首页 > 最新文献

Cellular &Molecular Immunology最新文献

英文 中文
CD30 influences germinal center B-cell dynamics and the expansion of IgG1-switched B cells CD30 影响生殖中心 B 细胞的动态和 IgG1 开关 B 细胞的扩增。
IF 21.8 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-17 DOI: 10.1038/s41423-024-01219-w
Yan Wang, Ursula Rambold, Petra Fiedler, Tea Babushku, Claas L. Tapken, Kai P. Hoefig, Thomas P. Hofer, Heiko Adler, Ali Önder Yildirim, Lothar J. Strobl, Ursula Zimber-Strobl
Initially, identified as a Hodgkin lymphoma marker, CD30 was subsequently detected on a subset of human B cells within and around germinal centers (GCs). While CD30 expression is typically restricted to a few B cells, expansion of CD30-expressing B cells occurs in certain immune disorders and during viral infections. The role of CD30 in B cells remains largely unclear. To address this gap in knowledge, we established a conditional CD30-knockin mouse strain. In these mice, B-cell-specific CD30 expression led to a normal B-cell phenotype in young mice, but most aged mice exhibited significant expansion of B cells, T cells and myeloid cells and increased percentages of GC B cells and IgG1-switched cells. This may be driven by the expansion of CD4+ senescence-associated T cells and T follicular helper cells, which partially express CD30-L (CD153) and may stimulate CD30-expressing B cells. Inducing CD30 expression in antigen-activated B cells accelerates the GC reaction and augments plasma cell differentiation, possibly through the posttranscriptional upregulation of CXCR4. Furthermore, CD30 expression in GC B cells promoted the expansion of IgG1-switched cells, which displayed either a GC or memory-like B-cell phenotype, with abnormally high IgG1 levels compared with those in controls. These findings shed light on the role of CD30 signaling in GC B cells and suggest that elevated CD30+ B-cell numbers lead to pathological lymphocyte activation and proliferation.
CD30 最初被认为是霍奇金淋巴瘤的标志物,后来在生殖中心(GC)内部和周围的人类 B 细胞亚群中被检测到。虽然 CD30 的表达通常仅限于少数 B 细胞,但在某些免疫紊乱和病毒感染时,会出现表达 CD30 的 B 细胞扩增。CD30 在 B 细胞中的作用在很大程度上仍不清楚。为了填补这一知识空白,我们建立了一个条件性 CD30 基因敲除小鼠品系。在这些小鼠中,B 细胞特异性 CD30 表达导致年轻小鼠的 B 细胞表型正常,但大多数老年小鼠的 B 细胞、T 细胞和髓系细胞显著扩增,GC B 细胞和 IgG1 切换细胞的百分比增加。这可能是由 CD4+ 衰老相关 T 细胞和 T 滤泡辅助细胞的扩增驱动的,这些细胞部分表达 CD30-L(CD153),并可能刺激表达 CD30 的 B 细胞。诱导抗原激活的 B 细胞表达 CD30 可加速 GC 反应并促进浆细胞分化,这可能是通过转录后上调 CXCR4 实现的。此外,GC B 细胞中 CD30 的表达促进了 IgG1 切换细胞的扩增,这些细胞显示出 GC 或记忆样 B 细胞表型,与对照组相比,其 IgG1 水平异常高。这些发现揭示了 CD30 信号在 GC B 细胞中的作用,并表明 CD30+ B 细胞数量升高会导致病理性淋巴细胞活化和增殖。
{"title":"CD30 influences germinal center B-cell dynamics and the expansion of IgG1-switched B cells","authors":"Yan Wang, Ursula Rambold, Petra Fiedler, Tea Babushku, Claas L. Tapken, Kai P. Hoefig, Thomas P. Hofer, Heiko Adler, Ali Önder Yildirim, Lothar J. Strobl, Ursula Zimber-Strobl","doi":"10.1038/s41423-024-01219-w","DOIUrl":"10.1038/s41423-024-01219-w","url":null,"abstract":"Initially, identified as a Hodgkin lymphoma marker, CD30 was subsequently detected on a subset of human B cells within and around germinal centers (GCs). While CD30 expression is typically restricted to a few B cells, expansion of CD30-expressing B cells occurs in certain immune disorders and during viral infections. The role of CD30 in B cells remains largely unclear. To address this gap in knowledge, we established a conditional CD30-knockin mouse strain. In these mice, B-cell-specific CD30 expression led to a normal B-cell phenotype in young mice, but most aged mice exhibited significant expansion of B cells, T cells and myeloid cells and increased percentages of GC B cells and IgG1-switched cells. This may be driven by the expansion of CD4+ senescence-associated T cells and T follicular helper cells, which partially express CD30-L (CD153) and may stimulate CD30-expressing B cells. Inducing CD30 expression in antigen-activated B cells accelerates the GC reaction and augments plasma cell differentiation, possibly through the posttranscriptional upregulation of CXCR4. Furthermore, CD30 expression in GC B cells promoted the expansion of IgG1-switched cells, which displayed either a GC or memory-like B-cell phenotype, with abnormally high IgG1 levels compared with those in controls. These findings shed light on the role of CD30 signaling in GC B cells and suggest that elevated CD30+ B-cell numbers lead to pathological lymphocyte activation and proliferation.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 12","pages":"1410-1425"},"PeriodicalIF":21.8,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01219-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunotherapy for glioblastoma: current state, challenges, and future perspectives 胶质母细胞瘤的免疫疗法:现状、挑战和未来展望。
IF 21.8 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-15 DOI: 10.1038/s41423-024-01226-x
Yang Liu, Fei Zhou, Heba Ali, Justin D. Lathia, Peiwen Chen
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
胶质母细胞瘤(GBM)是一种侵袭性和致命性的成人脑肿瘤。标准疗法的临床疗效甚微,大多数 GBM 患者在治疗后肿瘤复发。近年来,新型免疫疗法或其他治疗策略的开发取得了重大进展,可以克服许多晚期癌症的免疫疗法耐药性。然而,由于独特的脑免疫特征、GBM 细胞异质性和免疫抑制性肿瘤微环境,基于免疫的治疗在 GBM 中的获益有限。在这篇综述中,我们详细概述了当前的免疫治疗策略,并讨论了 GBM 免疫治疗耐药所面临的挑战和潜在的分子机制。此外,我们还深入探讨了克服 GBM 免疫治疗耐药性的策略,这很可能需要联合疗法。
{"title":"Immunotherapy for glioblastoma: current state, challenges, and future perspectives","authors":"Yang Liu, Fei Zhou, Heba Ali, Justin D. Lathia, Peiwen Chen","doi":"10.1038/s41423-024-01226-x","DOIUrl":"10.1038/s41423-024-01226-x","url":null,"abstract":"Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 12","pages":"1354-1375"},"PeriodicalIF":21.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01226-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophage diversity in cancer dissemination and metastasis 癌症传播和转移中的巨噬细胞多样性
IF 21.8 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-14 DOI: 10.1038/s41423-024-01216-z
Alberto Mantovani, Federica Marchesi, Diletta Di Mitri, Cecilia Garlanda
Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.
侵袭和转移是癌症的特征。除了公认的血行和淋巴转移途径外,癌细胞还可通过经肠管和神经周围途径扩散,这两种途径分别是卵巢癌和胰腺癌的典型途径。巨噬细胞是肿瘤微环境中普遍存在的主要成分,在已形成的肿瘤中,巨噬细胞可促进肿瘤生长并向继发部位扩散。在此,我们回顾了肿瘤相关巨噬细胞(TAMs)在癌细胞扩散和转移中的作用,强调了髓细胞在不同组织环境(肺、肝、脑、骨、腹膜腔、神经)中的多样性。一般使用的肺转移模型无法捕捉到途径和组织微环境的多样性。更好地了解TAM在不同组织环境中的多样性可为定制诊断和治疗方法铺平道路。
{"title":"Macrophage diversity in cancer dissemination and metastasis","authors":"Alberto Mantovani, Federica Marchesi, Diletta Di Mitri, Cecilia Garlanda","doi":"10.1038/s41423-024-01216-z","DOIUrl":"10.1038/s41423-024-01216-z","url":null,"abstract":"Invasion and metastasis are hallmarks of cancer. In addition to the well-recognized hematogenous and lymphatic pathways of metastasis, cancer cell dissemination can occur via the transcoelomic and perineural routes, which are typical of ovarian and pancreatic cancer, respectively. Macrophages are a universal major component of the tumor microenvironment and, in established tumors, promote growth and dissemination to secondary sites. Here, we review the role of tumor-associated macrophages (TAMs) in cancer cell dissemination and metastasis, emphasizing the diversity of myeloid cells in different tissue contexts (lungs, liver, brain, bone, peritoneal cavity, nerves). The generally used models of lung metastasis fail to capture the diversity of pathways and tissue microenvironments. A better understanding of TAM diversity in different tissue contexts may pave the way for tailored diagnostic and therapeutic approaches.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 11","pages":"1201-1214"},"PeriodicalIF":21.8,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01216-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of CD8+ T cells by lipid metabolism in cancer progression 癌症进展过程中脂质代谢对 CD8+ T 细胞的调控。
IF 21.8 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-14 DOI: 10.1038/s41423-024-01224-z
Yong Tang, Ziqing Chen, Qianying Zuo, Yibin Kang
Dysregulation of lipid metabolism is a key characteristic of the tumor microenvironment, where tumor cells utilize lipids for proliferation, survival, metastasis, and evasion of immune surveillance. Lipid metabolism has become a critical regulator of CD8+ T-cell-mediated antitumor immunity, with excess lipids in the tumor microenvironment impeding CD8+ T-cell activities. Considering the limited efficacy of immunotherapy in many solid tumors, targeting lipid metabolism to enhance CD8+ T-cell effector functions could significantly improve immunotherapy outcomes. In this review, we examine recent findings on how lipid metabolic processes, including lipid uptake, synthesis, and oxidation, regulate CD8+ T cells within tumors. We also assessed the impact of different lipids on CD8+ T-cell-mediated antitumor immunity, with a particular focus on how lipid metabolism affects mitochondrial function in tumor-infiltrating CD8+ T cells. Furthermore, as cancer is a systemic disease, we examined systemic factors linking lipid metabolism to CD8+ T-cell effector function. Finally, we summarize current therapeutic approaches that target lipid metabolism to increase antitumor immunity and enhance immunotherapy. Understanding the molecular and functional interplay between lipid metabolism and CD8+ T cells offers promising therapeutic opportunities for cancer treatment.
脂质代谢失调是肿瘤微环境的一个主要特征,肿瘤细胞利用脂质进行增殖、生存、转移和逃避免疫监视。脂质代谢已成为 CD8+ T 细胞介导的抗肿瘤免疫的关键调节因子,肿瘤微环境中过量的脂质会阻碍 CD8+ T 细胞的活动。考虑到许多实体瘤的免疫疗法疗效有限,以脂质代谢为靶点增强 CD8+ T 细胞效应功能可显著改善免疫疗法的疗效。在这篇综述中,我们研究了有关脂质代谢过程(包括脂质摄取、合成和氧化)如何调控肿瘤内 CD8+ T 细胞的最新发现。我们还评估了不同脂质对 CD8+ T 细胞介导的抗肿瘤免疫的影响,尤其关注脂质代谢如何影响肿瘤浸润 CD8+ T 细胞的线粒体功能。此外,由于癌症是一种全身性疾病,我们研究了将脂质代谢与 CD8+ T 细胞效应功能联系起来的全身性因素。最后,我们总结了目前针对脂质代谢的治疗方法,以提高抗肿瘤免疫力和增强免疫疗法。了解脂质代谢与 CD8+ T 细胞之间的分子和功能相互作用为癌症治疗提供了大有希望的治疗机会。
{"title":"Regulation of CD8+ T cells by lipid metabolism in cancer progression","authors":"Yong Tang, Ziqing Chen, Qianying Zuo, Yibin Kang","doi":"10.1038/s41423-024-01224-z","DOIUrl":"10.1038/s41423-024-01224-z","url":null,"abstract":"Dysregulation of lipid metabolism is a key characteristic of the tumor microenvironment, where tumor cells utilize lipids for proliferation, survival, metastasis, and evasion of immune surveillance. Lipid metabolism has become a critical regulator of CD8+ T-cell-mediated antitumor immunity, with excess lipids in the tumor microenvironment impeding CD8+ T-cell activities. Considering the limited efficacy of immunotherapy in many solid tumors, targeting lipid metabolism to enhance CD8+ T-cell effector functions could significantly improve immunotherapy outcomes. In this review, we examine recent findings on how lipid metabolic processes, including lipid uptake, synthesis, and oxidation, regulate CD8+ T cells within tumors. We also assessed the impact of different lipids on CD8+ T-cell-mediated antitumor immunity, with a particular focus on how lipid metabolism affects mitochondrial function in tumor-infiltrating CD8+ T cells. Furthermore, as cancer is a systemic disease, we examined systemic factors linking lipid metabolism to CD8+ T-cell effector function. Finally, we summarize current therapeutic approaches that target lipid metabolism to increase antitumor immunity and enhance immunotherapy. Understanding the molecular and functional interplay between lipid metabolism and CD8+ T cells offers promising therapeutic opportunities for cancer treatment.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 11","pages":"1215-1230"},"PeriodicalIF":21.8,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01224-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silencing of SIRPα enhances the antitumor efficacy of CAR-M in solid tumors 沉默 SIRPα 可增强 CAR-M 在实体瘤中的抗肿瘤疗效。
IF 21.8 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-08 DOI: 10.1038/s41423-024-01220-3
Han Zhang, Yi Huo, Wenjing Zheng, Peng Li, Hui Li, Lingling Zhang, Longqi Sa, Yang He, Zihao Zhao, Changhong Shi, Lequn Shan, Angang Yang, Tao Wang
The potential of macrophage-mediated phagocytosis as a cancer treatment is promising. Blocking the CD47–SIRPα interaction with a CD47-specific antibody significantly enhances macrophage phagocytosis. However, concerns regarding their toxicity to nontumor cells remain substantial. Here, we engineered chimeric antigen receptor macrophages (CAR-Ms) by fusing a humanized single-chain variable fragment with FcγRIIa and integrating short hairpin RNA to silence SIRPα, thereby disrupting the CD47–SIRPα signaling pathway. These modified CAR-shSIRPα-M cells exhibited an M1-like phenotype, superior phagocytic function, substantial cytotoxic effects on HER2-positive tumor cells, and the ability to eliminate patient-derived organoids. In vivo, CAR-M cells significantly inhibited tumor growth and prolonged survival in tumor-bearing mice. Notably, CAR-shSIRPα-M cells enhanced cytotoxic T-cell infiltration into tumors, thereby enhancing the antitumor response in both the humanized immune system mouse model and immunocompetent mice. Mechanistically, SIRPα inhibition activated inflammatory pathways and the cGAS-STING signaling cascade in CAR-M cells, leading to increased production of proinflammatory cytokines, reactive oxygen species, and nitric oxide, thereby enhancing their antitumor effects. These findings underscore the potential of SIRPα inhibition as a novel strategy to increase the antitumor efficacy of CAR-M cells in cancer immunotherapy, particularly against solid tumors.
巨噬细胞介导的吞噬作用作为癌症治疗手段的潜力令人期待。用CD47特异性抗体阻断CD47-SIRPα相互作用可显著增强巨噬细胞的吞噬能力。然而,它们对非肿瘤细胞的毒性仍然令人担忧。在这里,我们通过将人源化单链可变片段与 FcγRIIa 融合并整合短发夹 RNA 来抑制 SIRPα,从而破坏 CD47-SIRPα 信号通路,设计出嵌合抗原受体巨噬细胞(CAR-Ms)。这些经过修饰的CAR-shSIRPα-M细胞表现出M1样表型、卓越的吞噬功能、对HER2阳性肿瘤细胞的巨大细胞毒性作用以及消除患者衍生器官组织的能力。在体内,CAR-M 细胞能显著抑制肿瘤生长,延长肿瘤小鼠的存活时间。值得注意的是,CAR-shSIRPα-M 细胞增强了细胞毒性 T 细胞对肿瘤的浸润,从而增强了人源化免疫系统小鼠模型和免疫功能健全小鼠的抗肿瘤反应。从机理上讲,SIRPα抑制激活了CAR-M细胞的炎症通路和cGAS-STING信号级联,导致促炎细胞因子、活性氧和一氧化氮的产生增加,从而增强了它们的抗肿瘤作用。这些发现强调了抑制 SIRPα 作为一种新策略的潜力,可提高 CAR-M 细胞在癌症免疫疗法中的抗肿瘤疗效,尤其是对实体瘤的疗效。
{"title":"Silencing of SIRPα enhances the antitumor efficacy of CAR-M in solid tumors","authors":"Han Zhang, Yi Huo, Wenjing Zheng, Peng Li, Hui Li, Lingling Zhang, Longqi Sa, Yang He, Zihao Zhao, Changhong Shi, Lequn Shan, Angang Yang, Tao Wang","doi":"10.1038/s41423-024-01220-3","DOIUrl":"10.1038/s41423-024-01220-3","url":null,"abstract":"The potential of macrophage-mediated phagocytosis as a cancer treatment is promising. Blocking the CD47–SIRPα interaction with a CD47-specific antibody significantly enhances macrophage phagocytosis. However, concerns regarding their toxicity to nontumor cells remain substantial. Here, we engineered chimeric antigen receptor macrophages (CAR-Ms) by fusing a humanized single-chain variable fragment with FcγRIIa and integrating short hairpin RNA to silence SIRPα, thereby disrupting the CD47–SIRPα signaling pathway. These modified CAR-shSIRPα-M cells exhibited an M1-like phenotype, superior phagocytic function, substantial cytotoxic effects on HER2-positive tumor cells, and the ability to eliminate patient-derived organoids. In vivo, CAR-M cells significantly inhibited tumor growth and prolonged survival in tumor-bearing mice. Notably, CAR-shSIRPα-M cells enhanced cytotoxic T-cell infiltration into tumors, thereby enhancing the antitumor response in both the humanized immune system mouse model and immunocompetent mice. Mechanistically, SIRPα inhibition activated inflammatory pathways and the cGAS-STING signaling cascade in CAR-M cells, leading to increased production of proinflammatory cytokines, reactive oxygen species, and nitric oxide, thereby enhancing their antitumor effects. These findings underscore the potential of SIRPα inhibition as a novel strategy to increase the antitumor efficacy of CAR-M cells in cancer immunotherapy, particularly against solid tumors.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 11","pages":"1335-1349"},"PeriodicalIF":21.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01220-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The TET3 inflammasome senses unique long HSV-1 proteins for virus particle budding from the nucleus TET3 炎症体感知独特的 HSV-1 长蛋白,以便病毒粒子从细胞核出芽。
IF 21.8 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-08 DOI: 10.1038/s41423-024-01221-2
Qiannv Liu, Weitao Li, Yan Qian, Chunlei Wang, Chun Kong, Mengqian Li, Liangliang Sun, Lang Sun, Yanli Pang, Changtao Jiang, Shuo Wang, Pengyan Xia
Inflammasomes play important roles in resisting infections caused by various pathogens. HSV-1 is a highly contagious virus among humans. The process by which HSV-1 particles bud from the nucleus is unique to herpes viruses, but the specific mechanism is still unclear. Here, we screened genes involved in HSV-1 replication. We found that TET3 plays an essential role in HSV-1 infection. TET3 recognizes the UL proteins of HSV-1 and, upon activation, can directly bind to caspase-1 to activate an ASC-independent inflammasome in the nucleus. The subsequent cleavage of GSDMD in the nucleus is crucial for the budding of HSV-1 particles from the nucleus. Inhibiting the perforation ability of GSDMD on the nuclear membrane can significantly reduce the maturation and spread of HSV-1. Our results may provide a new approach for the treatment of HSV-1 in the future.
炎症体在抵抗各种病原体感染方面发挥着重要作用。HSV-1 是一种在人类中具有高度传染性的病毒。HSV-1 颗粒从细胞核中萌发的过程是疱疹病毒所独有的,但具体机制尚不清楚。在这里,我们筛选了参与 HSV-1 复制的基因。我们发现 TET3 在 HSV-1 感染中扮演着重要角色。TET3能识别HSV-1的UL蛋白,激活后可直接与caspase-1结合,激活细胞核中不依赖于ASC的炎性体。随后,GSDMD 在细胞核中的裂解对 HSV-1 颗粒从细胞核中出芽至关重要。抑制 GSDMD 在核膜上的穿孔能力可以显著减少 HSV-1 的成熟和传播。我们的研究结果可能会为未来治疗HSV-1提供一种新方法。
{"title":"The TET3 inflammasome senses unique long HSV-1 proteins for virus particle budding from the nucleus","authors":"Qiannv Liu, Weitao Li, Yan Qian, Chunlei Wang, Chun Kong, Mengqian Li, Liangliang Sun, Lang Sun, Yanli Pang, Changtao Jiang, Shuo Wang, Pengyan Xia","doi":"10.1038/s41423-024-01221-2","DOIUrl":"10.1038/s41423-024-01221-2","url":null,"abstract":"Inflammasomes play important roles in resisting infections caused by various pathogens. HSV-1 is a highly contagious virus among humans. The process by which HSV-1 particles bud from the nucleus is unique to herpes viruses, but the specific mechanism is still unclear. Here, we screened genes involved in HSV-1 replication. We found that TET3 plays an essential role in HSV-1 infection. TET3 recognizes the UL proteins of HSV-1 and, upon activation, can directly bind to caspase-1 to activate an ASC-independent inflammasome in the nucleus. The subsequent cleavage of GSDMD in the nucleus is crucial for the budding of HSV-1 particles from the nucleus. Inhibiting the perforation ability of GSDMD on the nuclear membrane can significantly reduce the maturation and spread of HSV-1. Our results may provide a new approach for the treatment of HSV-1 in the future.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 11","pages":"1322-1334"},"PeriodicalIF":21.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells 17 型免疫:对肠道平衡和肠道刺激 T 细胞驱动的自身免疫发病机制的新认识。
IF 21.8 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-08 DOI: 10.1038/s41423-024-01218-x
Daiya Ohara, Yusuke Takeuchi, Keiji Hirota
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
先天性免疫细胞和适应性免疫细胞中的 IL-23 信号通路对于协调 17 型免疫至关重要,这种免疫的特点是分泌 IL-17、IL-22 和 GM-CSF 等标志性细胞因子。这些促炎介质在维持肠道免疫平衡和粘膜宿主防御方面发挥着不可或缺的作用,但它们的参与也与慢性炎症性疾病(如炎症性肠病和自身免疫)的发病机制有关。然而,17 型免疫对各种炎症模型的影响是复杂的。本综述全面概述了这些细胞因子在维持肠道稳态和扰乱肠道屏障完整性方面的多方面作用,从而导致各种肠道感染和结肠炎模型中的急性和慢性炎症。此外,这篇综述还重点探讨了自身免疫性疾病中与多个器官相互关联的 17 型免疫,特别强调了自身免疫性关节炎和由肠道微环境中的 T 细胞引发的神经炎症的发病机制。
{"title":"Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells","authors":"Daiya Ohara, Yusuke Takeuchi, Keiji Hirota","doi":"10.1038/s41423-024-01218-x","DOIUrl":"10.1038/s41423-024-01218-x","url":null,"abstract":"The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 11","pages":"1183-1200"},"PeriodicalIF":21.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01218-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Fatty acid metabolism constrains Th9 cell differentiation and antitumor immunity via the modulation of retinoic acid receptor signaling 作者更正:脂肪酸代谢通过调节视黄酸受体信号制约 Th9 细胞分化和抗肿瘤免疫力
IF 21.8 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-10-08 DOI: 10.1038/s41423-024-01223-0
Takahiro Nakajima, Toshio Kanno, Yuki Ueda, Keisuke Miyako, Takeru Endo, Souta Yoshida, Satoru Yokoyama, Hikari K. Asou, Kazuko Yamada, Kazutaka Ikeda, Yosuke Togashi, Yusuke Endo
{"title":"Author Correction: Fatty acid metabolism constrains Th9 cell differentiation and antitumor immunity via the modulation of retinoic acid receptor signaling","authors":"Takahiro Nakajima, Toshio Kanno, Yuki Ueda, Keisuke Miyako, Takeru Endo, Souta Yoshida, Satoru Yokoyama, Hikari K. Asou, Kazuko Yamada, Kazutaka Ikeda, Yosuke Togashi, Yusuke Endo","doi":"10.1038/s41423-024-01223-0","DOIUrl":"10.1038/s41423-024-01223-0","url":null,"abstract":"","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 11","pages":"1350-1350"},"PeriodicalIF":21.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41423-024-01223-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MLKL-mediated endothelial necroptosis drives vascular damage and mortality in systemic inflammatory response syndrome MLKL 介导的内皮坏死促使全身炎症反应综合征的血管损伤和死亡。
IF 21.8 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-09-30 DOI: 10.1038/s41423-024-01217-y
Xiaoxia Wu, Xiaoming Zhao, Fang Li, Yang Wang, Yangjing Ou, Haiwei Zhang, Xiaoming Li, Xuanhui Wu, Lingxia Wang, Ming Li, Yue Zhang, Jianling Liu, Mingyan Xing, Han Liu, Yongchang Tan, Yangyang Wang, Yangyang Xie, Hanwen Zhang, Yan Luo, Hong Li, Jing Wang, Liming Sun, Yu Li, Haibing Zhang
The hypersecretion of cytokines triggers life-threatening systemic inflammatory response syndrome (SIRS), leading to multiple organ dysfunction syndrome (MODS) and mortality. Although both coagulopathy and necroptosis have been identified as important factors in the pathogenesis of SIRS, the specific cell types that undergo necroptosis and the interrelationships between coagulopathy and necroptosis remain unclear. In this study, we utilized visualization analysis via intravital microscopy to demonstrate that both anticoagulant heparin and nonanticoagulant heparin (NAH) pretreatment protect mice against TNF-α-induced mortality in SIRS. Moreover, the deletion of Mlkl or Ripk3 resulted in decreased coagulation and reduced mortality in TNF-α-induced SIRS. These findings suggest that necroptosis plays a key role upstream of coagulation in SIRS-related mortality. Furthermore, using a genetic lineage tracing mouse model (Tie2-Cre;Rosa26-tdT), we tracked endothelial cells (ECs) and verified that EC necroptosis is responsible for the vascular damage observed in TNF-α-treated mice. Importantly, Mlkl deletion in vascular ECs in mice had a similar protective effect against lethal SIRS by blocking EC necroptosis to protect the integrity of the endothelium. Collectively, our findings demonstrated that RIPK3–MLKL-dependent necroptosis disrupted vascular integrity, resulting in coagulopathy and multiorgan failure, eventually leading to mortality in SIRS patients. These results highlight the importance of targeting vascular EC necroptosis for the development of effective treatments for SIRS patients.
细胞因子分泌过多会引发危及生命的全身炎症反应综合征(SIRS),导致多器官功能障碍综合征(MODS)和死亡。虽然凝血病变和坏死都被认为是 SIRS 发病机制中的重要因素,但发生坏死的特定细胞类型以及凝血病变和坏死之间的相互关系仍不清楚。在本研究中,我们利用体视显微镜进行了可视化分析,证明抗凝肝素和非抗凝肝素(NAH)预处理都能保护小鼠免受 TNF-α 诱导的 SIRS 死亡率的影响。此外,在 TNF-α 诱导的 SIRS 中,Mlkl 或 Ripk3 的缺失导致凝血功能下降,死亡率降低。这些研究结果表明,在与 SIRS 相关的死亡率中,坏死蛋白在凝血的上游起着关键作用。此外,我们利用遗传系谱追踪小鼠模型(Tie2-Cre;Rosa26-tdT)追踪了内皮细胞(ECs),并验证了EC坏死是 TNF-α 处理小鼠血管损伤的原因。重要的是,小鼠血管内皮细胞中的 Mlkl 基因缺失通过阻断内皮细胞坏死以保护内皮的完整性,对致命的 SIRS 具有类似的保护作用。总之,我们的研究结果表明,RIPK3-MLKL 依赖性坏死破坏了血管完整性,导致凝血功能障碍和多器官功能衰竭,最终导致 SIRS 患者死亡。这些结果凸显了针对血管内皮细胞坏死开发有效治疗 SIRS 患者方法的重要性。
{"title":"MLKL-mediated endothelial necroptosis drives vascular damage and mortality in systemic inflammatory response syndrome","authors":"Xiaoxia Wu, Xiaoming Zhao, Fang Li, Yang Wang, Yangjing Ou, Haiwei Zhang, Xiaoming Li, Xuanhui Wu, Lingxia Wang, Ming Li, Yue Zhang, Jianling Liu, Mingyan Xing, Han Liu, Yongchang Tan, Yangyang Wang, Yangyang Xie, Hanwen Zhang, Yan Luo, Hong Li, Jing Wang, Liming Sun, Yu Li, Haibing Zhang","doi":"10.1038/s41423-024-01217-y","DOIUrl":"10.1038/s41423-024-01217-y","url":null,"abstract":"The hypersecretion of cytokines triggers life-threatening systemic inflammatory response syndrome (SIRS), leading to multiple organ dysfunction syndrome (MODS) and mortality. Although both coagulopathy and necroptosis have been identified as important factors in the pathogenesis of SIRS, the specific cell types that undergo necroptosis and the interrelationships between coagulopathy and necroptosis remain unclear. In this study, we utilized visualization analysis via intravital microscopy to demonstrate that both anticoagulant heparin and nonanticoagulant heparin (NAH) pretreatment protect mice against TNF-α-induced mortality in SIRS. Moreover, the deletion of Mlkl or Ripk3 resulted in decreased coagulation and reduced mortality in TNF-α-induced SIRS. These findings suggest that necroptosis plays a key role upstream of coagulation in SIRS-related mortality. Furthermore, using a genetic lineage tracing mouse model (Tie2-Cre;Rosa26-tdT), we tracked endothelial cells (ECs) and verified that EC necroptosis is responsible for the vascular damage observed in TNF-α-treated mice. Importantly, Mlkl deletion in vascular ECs in mice had a similar protective effect against lethal SIRS by blocking EC necroptosis to protect the integrity of the endothelium. Collectively, our findings demonstrated that RIPK3–MLKL-dependent necroptosis disrupted vascular integrity, resulting in coagulopathy and multiorgan failure, eventually leading to mortality in SIRS patients. These results highlight the importance of targeting vascular EC necroptosis for the development of effective treatments for SIRS patients.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 11","pages":"1309-1321"},"PeriodicalIF":21.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hepatocellular carcinoma-specific epigenetic checkpoints bidirectionally regulate the antitumor immunity of CD4 + T cells 肝细胞癌特异性表观遗传检查点双向调节 CD4 + T 细胞的抗肿瘤免疫力
IF 21.8 1区 医学 Q1 IMMUNOLOGY Pub Date : 2024-09-19 DOI: 10.1038/s41423-024-01215-0
Shuai Wang, Lijun Meng, Nan Xu, Huan Chen, Zhaofeng Xiao, Di Lu, Xiaohui Fan, Limin Xia, Jun Chen, Shusen Zheng, Qiang Wei, Xuyong Wei, Xiao Xu
Hepatocellular carcinoma (HCC) is a highly malignant tumor with significant global health implications. The role of CD4+ T cells, particularly conventional CD4+ T cells (Tconvs), in HCC progression remains unexplored. Furthermore, epigenetic factors are crucial in immune regulation, yet their specific role in HCC-infiltrating Tconv cells remains elusive. This study elucidates the role of MATR3, an epigenetic regulator, in modulating Tconv activity and immune evasion within the HCC microenvironment. Reanalysis of the scRNA-seq data revealed that early activation of CD4+ T cells is crucial for establishing an antitumor immune response. In vivo and in vitro experiments revealed that Tconv enhances cDC1-induced CD8+ T-cell activation. Screening identified MATR3 as a critical regulator of Tconv function, which is necessary for antitumour activity but harmful when overexpressed. Excessive MATR3 expression exacerbates Tconv exhaustion and impairs function by recruiting the SWI/SNF complex to relax chromatin in the TOX promoter region, leading to aberrant transcriptional changes. In summary, MATR3 is an HCC-specific epigenetic checkpoint that bidirectionally regulates Tconv antitumour immunity, suggesting new therapeutic strategies targeting epigenetic regulators to enhance antitumour immunity in HCC.
肝细胞癌(HCC)是一种对全球健康有重大影响的高度恶性肿瘤。CD4+ T细胞,尤其是常规CD4+ T细胞(Tconvs)在HCC进展中的作用仍未得到研究。此外,表观遗传因子在免疫调节中至关重要,但它们在 HCC 浸润的 Tconv 细胞中的具体作用仍不明确。本研究阐明了表观遗传调节因子 MATR3 在 HCC 微环境中调节 Tconv 活性和免疫逃避的作用。对 scRNA-seq 数据的重新分析表明,CD4+ T 细胞的早期激活对于建立抗肿瘤免疫反应至关重要。体内和体外实验显示,Tconv能增强cDC1诱导的CD8+ T细胞活化。筛选发现 MATR3 是 Tconv 功能的关键调节因子,它是抗肿瘤活性所必需的,但过度表达则有害。MATR3 的过度表达会加剧 Tconv 的衰竭,并通过招募 SWI/SNF 复合物松弛 TOX 启动子区域的染色质来损害其功能,从而导致异常的转录变化。总之,MATR3是一种HCC特异性表观遗传检查点,它能双向调节Tconv的抗肿瘤免疫功能,这提示了针对表观遗传调节因子的新治疗策略,以增强HCC的抗肿瘤免疫功能。
{"title":"Hepatocellular carcinoma-specific epigenetic checkpoints bidirectionally regulate the antitumor immunity of CD4 + T cells","authors":"Shuai Wang, Lijun Meng, Nan Xu, Huan Chen, Zhaofeng Xiao, Di Lu, Xiaohui Fan, Limin Xia, Jun Chen, Shusen Zheng, Qiang Wei, Xuyong Wei, Xiao Xu","doi":"10.1038/s41423-024-01215-0","DOIUrl":"10.1038/s41423-024-01215-0","url":null,"abstract":"Hepatocellular carcinoma (HCC) is a highly malignant tumor with significant global health implications. The role of CD4+ T cells, particularly conventional CD4+ T cells (Tconvs), in HCC progression remains unexplored. Furthermore, epigenetic factors are crucial in immune regulation, yet their specific role in HCC-infiltrating Tconv cells remains elusive. This study elucidates the role of MATR3, an epigenetic regulator, in modulating Tconv activity and immune evasion within the HCC microenvironment. Reanalysis of the scRNA-seq data revealed that early activation of CD4+ T cells is crucial for establishing an antitumor immune response. In vivo and in vitro experiments revealed that Tconv enhances cDC1-induced CD8+ T-cell activation. Screening identified MATR3 as a critical regulator of Tconv function, which is necessary for antitumour activity but harmful when overexpressed. Excessive MATR3 expression exacerbates Tconv exhaustion and impairs function by recruiting the SWI/SNF complex to relax chromatin in the TOX promoter region, leading to aberrant transcriptional changes. In summary, MATR3 is an HCC-specific epigenetic checkpoint that bidirectionally regulates Tconv antitumour immunity, suggesting new therapeutic strategies targeting epigenetic regulators to enhance antitumour immunity in HCC.","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":"21 11","pages":"1296-1308"},"PeriodicalIF":21.8,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142255262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular &Molecular Immunology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1