type-specific immunomodulatory variants and molecular phenotypes in COVID-19 using structurally resolved protein networks.","authors":"Prabal Chhibbar, Priyamvada Guha Roy, Munesh K Harioudh, Daniel J McGrail, Donghui Yang, Harinder Singh, Reinhard Hinterleitner, Yi-Nan Gong, S Stephen Yi, Nidhi Sahni, Saumendra N Sarkar, Jishnu Das","doi":"10.1016/j.celrep.2024.114930","DOIUrl":"https://doi.org/10.1016/j.celrep.2024.114930","url":null,"abstract":"<p><p>Immunomodulatory variants that lead to the loss or gain of specific protein interactions often manifest only as organismal phenotypes in infectious disease. Here, we propose a network-based approach to integrate genetic variation with a structurally resolved human protein interactome network to prioritize immunomodulatory variants in COVID-19. We find that, in addition to variants that pass genome-wide significance thresholds, variants at the interface of specific protein-protein interactions, even though they do not meet genome-wide thresholds, are equally immunomodulatory. The integration of these variants with single-cell epigenomic and transcriptomic data prioritizes myeloid and T cell subsets as the most affected by these variants across both the peripheral blood and the lung compartments. Of particular interest is a common coding variant that disrupts the OAS1-PRMT6 interaction and affects downstream interferon signaling. Critically, our framework is generalizable across infectious disease contexts and can be used to implicate immunomodulatory variants that do not meet genome-wide significance thresholds.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114930"},"PeriodicalIF":7.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The experience of pain is complex, involving both sensory and affective components, yet the underlying neural mechanisms remain elusive. Here, we show that formalin-induced pain behaviors coincide with increased responses in glutamatergic neurons within the anterior paraventricular nucleus of the thalamus (PVA). Furthermore, we describe non-overlapping subpopulations of PVAVgluT2 neurons involved in sensory and affective pain processing, whose activity varies across different pain states. Activating PVA glutamatergic neurons is sufficient to induce mechanical hypersensitivity and aversion behaviors, whereas suppression ameliorates formalin-induced pain. Furthermore, we identify the segregation of PVAVgluT2 projections to the bed nucleus of the stria terminalis (BNST) and nucleus accumbens (NAc), each influencing specific aspects of pain-like behavior. This finding provides an important insight into the mechanism of distinct components of pain, highlighting the pivotal role of PVA in mediating different aspects of pain-like behavior with distinct circuits.
{"title":"Separate anterior paraventricular thalamus projections differentially regulate sensory and affective aspects of pain.","authors":"Selomon Assefa Mindaye, Wei-Hsin Chen, Shih-Che Lin, Yong-Cyuan Chen, Mohamed Abbas Abdelaziz, Yi-Shiuan Tzeng, Arthur Chun-Chieh Shih, Shih-Yu Chen, Shi-Bing Yang, Chien-Chang Chen","doi":"10.1016/j.celrep.2024.114946","DOIUrl":"https://doi.org/10.1016/j.celrep.2024.114946","url":null,"abstract":"<p><p>The experience of pain is complex, involving both sensory and affective components, yet the underlying neural mechanisms remain elusive. Here, we show that formalin-induced pain behaviors coincide with increased responses in glutamatergic neurons within the anterior paraventricular nucleus of the thalamus (PVA). Furthermore, we describe non-overlapping subpopulations of PVAVgluT2 neurons involved in sensory and affective pain processing, whose activity varies across different pain states. Activating PVA glutamatergic neurons is sufficient to induce mechanical hypersensitivity and aversion behaviors, whereas suppression ameliorates formalin-induced pain. Furthermore, we identify the segregation of PVA<sup>VgluT2</sup> projections to the bed nucleus of the stria terminalis (BNST) and nucleus accumbens (NAc), each influencing specific aspects of pain-like behavior. This finding provides an important insight into the mechanism of distinct components of pain, highlighting the pivotal role of PVA in mediating different aspects of pain-like behavior with distinct circuits.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114946"},"PeriodicalIF":7.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-04DOI: 10.1016/j.celrep.2024.114917
Bin Huang, Dan Cao, Xiao Yuan, Yuxian Xiong, Bingzhang Chen, Yingjie Wang, Xiaogang Niu, Ruijun Tian, Hao Huang
RAS oncogenic mutations are pivotal drivers of tumorigenesis. Ubiquitination modulates RAS functions, including activation, stability, and localization. While several E3 ligases regulate RAS ubiquitination, RAS deubiquitination remains less understood. Our study reveals that ubiquitin-specific protease 7 (USP7) directly deubiquitinates KRAS, stabilizing it and promoting the proliferation of non-small cell lung cancer (NSCLC) cells. Mechanistically, USP7 binds KRAS via its TRAF domain and removes the K48-linked polyubiquitin chains from residue K147. In addition, USP7 also stabilizes oncogenic KRAS mutants through deubiquitination. In lung cancer tissues, high USP7 expression is positively correlated with KRAS and is associated with lower patient survival rates. Moreover, USP7 inhibitors suppress NSCLC cell proliferation, particularly in cells resistant to the KRAS-G12C inhibitor AMG510. In conclusion, our findings identify USP7 as a key deubiquitinase regulating RAS stability, and targeting USP7 is a promising strategy to counteract KRAS inhibitor resistance in NSCLC.
{"title":"USP7 deubiquitinates KRAS and promotes non-small cell lung cancer.","authors":"Bin Huang, Dan Cao, Xiao Yuan, Yuxian Xiong, Bingzhang Chen, Yingjie Wang, Xiaogang Niu, Ruijun Tian, Hao Huang","doi":"10.1016/j.celrep.2024.114917","DOIUrl":"https://doi.org/10.1016/j.celrep.2024.114917","url":null,"abstract":"<p><p>RAS oncogenic mutations are pivotal drivers of tumorigenesis. Ubiquitination modulates RAS functions, including activation, stability, and localization. While several E3 ligases regulate RAS ubiquitination, RAS deubiquitination remains less understood. Our study reveals that ubiquitin-specific protease 7 (USP7) directly deubiquitinates KRAS, stabilizing it and promoting the proliferation of non-small cell lung cancer (NSCLC) cells. Mechanistically, USP7 binds KRAS via its TRAF domain and removes the K48-linked polyubiquitin chains from residue K147. In addition, USP7 also stabilizes oncogenic KRAS mutants through deubiquitination. In lung cancer tissues, high USP7 expression is positively correlated with KRAS and is associated with lower patient survival rates. Moreover, USP7 inhibitors suppress NSCLC cell proliferation, particularly in cells resistant to the KRAS-G12C inhibitor AMG510. In conclusion, our findings identify USP7 as a key deubiquitinase regulating RAS stability, and targeting USP7 is a promising strategy to counteract KRAS inhibitor resistance in NSCLC.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114917"},"PeriodicalIF":7.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.celrep.2024.114931
Virginie Stévenin, Claudia E Coipan, Janneke W Duijster, Daphne M van Elsland, Linda Voogd, Lise Bigey, Angela H A M van Hoek, Lucas M Wijnands, Lennert Janssen, Jimmy J L L Akkermans, Andra Neefjes-Borst, Eelco Franz, Lapo Mughini-Gras, Jacques Neefjes
Salmonellae are associated epidemiologically and experimentally with colon cancer. To understand how Salmonella induces cell transformation, we performed multi-omics and phenotypic analyses of Salmonella clinical strains isolated from patients later diagnosed with colon cancer (case strains) and control strains from patients without cancer. We show that high transformation efficiency is a frequent intrinsic feature of clinical (case and control) salmonellae, yet case strains showed higher transformation efficiency than control strains. Transformation efficiency correlates with gene expression, nutrient utilization, and intracellular virulence, but not with genetic features, suggesting a phenotypic convergence of Salmonella strains resulting in cell transformation. We show that both bacterial entry and intracellular replication are required for host cell transformation and are associated with hyperactivation of the mTOR pathway. Strikingly, transiently inactivating mTOR through chemical inhibition reverses the transformation phenotype instigated by Salmonella infection. This suggests that targeting the mTOR pathway could prevent the development of Salmonella-induced tumors.
{"title":"Multi-omics analyses of cancer-linked clinical salmonellae reveal bacterial-induced host metabolic shift and mTOR-dependent cell transformation.","authors":"Virginie Stévenin, Claudia E Coipan, Janneke W Duijster, Daphne M van Elsland, Linda Voogd, Lise Bigey, Angela H A M van Hoek, Lucas M Wijnands, Lennert Janssen, Jimmy J L L Akkermans, Andra Neefjes-Borst, Eelco Franz, Lapo Mughini-Gras, Jacques Neefjes","doi":"10.1016/j.celrep.2024.114931","DOIUrl":"https://doi.org/10.1016/j.celrep.2024.114931","url":null,"abstract":"<p><p>Salmonellae are associated epidemiologically and experimentally with colon cancer. To understand how Salmonella induces cell transformation, we performed multi-omics and phenotypic analyses of Salmonella clinical strains isolated from patients later diagnosed with colon cancer (case strains) and control strains from patients without cancer. We show that high transformation efficiency is a frequent intrinsic feature of clinical (case and control) salmonellae, yet case strains showed higher transformation efficiency than control strains. Transformation efficiency correlates with gene expression, nutrient utilization, and intracellular virulence, but not with genetic features, suggesting a phenotypic convergence of Salmonella strains resulting in cell transformation. We show that both bacterial entry and intracellular replication are required for host cell transformation and are associated with hyperactivation of the mTOR pathway. Strikingly, transiently inactivating mTOR through chemical inhibition reverses the transformation phenotype instigated by Salmonella infection. This suggests that targeting the mTOR pathway could prevent the development of Salmonella-induced tumors.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114931"},"PeriodicalIF":7.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.celrep.2024.114923
Yuica Koga, Shigeki Hirakata, Mayu Negishi, Hiroya Yamazaki, Tatsuya Fujisawa, Mikiko C Siomi
PIWI-interacting RNAs (piRNAs) protect germline genomes and maintain fertility by repressing transposons. Daedalus and Gasz act together as a mitochondrial scaffold for Armitage, a necessary factor for Zucchini-dependent piRNA processing. However, the mechanism underlying this function remains unclear. Here, we find that the roles of Daedalus and Gasz in this process are distinct, although both are necessary: Daedalus physically interacts with Armitage, whereas Gasz supports Daedalus to maintain its function. Daedalus binds to Armitage through two distinct regions, an extended coiled coil identified in this study and a sterile α motif (SAM). The former tethers Armitage to mitochondria, while the latter controls Zucchini endonucleolysis to define the length of piRNAs in an exonuclease-independent manner. piRNAs produced in the absence of the Daedalus SAM do not exhibit full transposon silencing functionality. Daedalus is Dipteran specific. Unlike Drosophila and mosquitoes, other species, such as mice, rely on exonucleases after Zucchini processing to specify the length of piRNAs.
{"title":"Dipteran-specific Daedalus controls Zucchini endonucleolysis in piRNA biogenesis independent of exonucleases.","authors":"Yuica Koga, Shigeki Hirakata, Mayu Negishi, Hiroya Yamazaki, Tatsuya Fujisawa, Mikiko C Siomi","doi":"10.1016/j.celrep.2024.114923","DOIUrl":"https://doi.org/10.1016/j.celrep.2024.114923","url":null,"abstract":"<p><p>PIWI-interacting RNAs (piRNAs) protect germline genomes and maintain fertility by repressing transposons. Daedalus and Gasz act together as a mitochondrial scaffold for Armitage, a necessary factor for Zucchini-dependent piRNA processing. However, the mechanism underlying this function remains unclear. Here, we find that the roles of Daedalus and Gasz in this process are distinct, although both are necessary: Daedalus physically interacts with Armitage, whereas Gasz supports Daedalus to maintain its function. Daedalus binds to Armitage through two distinct regions, an extended coiled coil identified in this study and a sterile α motif (SAM). The former tethers Armitage to mitochondria, while the latter controls Zucchini endonucleolysis to define the length of piRNAs in an exonuclease-independent manner. piRNAs produced in the absence of the Daedalus SAM do not exhibit full transposon silencing functionality. Daedalus is Dipteran specific. Unlike Drosophila and mosquitoes, other species, such as mice, rely on exonucleases after Zucchini processing to specify the length of piRNAs.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114923"},"PeriodicalIF":7.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.celrep.2024.114943
Jun Zhang, Rongde Qiu, Sean Xie, Megan Rasmussen, Xin Xiang
Cytoplasmic dynein-mediated intracellular transport needs the multi-component dynactin complex for cargo binding and motor activation. However, the cellular factors involved in dynactin assembly remain unexplored. Here, we found in Aspergillus nidulans that the vezatin homolog VezA is important for dynactin assembly. VezA affects the microtubule plus-end accumulation of dynein before cargo binding and cargo-adapter-mediated dynein activation, two processes that both need dynactin. The dynactin complex contains multiple components, including p150, p50, and an Arp1 (actin-related protein 1) mini-filament associated with a pointed-end sub-complex. VezA physically interacts with the Arp1 mini-filament either directly or indirectly. Loss of VezA significantly decreases the amount of Arp1 pulled down with pointed-end proteins, as well as the protein levels of p50 and p150 in cell extract. Using various dynactin mutants, we further revealed that the dynactin assembly process must be highly coordinated. Together, these results shed light on dynactin assembly in vivo.
{"title":"VezA/vezatin facilitates proper assembly of the dynactin complex in vivo.","authors":"Jun Zhang, Rongde Qiu, Sean Xie, Megan Rasmussen, Xin Xiang","doi":"10.1016/j.celrep.2024.114943","DOIUrl":"10.1016/j.celrep.2024.114943","url":null,"abstract":"<p><p>Cytoplasmic dynein-mediated intracellular transport needs the multi-component dynactin complex for cargo binding and motor activation. However, the cellular factors involved in dynactin assembly remain unexplored. Here, we found in Aspergillus nidulans that the vezatin homolog VezA is important for dynactin assembly. VezA affects the microtubule plus-end accumulation of dynein before cargo binding and cargo-adapter-mediated dynein activation, two processes that both need dynactin. The dynactin complex contains multiple components, including p150, p50, and an Arp1 (actin-related protein 1) mini-filament associated with a pointed-end sub-complex. VezA physically interacts with the Arp1 mini-filament either directly or indirectly. Loss of VezA significantly decreases the amount of Arp1 pulled down with pointed-end proteins, as well as the protein levels of p50 and p150 in cell extract. Using various dynactin mutants, we further revealed that the dynactin assembly process must be highly coordinated. Together, these results shed light on dynactin assembly in vivo.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114943"},"PeriodicalIF":7.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.celrep.2024.114900
Yunzhi Wang, Zhigang Song, Peng Ran, Hang Xiang, Ziyan Xu, Ning Xu, Mengjie Deng, Lingli Zhu, Yanan Yin, Jinwen Feng, Chen Ding, Wenjun Yang
The coronavirus disease 2019 (COVID-19) pandemic has reminded us of human infections with the H7N9 virus and has raised questions related to the clinical and molecular pathophysiological diversity between the two diseases. Here, we performed a proteomic approach on sera samples from patients with H7N9-virus or SARS-CoV-2-virus infection and healthy controls. Compared to SARS-CoV-2, H7N9-virus infection caused elevated neutrophil concentrations, T cell exhaustion, and increased cytokine/interleukin secretion. Cell-type deconvolution and temporal analysis revealed that T cells and neutrophils could regulate the core immunological trajectory and influence the prognosis of patients with severe H7N9-virus infection. Elevated tissue-enhanced proteins combined with alterations of clinical biochemical indexes suggested that H7N9 infection induced more severe inflammatory organ injury and dysfunction in the liver and intestine. Further mechanical analysis revealed that the high concentration of neutrophils might impact the intestinal enterocyte cells through cytokine-receptor interaction, leading to intestinal damage in patients with H7N9-virus infection.
{"title":"Serum proteome reveals distinctive molecular features of H7N9- and SARS-CoV-2-infected patients.","authors":"Yunzhi Wang, Zhigang Song, Peng Ran, Hang Xiang, Ziyan Xu, Ning Xu, Mengjie Deng, Lingli Zhu, Yanan Yin, Jinwen Feng, Chen Ding, Wenjun Yang","doi":"10.1016/j.celrep.2024.114900","DOIUrl":"https://doi.org/10.1016/j.celrep.2024.114900","url":null,"abstract":"<p><p>The coronavirus disease 2019 (COVID-19) pandemic has reminded us of human infections with the H7N9 virus and has raised questions related to the clinical and molecular pathophysiological diversity between the two diseases. Here, we performed a proteomic approach on sera samples from patients with H7N9-virus or SARS-CoV-2-virus infection and healthy controls. Compared to SARS-CoV-2, H7N9-virus infection caused elevated neutrophil concentrations, T cell exhaustion, and increased cytokine/interleukin secretion. Cell-type deconvolution and temporal analysis revealed that T cells and neutrophils could regulate the core immunological trajectory and influence the prognosis of patients with severe H7N9-virus infection. Elevated tissue-enhanced proteins combined with alterations of clinical biochemical indexes suggested that H7N9 infection induced more severe inflammatory organ injury and dysfunction in the liver and intestine. Further mechanical analysis revealed that the high concentration of neutrophils might impact the intestinal enterocyte cells through cytokine-receptor interaction, leading to intestinal damage in patients with H7N9-virus infection.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114900"},"PeriodicalIF":7.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.celrep.2024.114944
Shani Talice, Itamar Kozlovski, Shany K Barkan, Grace A Snyder, Ton Sharoni, Tom Levy, Shelly Oisher, Aner Ottolenghi, Shir Eliachar, Ronit Ben-Romano, Keren Berlyne, Ronnie Yannai, Magda Lewandowska, Eliya Sultan, Oron Goldstein, Reuven Aharoni, Uzi Hadad, Claytus Davis, Yehu Moran, Orly Gershoni-Yahalom, Nikki Traylor-Knowles, Benyamin Rosental
Stem cells are the foundation for cell therapy due to their ability to self-renew, differentiate into other cell types, and persist throughout the life of an organism. Stem cell isolation and transplantation have not yet been established in Hexacorallia, a cnidarian subclass containing stony corals and sea anemones. Here, we demonstrate that candidate stem cells in the hexacorallian Nematostella vectensis can be transplanted into adult animals. These cells exhibited the hallmarks of stem cell functional properties; they integrated into recipients' tissues and rescued them from lethal doses of chemotherapy. Additionally, these cells proliferated and survived serial transplantations. Notably, we showed that this cellular subpopulation can be enriched by sorting using species-non-specific cell markers and that similar subpopulations of cells can be isolated from other hexacorallians, including stony corals. This research establishes the basis for studying stem cell biology on a functional level in Hexacorallia.
{"title":"Candidate stem cell isolation and transplantation in Hexacorallia.","authors":"Shani Talice, Itamar Kozlovski, Shany K Barkan, Grace A Snyder, Ton Sharoni, Tom Levy, Shelly Oisher, Aner Ottolenghi, Shir Eliachar, Ronit Ben-Romano, Keren Berlyne, Ronnie Yannai, Magda Lewandowska, Eliya Sultan, Oron Goldstein, Reuven Aharoni, Uzi Hadad, Claytus Davis, Yehu Moran, Orly Gershoni-Yahalom, Nikki Traylor-Knowles, Benyamin Rosental","doi":"10.1016/j.celrep.2024.114944","DOIUrl":"https://doi.org/10.1016/j.celrep.2024.114944","url":null,"abstract":"<p><p>Stem cells are the foundation for cell therapy due to their ability to self-renew, differentiate into other cell types, and persist throughout the life of an organism. Stem cell isolation and transplantation have not yet been established in Hexacorallia, a cnidarian subclass containing stony corals and sea anemones. Here, we demonstrate that candidate stem cells in the hexacorallian Nematostella vectensis can be transplanted into adult animals. These cells exhibited the hallmarks of stem cell functional properties; they integrated into recipients' tissues and rescued them from lethal doses of chemotherapy. Additionally, these cells proliferated and survived serial transplantations. Notably, we showed that this cellular subpopulation can be enriched by sorting using species-non-specific cell markers and that similar subpopulations of cells can be isolated from other hexacorallians, including stony corals. This research establishes the basis for studying stem cell biology on a functional level in Hexacorallia.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114944"},"PeriodicalIF":7.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01DOI: 10.1016/j.celrep.2024.114938
Braxton L Jamison, Matthew Lawrance, Chun Jing Wang, Hannah A DeBerg, Lauren J Ziegler, David M Sansom, Marc A Gavin, Lucy S K Walker, Daniel J Campbell
Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3+ regulatory T (TR) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated TR population with elevated proliferation, a transcriptional program associated with Stat5- and T cell receptor-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface major histocompatibility complex class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 co-stimulatory ligands from maturing cDCs to TR cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes, resulting in T cell anergy. Thus, IL-2 mutein-expanded TR cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.
{"title":"An IL-2 mutein increases regulatory T cell suppression of dendritic cells via IL-10 and CTLA-4 to promote T cell anergy.","authors":"Braxton L Jamison, Matthew Lawrance, Chun Jing Wang, Hannah A DeBerg, Lauren J Ziegler, David M Sansom, Marc A Gavin, Lucy S K Walker, Daniel J Campbell","doi":"10.1016/j.celrep.2024.114938","DOIUrl":"10.1016/j.celrep.2024.114938","url":null,"abstract":"<p><p>Interleukin-2 (IL-2) variants with increased CD25 dependence that selectively expand Foxp3<sup>+</sup> regulatory T (T<sub>R</sub>) cells are in clinical trials for treating inflammatory diseases. Using an Fc-fused IL-2 mutein (Fc.IL-2 mutein) we developed that prevents diabetes in non-obese diabetic (NOD) mice, we show that Fc.IL-2 mutein induced an activated T<sub>R</sub> population with elevated proliferation, a transcriptional program associated with Stat5- and T cell receptor-dependent gene modules, and high IL-10 and CTLA-4 expression. Increased IL-10 signaling limited surface major histocompatibility complex class II upregulation during conventional dendritic cell (cDC) maturation, while increased CTLA-4-dependent transendocytosis led to the transfer of CD80 and CD86 co-stimulatory ligands from maturing cDCs to T<sub>R</sub> cells. In NOD mice, Fc.IL-2 mutein treatment promoted the suppression of cDCs in the inflamed pancreas and pancreatic lymph nodes, resulting in T cell anergy. Thus, IL-2 mutein-expanded T<sub>R</sub> cells have enhanced functional properties and restrict cDC function, offering promise for targeted immunotherapy use in autoimmune disease.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"43 11","pages":"114938"},"PeriodicalIF":7.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}