Pub Date : 2024-12-03DOI: 10.1007/s00018-024-05495-7
Lina Abdelghany, Chanin Sillapachaiyaporn, Boris Zhivotovsky
Since the late 20th century, researchers have known that caspases are a pillar of cell death, particularly apoptosis. However, recent advances in cell biology have unraveled the multiple roles of caspases. These enzymes have an unconventional role in cell proliferation, differentiation, and invasion. As a result, caspase deregulation can fuel the fire of cancer, incite flames of inflammation, flare neurodegenerative disorders, and exacerbate skin pathologies. Several therapeutic approaches toward caspase inhibition have been investigated, but can caspase inhibitors harness the maladaptive effect of these proteases without causing significant side effects? A few studies have exploited caspase induction for cancer or adoptive cell therapies. Here, we provide a compelling picture of caspases, starting with their evolution, their polytomous roles beyond cell death, the flaws of their deregulation, and the merits of targeting them for therapeutic implications. Furthermore, we provide a deeper understanding of the evolution of caspase-related research up to the current era, pinpointing the role of caspases in cell survival and aiding in the development of effective caspase-targeted therapies.
{"title":"The concealed side of caspases: beyond a killer of cells.","authors":"Lina Abdelghany, Chanin Sillapachaiyaporn, Boris Zhivotovsky","doi":"10.1007/s00018-024-05495-7","DOIUrl":"10.1007/s00018-024-05495-7","url":null,"abstract":"<p><p>Since the late 20th century, researchers have known that caspases are a pillar of cell death, particularly apoptosis. However, recent advances in cell biology have unraveled the multiple roles of caspases. These enzymes have an unconventional role in cell proliferation, differentiation, and invasion. As a result, caspase deregulation can fuel the fire of cancer, incite flames of inflammation, flare neurodegenerative disorders, and exacerbate skin pathologies. Several therapeutic approaches toward caspase inhibition have been investigated, but can caspase inhibitors harness the maladaptive effect of these proteases without causing significant side effects? A few studies have exploited caspase induction for cancer or adoptive cell therapies. Here, we provide a compelling picture of caspases, starting with their evolution, their polytomous roles beyond cell death, the flaws of their deregulation, and the merits of targeting them for therapeutic implications. Furthermore, we provide a deeper understanding of the evolution of caspase-related research up to the current era, pinpointing the role of caspases in cell survival and aiding in the development of effective caspase-targeted therapies.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"474"},"PeriodicalIF":6.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615176/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1007/s00018-024-05500-z
Seppe Cambier, Fabio Beretta, Amber Nooyens, Mieke Metzemaekers, Noëmie Pörtner, Janne Kaes, Ana Carolina de Carvalho, Emanuela E Cortesi, Hanne Beeckmans, Charlotte Hooft, Mieke Gouwy, Sofie Struyf, Rafael E Marques, Laurens J Ceulemans, Joost Wauters, Bart M Vanaudenaerde, Robin Vos, Paul Proost
Elevated neutrophil counts in broncho-alveolar lavage (BAL) fluids of lung transplant (LTx) patients with chronic lung allograft dysfunction (CLAD) are associated with disease pathology. However, phenotypical characteristics of these cells remained largely unknown. Moreover, despite enhanced levels of the most potent human neutrophil-attracting chemokine CXCL8 in BAL fluid, no discrimination had been made between natural NH2-terminally truncated CXCL8 proteoforms, which exhibit up to 30-fold differences in biological activity. Therefore, we aimed to characterize the neutrophil maturation and activation state, as well as proteolytic activation of CXCL8, in BAL fluids and peripheral blood of LTx patients with CLAD or infection and stable LTx recipients. Flow cytometry and microscopy revealed a high diversity in neutrophil maturity in blood and BAL fluid, ranging from immature band to hypersegmented aged cells. In contrast, the activation phenotype of neutrophils in BAL fluid was remarkably homogeneous. The highly potentiated NH2-terminally truncated proteoforms CXCL8(6-77), CXCL8(8-77) and CXCL8(9-77), but also the partially inactivated CXCL8(10-77), were detected in BAL fluids of CLAD and infected LTx patients, as well as in COVID-19 and influenza patient cohorts by tandem mass spectrometry. Moreover, the most potent proteoform CXCL8(9-77) specifically correlated with the neutrophil counts in the LTx BAL fluids. Finally, rapid proteolysis of CXCL8 in BAL fluids could be inhibited by a combination of serine and metalloprotease inhibitors. In conclusion, proteolytic activation of CXCL8 promotes neutrophilic inflammation in LTx patients. Therefore, application of protease inhibitors may hold pharmacological promise for reducing excessive neutrophil-mediated inflammation and collateral tissue damage in the lungs.
{"title":"Heterogeneous neutrophils in lung transplantation and proteolytic CXCL8 activation in COVID-19, influenza and lung transplant patient lungs.","authors":"Seppe Cambier, Fabio Beretta, Amber Nooyens, Mieke Metzemaekers, Noëmie Pörtner, Janne Kaes, Ana Carolina de Carvalho, Emanuela E Cortesi, Hanne Beeckmans, Charlotte Hooft, Mieke Gouwy, Sofie Struyf, Rafael E Marques, Laurens J Ceulemans, Joost Wauters, Bart M Vanaudenaerde, Robin Vos, Paul Proost","doi":"10.1007/s00018-024-05500-z","DOIUrl":"10.1007/s00018-024-05500-z","url":null,"abstract":"<p><p>Elevated neutrophil counts in broncho-alveolar lavage (BAL) fluids of lung transplant (LTx) patients with chronic lung allograft dysfunction (CLAD) are associated with disease pathology. However, phenotypical characteristics of these cells remained largely unknown. Moreover, despite enhanced levels of the most potent human neutrophil-attracting chemokine CXCL8 in BAL fluid, no discrimination had been made between natural NH<sub>2</sub>-terminally truncated CXCL8 proteoforms, which exhibit up to 30-fold differences in biological activity. Therefore, we aimed to characterize the neutrophil maturation and activation state, as well as proteolytic activation of CXCL8, in BAL fluids and peripheral blood of LTx patients with CLAD or infection and stable LTx recipients. Flow cytometry and microscopy revealed a high diversity in neutrophil maturity in blood and BAL fluid, ranging from immature band to hypersegmented aged cells. In contrast, the activation phenotype of neutrophils in BAL fluid was remarkably homogeneous. The highly potentiated NH<sub>2</sub>-terminally truncated proteoforms CXCL8(6-77), CXCL8(8-77) and CXCL8(9-77), but also the partially inactivated CXCL8(10-77), were detected in BAL fluids of CLAD and infected LTx patients, as well as in COVID-19 and influenza patient cohorts by tandem mass spectrometry. Moreover, the most potent proteoform CXCL8(9-77) specifically correlated with the neutrophil counts in the LTx BAL fluids. Finally, rapid proteolysis of CXCL8 in BAL fluids could be inhibited by a combination of serine and metalloprotease inhibitors. In conclusion, proteolytic activation of CXCL8 promotes neutrophilic inflammation in LTx patients. Therefore, application of protease inhibitors may hold pharmacological promise for reducing excessive neutrophil-mediated inflammation and collateral tissue damage in the lungs.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"475"},"PeriodicalIF":6.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615237/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1007/s00018-024-05512-9
Alix Simon, Nadège Diedhiou, David Reiss, Marie Goret, Erwan Grandgirard, Jocelyn Laporte
X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM using the Mtm1-/y mouse model. We performed RNA-sequencing to identify a common mechanism in different skeletal muscles, and to explore potential phenotypes and compensatory mechanisms in the heart and the liver. The cardiac and hepatic function and structural integrity were assessed both in vivo and in vitro. Our findings revealed no defects in liver function or morphology. A disease signature common to several skeletal muscles highlighted dysregulation of muscle development, inflammation, cell adhesion and oxidative phosphorylation as key pathomechanisms. The heart displayed only mild functional alterations without obvious structural defects. Transcriptomic analyses revealed an opposite dysregulation of mitochondrial function, cell adhesion and beta integrin trafficking pathways in cardiac muscle compared to skeletal muscles. Despite this dysregulation, biochemical and cellular experiments demonstrated that these pathways were strongly affected in skeletal muscle and normal in cardiac muscle. Moreover, biomarkers reflecting the molecular activity of MTM1, such as PtdIns3P and dynamin 2 levels, were increased in the skeletal muscles but not in cardiac muscle. Overall, these data suggest a compensatory mechanism preserving cardiac function, pointing to potential therapeutic targets to cure the severe skeletal muscle defects in XLMTM.
{"title":"Potential compensatory mechanisms preserving cardiac function in myotubular myopathy.","authors":"Alix Simon, Nadège Diedhiou, David Reiss, Marie Goret, Erwan Grandgirard, Jocelyn Laporte","doi":"10.1007/s00018-024-05512-9","DOIUrl":"10.1007/s00018-024-05512-9","url":null,"abstract":"<p><p>X-Linked myotubular myopathy (XLMTM) is characterized by severe skeletal muscle weakness and reduced life expectancy. The pathomechanism and the impact of non-muscular defects affecting survival, such as liver dysfunction, are poorly understood. Here, we investigated organ-specific effects of XLMTM using the Mtm1<sup>-/y</sup> mouse model. We performed RNA-sequencing to identify a common mechanism in different skeletal muscles, and to explore potential phenotypes and compensatory mechanisms in the heart and the liver. The cardiac and hepatic function and structural integrity were assessed both in vivo and in vitro. Our findings revealed no defects in liver function or morphology. A disease signature common to several skeletal muscles highlighted dysregulation of muscle development, inflammation, cell adhesion and oxidative phosphorylation as key pathomechanisms. The heart displayed only mild functional alterations without obvious structural defects. Transcriptomic analyses revealed an opposite dysregulation of mitochondrial function, cell adhesion and beta integrin trafficking pathways in cardiac muscle compared to skeletal muscles. Despite this dysregulation, biochemical and cellular experiments demonstrated that these pathways were strongly affected in skeletal muscle and normal in cardiac muscle. Moreover, biomarkers reflecting the molecular activity of MTM1, such as PtdIns3P and dynamin 2 levels, were increased in the skeletal muscles but not in cardiac muscle. Overall, these data suggest a compensatory mechanism preserving cardiac function, pointing to potential therapeutic targets to cure the severe skeletal muscle defects in XLMTM.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"476"},"PeriodicalIF":6.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1007/s00018-024-05523-6
Quy-Hoai Nguyen, Hong-Nhung Tran, Yongsu Jeong
The thalamic reticular nucleus (TRN) is an anatomical and functional hub that modulates the flow of information between the cerebral cortex and thalamus, and its dysfunction has been linked to sensory disturbance and multiple behavioral disorders. Therefore, understanding how TRN neurons differentiate and establish connectivity is crucial to clarify the basics of TRN functions. Here, we showed that the regulatory cascade of the transcription factors Ascl1 and Isl1 promotes the fate of TRN neurons and concomitantly represses the fate of non-TRN prethalamic neurons. Furthermore, we found that this cascade is necessary for the correct development of the two main axonal connections, thalamo-cortical projections and prethalamo-thalamic projections. Notably, the disruption of prethalamo-thalamic axons can cause the pathfinding defects of thalamo-cortical axons in the thalamus. Finally, forced Isl1 expression can rescue disruption of cell fate specification and prethalamo-thalamic projections in in vitro primary cultures of Ascl1-deficient TRN neurons, indicating that Isl1 is an essential mediator of Ascl1 function in TRN development. Together, our findings provide insights into the molecular mechanisms for TRN neuron differentiation and circuit formation.
{"title":"Regulation of neuronal fate specification and connectivity of the thalamic reticular nucleus by the Ascl1-Isl1 transcriptional cascade.","authors":"Quy-Hoai Nguyen, Hong-Nhung Tran, Yongsu Jeong","doi":"10.1007/s00018-024-05523-6","DOIUrl":"10.1007/s00018-024-05523-6","url":null,"abstract":"<p><p>The thalamic reticular nucleus (TRN) is an anatomical and functional hub that modulates the flow of information between the cerebral cortex and thalamus, and its dysfunction has been linked to sensory disturbance and multiple behavioral disorders. Therefore, understanding how TRN neurons differentiate and establish connectivity is crucial to clarify the basics of TRN functions. Here, we showed that the regulatory cascade of the transcription factors Ascl1 and Isl1 promotes the fate of TRN neurons and concomitantly represses the fate of non-TRN prethalamic neurons. Furthermore, we found that this cascade is necessary for the correct development of the two main axonal connections, thalamo-cortical projections and prethalamo-thalamic projections. Notably, the disruption of prethalamo-thalamic axons can cause the pathfinding defects of thalamo-cortical axons in the thalamus. Finally, forced Isl1 expression can rescue disruption of cell fate specification and prethalamo-thalamic projections in in vitro primary cultures of Ascl1-deficient TRN neurons, indicating that Isl1 is an essential mediator of Ascl1 function in TRN development. Together, our findings provide insights into the molecular mechanisms for TRN neuron differentiation and circuit formation.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"478"},"PeriodicalIF":6.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1007/s00018-024-05522-7
Anna F Wiersema, Alyssa Rennenberg, Grace Smith, Suzy Varderidou-Minasian, R Jeroen Pasterkamp
Neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) affect millions of people worldwide. Curative treatment for these neurodegenerative disorders is still lacking and therefore a further understanding of their cause and progression is urgently needed. Extracellular vesicles (EVs) are nanosized vesicles loaded with cargo, such as proteins and miRNAs, that are released by cells and play an important role in intercellular communication. Intercellular communication through EVs can contribute to the spread of pathological proteins, such as amyloid-beta and tau, or cause pathogenesis through other mechanisms. In addition, EVs may serve as potential biomarkers for diagnosis and for monitoring disease progression. In this review, we summarize and discuss recent advances in our understanding of the role of EVs in AD, ALS an PD with an emphasis on dysregulated cargo in each disease. We highlight shared dysregulated cargo between these diseases, discuss underlying pathways, and outline future implications for therapeutic strategies.
{"title":"Shared and distinct changes in the molecular cargo of extracellular vesicles in different neurodegenerative diseases.","authors":"Anna F Wiersema, Alyssa Rennenberg, Grace Smith, Suzy Varderidou-Minasian, R Jeroen Pasterkamp","doi":"10.1007/s00018-024-05522-7","DOIUrl":"10.1007/s00018-024-05522-7","url":null,"abstract":"<p><p>Neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) affect millions of people worldwide. Curative treatment for these neurodegenerative disorders is still lacking and therefore a further understanding of their cause and progression is urgently needed. Extracellular vesicles (EVs) are nanosized vesicles loaded with cargo, such as proteins and miRNAs, that are released by cells and play an important role in intercellular communication. Intercellular communication through EVs can contribute to the spread of pathological proteins, such as amyloid-beta and tau, or cause pathogenesis through other mechanisms. In addition, EVs may serve as potential biomarkers for diagnosis and for monitoring disease progression. In this review, we summarize and discuss recent advances in our understanding of the role of EVs in AD, ALS an PD with an emphasis on dysregulated cargo in each disease. We highlight shared dysregulated cargo between these diseases, discuss underlying pathways, and outline future implications for therapeutic strategies.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"479"},"PeriodicalIF":6.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03DOI: 10.1007/s00018-024-05511-w
Liudmila Matskova, Shixing Zheng, Elena Kashuba, Ingemar Ernberg, Pontus Aspenström
MTSS1 is a ubiquitously expressed intracellular protein known mainly for its involvement in basic cellular processes, such as the regulation of actin organization and membrane architecture. MTSS1 has attracted much attention for its role as a tumor suppressor, being absent or expressed at reduced levels in advanced and metastasizing cancers. Occasionally, MTSS1 is, instead, upregulated in metastasis and, in some cases, even in primary tumors. In addition to these well-established functions of MTSS1 linked to its I-BAR- and WH2-domains, the protein is involved in modulating cell-cell contacts, cell differentiation, lipid metabolism, and vesicle formation and acts as a scaffolding protein for several E3 ubiquitin ligases. MTSS1 is classified as a housekeeping protein and is never mutated despite the several pathologic phenotypes linked to its dysregulation. Despite MTSS1's involvement in fundamental signaling pathways, MTSS1 gene ablation is not ubiquitously lethal, although it affects embryonic development. Due to MTSS1´s involvement in many seemingly disparate processes, with many cases lacking mechanistic explanations, we found it timely to review the recent data on MTSS1's role at the cellular level, as well as in health and disease, to direct further studies on this interesting multifunctional protein.
{"title":"MTSS1: beyond the integration of actin and membrane dynamics.","authors":"Liudmila Matskova, Shixing Zheng, Elena Kashuba, Ingemar Ernberg, Pontus Aspenström","doi":"10.1007/s00018-024-05511-w","DOIUrl":"10.1007/s00018-024-05511-w","url":null,"abstract":"<p><p>MTSS1 is a ubiquitously expressed intracellular protein known mainly for its involvement in basic cellular processes, such as the regulation of actin organization and membrane architecture. MTSS1 has attracted much attention for its role as a tumor suppressor, being absent or expressed at reduced levels in advanced and metastasizing cancers. Occasionally, MTSS1 is, instead, upregulated in metastasis and, in some cases, even in primary tumors. In addition to these well-established functions of MTSS1 linked to its I-BAR- and WH2-domains, the protein is involved in modulating cell-cell contacts, cell differentiation, lipid metabolism, and vesicle formation and acts as a scaffolding protein for several E3 ubiquitin ligases. MTSS1 is classified as a housekeeping protein and is never mutated despite the several pathologic phenotypes linked to its dysregulation. Despite MTSS1's involvement in fundamental signaling pathways, MTSS1 gene ablation is not ubiquitously lethal, although it affects embryonic development. Due to MTSS1´s involvement in many seemingly disparate processes, with many cases lacking mechanistic explanations, we found it timely to review the recent data on MTSS1's role at the cellular level, as well as in health and disease, to direct further studies on this interesting multifunctional protein.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"472"},"PeriodicalIF":6.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The accumulation of reactive oxygen species (ROS) significantly contributes to intervertebral disc degeneration (IDD), but the mechanisms behind this phenomenon remain unclear. This study revealed elevated ROS levels in the intervertebral discs (IVDs) of aged mice compared to those of younger mice. The local application of hydrogen peroxide (H2O2) near lumbar discs also induced ROS accumulation and IDD. Isobaric tags for relative and absolute quantitation (iTRAQ) analysis of discs from aged and H2O2-injected mice showed increased levels of YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) and matrix metallopeptidase 1/3/7/9 (MMP1/3/7/9), along with decreased levels of forkhead box O3 (FOXO3) and TIMP1 (tissue inhibitor of metalloproteinases 1). Our experiments indicated that in nucleus pulposus (NP) cells and young mouse IVDs that were not exposed to ROS, FOXO3 recruited histone acetyltransferase CBP (CREB binding protein) and mediator complex subunit 1 (Med1) to activate TIMP1 expression, which inhibited MMP activity and prevented disc degeneration. However, ROS exposure activated YTHDF2 and promoted the degradation of m6A-modified FOXO3 mRNA, impairing FOXO3's ability to activate TIMP1. This degradation exacerbated MMP activity and contributed to the degradation of the IVD extracellular matrix. Notably, administration of the YTHDF2 inhibitor DC-Y13-27 in older and H2O2-treated mice significantly enhanced FOXO3 and TIMP1 expression, reduced MMP activity, and mitigated IVD degeneration. Together, this study uncovers a novel ROS-regulated pathway in IDD, centered on the YTHDF2/FOXO3/TIMP1/MMPs axis, suggesting that targeting YTHDF2 may represent a promising therapeutic strategy for combating the progression of IDD.
{"title":"YTHDF2-dependent m<sup>6</sup>A modification of FOXO3 mRNA mediates TIMP1 expression and contributes to intervertebral disc degeneration following ROS stimulation.","authors":"Fei Wang, Yifeng Wang, Songou Zhang, Mengyang Pu, Ping Zhou","doi":"10.1007/s00018-024-05503-w","DOIUrl":"10.1007/s00018-024-05503-w","url":null,"abstract":"<p><p>The accumulation of reactive oxygen species (ROS) significantly contributes to intervertebral disc degeneration (IDD), but the mechanisms behind this phenomenon remain unclear. This study revealed elevated ROS levels in the intervertebral discs (IVDs) of aged mice compared to those of younger mice. The local application of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) near lumbar discs also induced ROS accumulation and IDD. Isobaric tags for relative and absolute quantitation (iTRAQ) analysis of discs from aged and H<sub>2</sub>O<sub>2</sub>-injected mice showed increased levels of YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) and matrix metallopeptidase 1/3/7/9 (MMP1/3/7/9), along with decreased levels of forkhead box O3 (FOXO3) and TIMP1 (tissue inhibitor of metalloproteinases 1). Our experiments indicated that in nucleus pulposus (NP) cells and young mouse IVDs that were not exposed to ROS, FOXO3 recruited histone acetyltransferase CBP (CREB binding protein) and mediator complex subunit 1 (Med1) to activate TIMP1 expression, which inhibited MMP activity and prevented disc degeneration. However, ROS exposure activated YTHDF2 and promoted the degradation of m<sup>6</sup>A-modified FOXO3 mRNA, impairing FOXO3's ability to activate TIMP1. This degradation exacerbated MMP activity and contributed to the degradation of the IVD extracellular matrix. Notably, administration of the YTHDF2 inhibitor DC-Y13-27 in older and H<sub>2</sub>O<sub>2</sub>-treated mice significantly enhanced FOXO3 and TIMP1 expression, reduced MMP activity, and mitigated IVD degeneration. Together, this study uncovers a novel ROS-regulated pathway in IDD, centered on the YTHDF2/FOXO3/TIMP1/MMPs axis, suggesting that targeting YTHDF2 may represent a promising therapeutic strategy for combating the progression of IDD.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"477"},"PeriodicalIF":6.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1007/s00018-024-05502-x
Debora Stefanova, Dominik Olszewski, Mirco Glitscher, Michael Bauer, Luca Ferrarese, Daria Wüst, Eberhard Hildt, Urs F Greber, Sabine Werner
The development of antiviral strategies is a key task of biomedical research, but broad-spectrum virus inhibitors are scarce. Here we show that fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors reduce infection of several cell types with DNA and RNA viruses by blocking early stages of infection, but not viral cell association. Unexpectedly, their antiviral activity was largely independent of FGFR kinase inhibition. RNA profiling showed upregulation of interferon response genes by FGFR inhibitors, but their expression did not correlate with the antiviral activity in infected cells. Using bioinformatics analysis of kinome data, targeted kinase assays, siRNA-mediated knock-down and pharmacological inhibition experiments, we show that blockade of Src family kinases, in particular Lyn, is mainly responsible for the antiviral activity of FGFR inhibitors. These results identify FGFR inhibitors as broad-spectrum antiviral agents and suggest the poorly studied Lyn kinase as a promising target for the treatment of viral infections.
{"title":"FGF receptor kinase inhibitors exhibit broad antiviral activity by targeting Src family kinases.","authors":"Debora Stefanova, Dominik Olszewski, Mirco Glitscher, Michael Bauer, Luca Ferrarese, Daria Wüst, Eberhard Hildt, Urs F Greber, Sabine Werner","doi":"10.1007/s00018-024-05502-x","DOIUrl":"10.1007/s00018-024-05502-x","url":null,"abstract":"<p><p>The development of antiviral strategies is a key task of biomedical research, but broad-spectrum virus inhibitors are scarce. Here we show that fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors reduce infection of several cell types with DNA and RNA viruses by blocking early stages of infection, but not viral cell association. Unexpectedly, their antiviral activity was largely independent of FGFR kinase inhibition. RNA profiling showed upregulation of interferon response genes by FGFR inhibitors, but their expression did not correlate with the antiviral activity in infected cells. Using bioinformatics analysis of kinome data, targeted kinase assays, siRNA-mediated knock-down and pharmacological inhibition experiments, we show that blockade of Src family kinases, in particular Lyn, is mainly responsible for the antiviral activity of FGFR inhibitors. These results identify FGFR inhibitors as broad-spectrum antiviral agents and suggest the poorly studied Lyn kinase as a promising target for the treatment of viral infections.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"471"},"PeriodicalIF":6.2,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11612106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1007/s00018-024-05518-3
Cunjie Li, Yuxin Xiao, Jieling Zhou, Shifeng Liu, Ligang Zhang, Xinran Song, Xinhua Guo, Qifang Song, Jianfu Zhao, Ning Deng
Onecut2 (OC2) plays a vital regulatory role in tumor growth, metastasis and angiogenesis. In this study, we report the regulatory role and specific molecular mechanism of OC2 in the apoptosis of hepatocellular carcinoma (HCC) cells. We found that OC2 knockout via the CRISPR/CAS9 system not only significantly inhibited the proliferation and angiogenesis of HCC cells but also significantly promoted apoptosis. The apoptosis rate of the OC2 knockout HCC cell line reached 30.514%. In a mouse model, the proliferation inhibition rate of tumor cells reached 98.8%. To explore the mechanism of apoptosis, ChIP-Seq and dual-luciferase reporter assays were carried out. The results showed that OC2 could directly bind to the promotor of SKP2 and regulate its expression. Moreover, downregulating the expression of OC2 and SKP2 could release p300, promote the acetylation of p53, increase the expression of p21 and p27, and promote the apoptosis of HCC cells. Moreover, the overexpression of OC2 or SKP2 in the knockout HCC cell line clearly inhibited the acetylation level of p53 and reduced cell apoptosis. This study revealed that OC2 could regulate the apoptosis of HCC cells through the SKP2/p53/p21 axis, which may provide some therapeutic targets for HCC in the clinic.
{"title":"Knockout of onecut2 inhibits proliferation and promotes apoptosis of tumor cells through SKP2-mediated p53 acetylation in hepatocellular carcinoma.","authors":"Cunjie Li, Yuxin Xiao, Jieling Zhou, Shifeng Liu, Ligang Zhang, Xinran Song, Xinhua Guo, Qifang Song, Jianfu Zhao, Ning Deng","doi":"10.1007/s00018-024-05518-3","DOIUrl":"10.1007/s00018-024-05518-3","url":null,"abstract":"<p><p>Onecut2 (OC2) plays a vital regulatory role in tumor growth, metastasis and angiogenesis. In this study, we report the regulatory role and specific molecular mechanism of OC2 in the apoptosis of hepatocellular carcinoma (HCC) cells. We found that OC2 knockout via the CRISPR/CAS9 system not only significantly inhibited the proliferation and angiogenesis of HCC cells but also significantly promoted apoptosis. The apoptosis rate of the OC2 knockout HCC cell line reached 30.514%. In a mouse model, the proliferation inhibition rate of tumor cells reached 98.8%. To explore the mechanism of apoptosis, ChIP-Seq and dual-luciferase reporter assays were carried out. The results showed that OC2 could directly bind to the promotor of SKP2 and regulate its expression. Moreover, downregulating the expression of OC2 and SKP2 could release p300, promote the acetylation of p53, increase the expression of p21 and p27, and promote the apoptosis of HCC cells. Moreover, the overexpression of OC2 or SKP2 in the knockout HCC cell line clearly inhibited the acetylation level of p53 and reduced cell apoptosis. This study revealed that OC2 could regulate the apoptosis of HCC cells through the SKP2/p53/p21 axis, which may provide some therapeutic targets for HCC in the clinic.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"469"},"PeriodicalIF":6.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604872/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Krüppel-like factor 4 (KLF4), a transcription factor, is involved in various biological processes. However, the role of KLF4 in regulating the intestinal epithelial barrier (IEB) in inflammatory bowel disease (IBD) and its mechanism have not been extensively studied.
Methods: KLF4 expression in IBD patients and colitis mice was analyzed using Gene Expression Omnibus(GEO) database, immunohistochemistry (IHC) and Western blot. The roles of KLF4 in IEB and colitis symptoms were verified in dextran sulfate sodium (DSS)-induced and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis model mice using an adenovirus carrying KLF4 shRNA (shKLF4-Adv). Furthermore, the influence of KLF4 on trans-epithelium electrical resistance (TEER), paracellular permeability, apical junction complex (AJC) protein expression and apoptosis was assessed in vitro and in vivo. MeRIP and RIP assays were used to verify the effects of m6A modification on KLF4 expression.
Results: KLF4 expression was significantly decreased in IBD patients and was negatively associated with inflammatory features. KLF4 deletion aggravated colitis symptoms and IEB injuries by reducing AJC protein expression and increasing apoptosis in mice with colitis. Furthermore, KLF4 transcriptionally regulated the expression of AJC proteins and inhibited apoptosis by reducing cellular ROS levels and proinflammatory cytokine expression. Moreover, we observed that METTL3/ALKBH5/YTHDF2-mediated m6A modification led to a decrease in KLF4 expression in Caco-2 cells. In addition, APTO-253, an inducer of KLF4, exhibited a synergistic effect with mesalazine on IEB function.
Conclusions: Our study demonstrated that KLF4 is a crucial regulator of IEB, suggesting that targeting KLF4 may be a promising therapeutic alternative for IBD.
{"title":"Downregulated KLF4, induced by m6A modification, aggravates intestinal barrier dysfunction in inflammatory bowel disease.","authors":"Xingchao Zhu, Jiayu Wang, Huan Zhang, Hongqin Yue, Jinghan Zhu, Juntao Li, Kun Wang, Kanger Shen, Kexi Yang, Xia Leng, Qinhua Xi, Tongguo Shi","doi":"10.1007/s00018-024-05514-7","DOIUrl":"10.1007/s00018-024-05514-7","url":null,"abstract":"<p><strong>Background: </strong>Krüppel-like factor 4 (KLF4), a transcription factor, is involved in various biological processes. However, the role of KLF4 in regulating the intestinal epithelial barrier (IEB) in inflammatory bowel disease (IBD) and its mechanism have not been extensively studied.</p><p><strong>Methods: </strong>KLF4 expression in IBD patients and colitis mice was analyzed using Gene Expression Omnibus(GEO) database, immunohistochemistry (IHC) and Western blot. The roles of KLF4 in IEB and colitis symptoms were verified in dextran sulfate sodium (DSS)-induced and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis model mice using an adenovirus carrying KLF4 shRNA (shKLF4-Adv). Furthermore, the influence of KLF4 on trans-epithelium electrical resistance (TEER), paracellular permeability, apical junction complex (AJC) protein expression and apoptosis was assessed in vitro and in vivo. MeRIP and RIP assays were used to verify the effects of m6A modification on KLF4 expression.</p><p><strong>Results: </strong>KLF4 expression was significantly decreased in IBD patients and was negatively associated with inflammatory features. KLF4 deletion aggravated colitis symptoms and IEB injuries by reducing AJC protein expression and increasing apoptosis in mice with colitis. Furthermore, KLF4 transcriptionally regulated the expression of AJC proteins and inhibited apoptosis by reducing cellular ROS levels and proinflammatory cytokine expression. Moreover, we observed that METTL3/ALKBH5/YTHDF2-mediated m6A modification led to a decrease in KLF4 expression in Caco-2 cells. In addition, APTO-253, an inducer of KLF4, exhibited a synergistic effect with mesalazine on IEB function.</p><p><strong>Conclusions: </strong>Our study demonstrated that KLF4 is a crucial regulator of IEB, suggesting that targeting KLF4 may be a promising therapeutic alternative for IBD.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"470"},"PeriodicalIF":6.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}