Pub Date : 2025-01-21DOI: 10.1007/s00018-024-05519-2
Alejandra Pulido-Saavedra, Henrique Nunes Pereira Oliva, Tiago Paiva Prudente, Razi Kitaneh, Eric J Nunes, Colleen Fogg, Melissa C Funaro, Jeremy Weleff, Anahita Bassir Nia, Gustavo A Angarita
The current opioid crisis has had an unprecedented public health impact. Approved medications for opioid use disorder (OUD) exist, yet their limitations indicate a need for innovative treatments. Limited preliminary clinical studies suggest specific psychedelics might aid OUD treatment, though most clinical evidence remains observational, with few controlled trials. This review aims to bridge the gap between preclinical findings and potential clinical applications, following PRISMA-ScR guidelines. Searches included MEDLINE, Embase, Scopus, and Web of Science, focusing on preclinical in vivo studies involving opioids and psychedelics in animals, excluding pain studies and those lacking control groups. Forty studies met criteria, covering both classic and non-classic psychedelics. Most studies showed that 18-methoxycoronaridine (18-MC), ibogaine, noribogaine, and ketamine could reduce opioid self-administration, alleviate withdrawal symptoms, and change conditioned place preference. However, seven studies (two on 2,5-dimethoxy-4-methylamphetamine (DOM), three on ibogaine, one on 18-MC, and one on ketamine) showed no improvement over controls. A methodological quality assessment rated most of the studies as having unclear quality. Interestingly, most preclinical studies are limited to iboga derivatives, which were effective, but these agents may have higher cardiovascular risk than other psychedelics under-explored to date. This review strengthens support for translational studies testing psychedelics as potential innovative targets for OUD. It also suggests clinical studies need to include a broader range of agents beyond iboga derivatives but can also explore several ongoing questions in the field, such as the mechanism of action behind the potential therapeutic effect, safety profiles, doses, and frequency of administrations needed.
目前的阿片类药物危机对公共卫生产生了前所未有的影响。阿片类药物使用障碍(OUD)的批准药物存在,但其局限性表明需要创新的治疗方法。有限的初步临床研究表明,特定的致幻剂可能有助于OUD的治疗,尽管大多数临床证据仍然是观察性的,很少有对照试验。本综述旨在根据PRISMA-ScR指南,弥合临床前发现和潜在临床应用之间的差距。检索包括MEDLINE, Embase, Scopus和Web of Science,重点是涉及阿片类药物和致幻剂的动物临床前体内研究,不包括疼痛研究和缺乏对照组的研究。40项研究符合标准,涵盖了经典和非经典迷幻药。大多数研究表明,18-甲氧基冠状苯胺(18-MC)、伊博格碱、去甲博格碱和氯胺酮可以减少阿片类药物的自我给药,减轻戒断症状,改变条件位置偏好。然而,7项研究(2项关于2,5-二甲氧基-4-甲基安非他明(DOM)的研究,3项关于伊博卡因的研究,1项关于18-甲基安非他明的研究,1项关于氯胺酮的研究)显示,与对照组相比,没有任何改善。一项方法学质量评估将大多数研究评为质量不明确。有趣的是,大多数临床前研究仅限于有效的伊博加衍生物,但这些药物可能比迄今为止尚未开发的其他致幻剂具有更高的心血管风险。这篇综述加强了对将致幻剂作为OUD潜在创新靶点的转化研究的支持。它还建议临床研究需要包括更广泛的iboga衍生物以外的药物,但也可以探索该领域的几个正在进行的问题,例如潜在治疗效果背后的作用机制、安全性、剂量和所需的给药频率。
{"title":"Effects of psychedelics on opioid use disorder: a scoping review of preclinical studies.","authors":"Alejandra Pulido-Saavedra, Henrique Nunes Pereira Oliva, Tiago Paiva Prudente, Razi Kitaneh, Eric J Nunes, Colleen Fogg, Melissa C Funaro, Jeremy Weleff, Anahita Bassir Nia, Gustavo A Angarita","doi":"10.1007/s00018-024-05519-2","DOIUrl":"https://doi.org/10.1007/s00018-024-05519-2","url":null,"abstract":"<p><p>The current opioid crisis has had an unprecedented public health impact. Approved medications for opioid use disorder (OUD) exist, yet their limitations indicate a need for innovative treatments. Limited preliminary clinical studies suggest specific psychedelics might aid OUD treatment, though most clinical evidence remains observational, with few controlled trials. This review aims to bridge the gap between preclinical findings and potential clinical applications, following PRISMA-ScR guidelines. Searches included MEDLINE, Embase, Scopus, and Web of Science, focusing on preclinical in vivo studies involving opioids and psychedelics in animals, excluding pain studies and those lacking control groups. Forty studies met criteria, covering both classic and non-classic psychedelics. Most studies showed that 18-methoxycoronaridine (18-MC), ibogaine, noribogaine, and ketamine could reduce opioid self-administration, alleviate withdrawal symptoms, and change conditioned place preference. However, seven studies (two on 2,5-dimethoxy-4-methylamphetamine (DOM), three on ibogaine, one on 18-MC, and one on ketamine) showed no improvement over controls. A methodological quality assessment rated most of the studies as having unclear quality. Interestingly, most preclinical studies are limited to iboga derivatives, which were effective, but these agents may have higher cardiovascular risk than other psychedelics under-explored to date. This review strengthens support for translational studies testing psychedelics as potential innovative targets for OUD. It also suggests clinical studies need to include a broader range of agents beyond iboga derivatives but can also explore several ongoing questions in the field, such as the mechanism of action behind the potential therapeutic effect, safety profiles, doses, and frequency of administrations needed.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"49"},"PeriodicalIF":6.2,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-18DOI: 10.1007/s00018-024-05571-y
Marta Montori-Grau, Emma Barroso, Javier Jurado-Aguilar, Mona Peyman, Walter Wahli, Xavier Palomer, Manuel Vázquez-Carrera
Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism. Human LHCN-M2 myotubes and skeletal muscle from wild-type and Gdf15-/- mice fed a standard (STD) or a high-fat (HFD) diet were subjected to a series of studies to investigate the involvement of lipids in nuclear GDF15 levels and the activation of the SMAD3 pathway. The saturated FA palmitate, but not the monounsaturated FA oleate, increased the expression of GDF15 in human myotubes and, unexpectedly, decreased its nuclear levels. This reduction was prevented by the nuclear export inhibitor leptomycin B. The decrease in nuclear GDF15 levels caused by palmitate was accompanied by increases in SMAD3 protein levels and in the expression of its target gene SERPINE1, which encodes plasminogen activator inhibitor 1 (PAI-1). HFD-fed Gdf15-/- mice displayed aggravated glucose intolerance compared to HFD-fed WT mice, with increased levels of SMAD3 and PAI-1 in the skeletal muscle. The increased PAI-1 levels in the skeletal muscle of HFD-fed Gdf15-/- mice were accompanied by a reduction in one of its targets, hepatocyte growth factor (HGF)α, a cytokine involved in glucose metabolism. Interestingly, PAI-1 acts as a ligand of signal transducer and activator of transcription 3 (STAT3) and the phosphorylation of this transcription factor was exacerbated in HFD-fed Gdf15-/- mice compared to HFD-fed WT mice. At the same time, the protein levels of insulin receptor substrate 1 (IRS-1) were reduced. These findings uncover a potential novel mechanism through which palmitate induces the SMAD3-PAI-1 pathway to promote insulin resistance in skeletal muscle by reducing nuclear GDF15 levels.
{"title":"Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.","authors":"Marta Montori-Grau, Emma Barroso, Javier Jurado-Aguilar, Mona Peyman, Walter Wahli, Xavier Palomer, Manuel Vázquez-Carrera","doi":"10.1007/s00018-024-05571-y","DOIUrl":"https://doi.org/10.1007/s00018-024-05571-y","url":null,"abstract":"<p><p>Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism. Human LHCN-M2 myotubes and skeletal muscle from wild-type and Gdf15<sup>-/-</sup> mice fed a standard (STD) or a high-fat (HFD) diet were subjected to a series of studies to investigate the involvement of lipids in nuclear GDF15 levels and the activation of the SMAD3 pathway. The saturated FA palmitate, but not the monounsaturated FA oleate, increased the expression of GDF15 in human myotubes and, unexpectedly, decreased its nuclear levels. This reduction was prevented by the nuclear export inhibitor leptomycin B. The decrease in nuclear GDF15 levels caused by palmitate was accompanied by increases in SMAD3 protein levels and in the expression of its target gene SERPINE1, which encodes plasminogen activator inhibitor 1 (PAI-1). HFD-fed Gdf15<sup>-/-</sup> mice displayed aggravated glucose intolerance compared to HFD-fed WT mice, with increased levels of SMAD3 and PAI-1 in the skeletal muscle. The increased PAI-1 levels in the skeletal muscle of HFD-fed Gdf15<sup>-/-</sup> mice were accompanied by a reduction in one of its targets, hepatocyte growth factor (HGF)α, a cytokine involved in glucose metabolism. Interestingly, PAI-1 acts as a ligand of signal transducer and activator of transcription 3 (STAT3) and the phosphorylation of this transcription factor was exacerbated in HFD-fed Gdf15<sup>-/-</sup> mice compared to HFD-fed WT mice. At the same time, the protein levels of insulin receptor substrate 1 (IRS-1) were reduced. These findings uncover a potential novel mechanism through which palmitate induces the SMAD3-PAI-1 pathway to promote insulin resistance in skeletal muscle by reducing nuclear GDF15 levels.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"43"},"PeriodicalIF":6.2,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-18DOI: 10.1007/s00018-024-05537-0
Yi Shi, Daniele M Gilkes
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance. HIF-1 and HIF-2 are well known and widely described. Although these proteins share a high degree of homology, HIF-1 and HIF-2 have non-redundant roles in cancer. In this review, we summarize the similarities and differences between HIF-1α and HIF-2α in their structure, expression, and DNA binding. We also discuss the canonical and non-canonical regulation of HIF-1α and HIF-2α under hypoxic and normal conditions. Finally, we outline recent strategies aimed at targeting HIF-1α and/or HIF-2α.
{"title":"HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects.","authors":"Yi Shi, Daniele M Gilkes","doi":"10.1007/s00018-024-05537-0","DOIUrl":"https://doi.org/10.1007/s00018-024-05537-0","url":null,"abstract":"<p><p>Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance. HIF-1 and HIF-2 are well known and widely described. Although these proteins share a high degree of homology, HIF-1 and HIF-2 have non-redundant roles in cancer. In this review, we summarize the similarities and differences between HIF-1α and HIF-2α in their structure, expression, and DNA binding. We also discuss the canonical and non-canonical regulation of HIF-1α and HIF-2α under hypoxic and normal conditions. Finally, we outline recent strategies aimed at targeting HIF-1α and/or HIF-2α.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"44"},"PeriodicalIF":6.2,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741981/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-12DOI: 10.1007/s00018-024-05556-x
Wanting Xu, Lei Dong, Ji Dai, Lu Zhong, Xiao Ouyang, Jiaqian Li, Gaoqing Feng, Huahua Wang, Xuan Liu, Liying Zhou, Qin Xia
Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.g., p62), and compartmentalization capacities (e.g., membrane structures). Mitochondria, the cellular hubs for respiration and metabolism, are implicated in tumorigenesis. In the subsequent sections, we thoroughly examine the mechanisms of mitochondrial quality control (MQC) in preserving mitochondrial homeostasis in human cells. Notably, we explored the relationships between mitochondrial dynamics (fusion and fission) and various MQC processes-including the UPS, mitochondrial proteases, and mitophagy-in the context of mitochondrial repair and degradation pathways. Finally, we assessed the potential of targeting MQC (including UPS, mitochondrial molecular chaperones, mitochondrial proteases, mitochondrial dynamics, mitophagy and mitochondrial biogenesis) as cancer therapeutic strategies. Understanding the mechanisms underlying mitochondrial homeostasis may offer novel insights for future cancer therapies.
{"title":"The interconnective role of the UPS and autophagy in the quality control of cancer mitochondria.","authors":"Wanting Xu, Lei Dong, Ji Dai, Lu Zhong, Xiao Ouyang, Jiaqian Li, Gaoqing Feng, Huahua Wang, Xuan Liu, Liying Zhou, Qin Xia","doi":"10.1007/s00018-024-05556-x","DOIUrl":"10.1007/s00018-024-05556-x","url":null,"abstract":"<p><p>Uncontrollable cancer cell growth is characterized by the maintenance of cellular homeostasis through the continuous accumulation of misfolded proteins and damaged organelles. This review delineates the roles of two complementary and synergistic degradation systems, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, in the degradation of misfolded proteins and damaged organelles for intracellular recycling. We emphasize the interconnected decision-making processes of degradation systems in maintaining cellular homeostasis, such as the biophysical state of substrates, receptor oligomerization potentials (e.g., p62), and compartmentalization capacities (e.g., membrane structures). Mitochondria, the cellular hubs for respiration and metabolism, are implicated in tumorigenesis. In the subsequent sections, we thoroughly examine the mechanisms of mitochondrial quality control (MQC) in preserving mitochondrial homeostasis in human cells. Notably, we explored the relationships between mitochondrial dynamics (fusion and fission) and various MQC processes-including the UPS, mitochondrial proteases, and mitophagy-in the context of mitochondrial repair and degradation pathways. Finally, we assessed the potential of targeting MQC (including UPS, mitochondrial molecular chaperones, mitochondrial proteases, mitochondrial dynamics, mitophagy and mitochondrial biogenesis) as cancer therapeutic strategies. Understanding the mechanisms underlying mitochondrial homeostasis may offer novel insights for future cancer therapies.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"42"},"PeriodicalIF":6.2,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-12DOI: 10.1007/s00018-024-05564-x
Rongfang Xie, Miaomiao Li, Xusheng Wang, Zhongjie Liu
Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation. Bone morphogenetic protein 4 (BMP4), members of the TGFβ family, has been implicated in regulating HF growth, coloration, and related cellular behaviors. Its role in directing Nestin-positive cells toward a melanocytic lineage has yet to be fully explored. In this study, mouse HF organoids were constructed and shown to be an ideal model for studying HF growth and development in vitro. Using this model as a basis, we demonstrated that BMP4 controls HF coloration as well as its length, number, and even size. Furthermore, Nestin-positive cells in the HF-especially those in the bulge region-differentiate into melanocytes, which produce the pigments that give HF its color under BMP4 stimulation. The resulting increase in pigmentation within the mouse HF organoids underscores that BMP4 has a major regulatory role in the formation of melanocytes from Nestin-positive stem cells. This research provides insights into the cellular mechanisms underlying hair pigmentation and suggests potential therapeutic applications for pigmentation disorders.
{"title":"BMP4 regulates differentiation of nestin-positive stem cells into melanocytes.","authors":"Rongfang Xie, Miaomiao Li, Xusheng Wang, Zhongjie Liu","doi":"10.1007/s00018-024-05564-x","DOIUrl":"10.1007/s00018-024-05564-x","url":null,"abstract":"<p><p>Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation. Bone morphogenetic protein 4 (BMP4), members of the TGFβ family, has been implicated in regulating HF growth, coloration, and related cellular behaviors. Its role in directing Nestin-positive cells toward a melanocytic lineage has yet to be fully explored. In this study, mouse HF organoids were constructed and shown to be an ideal model for studying HF growth and development in vitro. Using this model as a basis, we demonstrated that BMP4 controls HF coloration as well as its length, number, and even size. Furthermore, Nestin-positive cells in the HF-especially those in the bulge region-differentiate into melanocytes, which produce the pigments that give HF its color under BMP4 stimulation. The resulting increase in pigmentation within the mouse HF organoids underscores that BMP4 has a major regulatory role in the formation of melanocytes from Nestin-positive stem cells. This research provides insights into the cellular mechanisms underlying hair pigmentation and suggests potential therapeutic applications for pigmentation disorders.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"41"},"PeriodicalIF":6.2,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.
Methods: In this study, we aimed to replicate diabetic glucolipotoxic conditions by treating differentiated H9c2 cells with high glucose and free fatty acids. Additionally, a diabetic cardiomyopathy model was induced in mice through high-fat diets. Both in vitro and in vivo models were used to investigate the protective effects of liraglutide on cardiomyocytes and elucidate its underlying molecular mechanisms.
Results: Our findings indicate that liraglutide significantly reduces lipid droplet (LD) formation and myocardial fibrosis, as evidenced by decreased expression of fibrosis markers, including TGF-β1 and collagen types I and III. Liraglutide also enhanced AMP-activated protein kinase (AMPK) activation, which improved mitochondrial function, increased antioxidant gene expression, enhanced insulin signaling, and reduced oxidative stress.
Conclusions: These results demonstrate the potential therapeutic role of liraglutide in managing diabetes-related cardiac complications, offering a comprehensive approach to improving cardiac outcomes in patients with diabetes.
{"title":"The protective effects of liraglutide in reducing lipid droplets accumulation and myocardial fibrosis in diabetic cardiomyopathy.","authors":"Chien-Yin Kuo, Sing-Hua Tsou, Edy Kornelius, Kuei-Chuan Chan, Kai-Wei Chang, Jung-Chi Li, Chien-Ning Huang, Chih-Li Lin","doi":"10.1007/s00018-024-05558-9","DOIUrl":"10.1007/s00018-024-05558-9","url":null,"abstract":"<p><strong>Background: </strong>Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.</p><p><strong>Methods: </strong>In this study, we aimed to replicate diabetic glucolipotoxic conditions by treating differentiated H9c2 cells with high glucose and free fatty acids. Additionally, a diabetic cardiomyopathy model was induced in mice through high-fat diets. Both in vitro and in vivo models were used to investigate the protective effects of liraglutide on cardiomyocytes and elucidate its underlying molecular mechanisms.</p><p><strong>Results: </strong>Our findings indicate that liraglutide significantly reduces lipid droplet (LD) formation and myocardial fibrosis, as evidenced by decreased expression of fibrosis markers, including TGF-β1 and collagen types I and III. Liraglutide also enhanced AMP-activated protein kinase (AMPK) activation, which improved mitochondrial function, increased antioxidant gene expression, enhanced insulin signaling, and reduced oxidative stress.</p><p><strong>Conclusions: </strong>These results demonstrate the potential therapeutic role of liraglutide in managing diabetes-related cardiac complications, offering a comprehensive approach to improving cardiac outcomes in patients with diabetes.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"39"},"PeriodicalIF":6.2,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711727/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08DOI: 10.1007/s00018-024-05551-2
Zoé Durin, Aurore Layotte, Willy Morelle, Marine Houdou, Antoine Folcher, Dominique Legrand, Dirk Lefeber, Natalia Prevarskaya, Julia Von Blume, Valérie Cormier-Daire, François Foulquier
Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented. The emergence of CDG resulting from defects in ER/ Golgi homeostasis makes this even more difficult. SLC10A7 belongs to the SLC10 protein family, known as bile acid and steroid transport family, exhibiting a unique structure. It shows a ubiquitous expression and is linked to negative calcium regulation in cells. The mechanisms by which SLC10A7 deficiency leads to Golgi glycosylation abnormalities are unknown. The present study identifies major O-glycosylation defects in both SLC10A7 KO HAP1 cells and SLC10A7-CDG patient fibroblasts and reveals an increased ER and Golgi calcium contents. We also show that the abundance of COSMC and C1GALT1 is altered in SLC10A7-CDG patient cells, as well as the subcellular Golgi localization of the Ca2+-binding Cab45 protein. Finally, we demonstrate that supraphysiological manganese supplementation suppresses the deficient electrophoretic mobility of TGN46 by an aberrant transfer of GalNAc residues, and reveal COSMC Mn2+ sensitivity. These findings provide novel insights into the mechanisms of Golgi glycosylation defects in SLC10A7-deficient cells. They show that SLC10A7 is a key Golgi transmembrane protein maintaining the tight regulation of Ca2+ homeostasis in the ER and Golgi compartments, both essential for glycosylation.
聚糖被认为是许多细胞和生理功能的基础。先天性糖基化障碍(CDG)目前包括160多种亚型,其特征是多糖合成和/或加工缺陷。尽管CDG患者的数量不断增加,但由于我们对多糖合成的了解是碎片化的,治疗选择仍然非常有限。由内质网/高尔基体稳态缺陷引起的CDG的出现使这更加困难。SLC10A7属于SLC10蛋白家族,被称为胆汁酸和类固醇转运家族,具有独特的结构。它显示出普遍的表达,并与细胞中的负钙调节有关。SLC10A7缺陷导致高尔基糖基化异常的机制尚不清楚。本研究发现SLC10A7 KO HAP1细胞和SLC10A7- cdg患者成纤维细胞中存在主要的o糖基化缺陷,并显示内质网和高尔基钙含量增加。我们还发现,在SLC10A7-CDG患者细胞中,COSMC和C1GALT1的丰度以及Ca2+结合Cab45蛋白的亚细胞高尔基定位发生了变化。最后,我们证明了超生理锰补充通过GalNAc残基的异常转移抑制了TGN46的电泳迁移率缺陷,并揭示了COSMC Mn2+的敏感性。这些发现为slc10a7缺陷细胞中高尔基糖基化缺陷的机制提供了新的见解。他们发现SLC10A7是一种关键的高尔基跨膜蛋白,在内质网和高尔基区室中维持Ca2+稳态的严格调节,两者都是糖基化所必需的。
{"title":"SLC10A7 regulates O-GalNAc glycosylation and Ca<sup>2+</sup> homeostasis in the secretory pathway: insights into SLC10A7-CDG.","authors":"Zoé Durin, Aurore Layotte, Willy Morelle, Marine Houdou, Antoine Folcher, Dominique Legrand, Dirk Lefeber, Natalia Prevarskaya, Julia Von Blume, Valérie Cormier-Daire, François Foulquier","doi":"10.1007/s00018-024-05551-2","DOIUrl":"10.1007/s00018-024-05551-2","url":null,"abstract":"<p><p>Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented. The emergence of CDG resulting from defects in ER/ Golgi homeostasis makes this even more difficult. SLC10A7 belongs to the SLC10 protein family, known as bile acid and steroid transport family, exhibiting a unique structure. It shows a ubiquitous expression and is linked to negative calcium regulation in cells. The mechanisms by which SLC10A7 deficiency leads to Golgi glycosylation abnormalities are unknown. The present study identifies major O-glycosylation defects in both SLC10A7 KO HAP1 cells and SLC10A7-CDG patient fibroblasts and reveals an increased ER and Golgi calcium contents. We also show that the abundance of COSMC and C1GALT1 is altered in SLC10A7-CDG patient cells, as well as the subcellular Golgi localization of the Ca<sup>2+</sup>-binding Cab45 protein. Finally, we demonstrate that supraphysiological manganese supplementation suppresses the deficient electrophoretic mobility of TGN46 by an aberrant transfer of GalNAc residues, and reveal COSMC Mn<sup>2+</sup> sensitivity. These findings provide novel insights into the mechanisms of Golgi glycosylation defects in SLC10A7-deficient cells. They show that SLC10A7 is a key Golgi transmembrane protein maintaining the tight regulation of Ca<sup>2+</sup> homeostasis in the ER and Golgi compartments, both essential for glycosylation.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"40"},"PeriodicalIF":6.2,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1007/s00018-024-05544-1
Lorenzo Germelli, Elisa Angeloni, Eleonora Da Pozzo, Chiara Tremolanti, Martina De Felice, Chiara Giacomelli, Laura Marchetti, Beatrice Muscatello, Elisabetta Barresi, Sabrina Taliani, Federico Da Settimo Passetti, Maria Letizia Trincavelli, Claudia Martini, Barbara Costa
An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity. Here, the role of neurosteroidogenesis in the modulation of microgliosis was explored in human microglia cells. In particular, CYP11A1 inhibition or TSPO pharmacological stimulation, crucial proteins involved in the rate limiting step of the neurosteroidogenic cascade, were employed. CYP11A1 inhibition led microglia to acquire a dysfunctional and hyperreactive phenotype, while selective TSPO ligands promoted the establishment of an anti-inflammatory one. Analysis of specific neurosteroid levels (neurosteroidome) identified allopregnanolone/pregnanolone as crucial metabolites allowing controlled activation of microglia. Importantly, the neurosteroid shift towards a greater androgenic/estrogenic profile supported the transition from pro-inflammatory to neuroprotective microglia, suggesting the therapeutic potential of de novo microglial neurosteroidogenesis stimulation for neuroinflammatory-related disorders.
{"title":"18 kDa TSPO targeting drives polarized human microglia towards a protective and restorative neurosteroidome profile.","authors":"Lorenzo Germelli, Elisa Angeloni, Eleonora Da Pozzo, Chiara Tremolanti, Martina De Felice, Chiara Giacomelli, Laura Marchetti, Beatrice Muscatello, Elisabetta Barresi, Sabrina Taliani, Federico Da Settimo Passetti, Maria Letizia Trincavelli, Claudia Martini, Barbara Costa","doi":"10.1007/s00018-024-05544-1","DOIUrl":"https://doi.org/10.1007/s00018-024-05544-1","url":null,"abstract":"<p><p>An aberrant pro-inflammatory microglia response has been associated with most neurodegenerative disorders. Identifying microglia druggable checkpoints to restore their physiological functions is an emerging challenge. Recent data have shown that microglia produce de novo neurosteroids, endogenous molecules exerting potent anti-inflammatory activity. Here, the role of neurosteroidogenesis in the modulation of microgliosis was explored in human microglia cells. In particular, CYP11A1 inhibition or TSPO pharmacological stimulation, crucial proteins involved in the rate limiting step of the neurosteroidogenic cascade, were employed. CYP11A1 inhibition led microglia to acquire a dysfunctional and hyperreactive phenotype, while selective TSPO ligands promoted the establishment of an anti-inflammatory one. Analysis of specific neurosteroid levels (neurosteroidome) identified allopregnanolone/pregnanolone as crucial metabolites allowing controlled activation of microglia. Importantly, the neurosteroid shift towards a greater androgenic/estrogenic profile supported the transition from pro-inflammatory to neuroprotective microglia, suggesting the therapeutic potential of de novo microglial neurosteroidogenesis stimulation for neuroinflammatory-related disorders.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"34"},"PeriodicalIF":6.2,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Herpes simplex virus type I (HSV-1) infection is associated with lung injury; however, no specific treatment is currently available. In this study, we found a significant negative correlation between FcRn levels and the severity of HSV-1-induced lung injury. HSV-1 infection increases the methylation of the FcRn promoter, which suppresses FcRn expression by upregulating DNMT3b expression. Analysis of the FcRn promoter revealed that the -1296- to -919-bp region is the key regulatory region, with the CG site at -967/-966 bp being the critical methylation site. The transcription factor JUN binds to this CG site to increase FcRn transcription; however, its activity was significantly inhibited by DNMT3b overexpression. Moreover, 5-Aza-2 effectively reduced HSV-1-induced lung injury and inhibited ferroptosis. Transcriptomic sequencing revealed that the ferroptosis pathway was highly activated in the lung tissues of FcRn-knockout mice via the p53/SLC7A11 pathway. Furthermore, in vivo and in vivo experiments showed that FcRn knockout aggravated lung epithelial cell inflammation by promoting ferroptosis; however, this effect was reversed by a ferroptosis inhibitor. Thus, HSV-1 infection suppressed FcRn expression through promoter methylation and promoted ferroptosis and lung injury. These findings reveal a novel molecular mechanism underlying viral lung injury and suggest potential therapeutic strategies for targeting FcRn.
{"title":"Downregulation of FcRn promotes ferroptosis in herpes simplex virus-1-induced lung injury.","authors":"Shaoju Qian, Danqiong Zhang, Ruixue Li, Xiaoming Sha, Shuao Lu, Lin Pan, Xianfeng Hui, Tiesuo Zhao, Xiangfeng Song, Lili Yu","doi":"10.1007/s00018-024-05555-y","DOIUrl":"10.1007/s00018-024-05555-y","url":null,"abstract":"<p><p>Herpes simplex virus type I (HSV-1) infection is associated with lung injury; however, no specific treatment is currently available. In this study, we found a significant negative correlation between FcRn levels and the severity of HSV-1-induced lung injury. HSV-1 infection increases the methylation of the FcRn promoter, which suppresses FcRn expression by upregulating DNMT3b expression. Analysis of the FcRn promoter revealed that the -1296- to -919-bp region is the key regulatory region, with the CG site at -967/-966 bp being the critical methylation site. The transcription factor JUN binds to this CG site to increase FcRn transcription; however, its activity was significantly inhibited by DNMT3b overexpression. Moreover, 5-Aza-2 effectively reduced HSV-1-induced lung injury and inhibited ferroptosis. Transcriptomic sequencing revealed that the ferroptosis pathway was highly activated in the lung tissues of FcRn-knockout mice via the p53/SLC7A11 pathway. Furthermore, in vivo and in vivo experiments showed that FcRn knockout aggravated lung epithelial cell inflammation by promoting ferroptosis; however, this effect was reversed by a ferroptosis inhibitor. Thus, HSV-1 infection suppressed FcRn expression through promoter methylation and promoted ferroptosis and lung injury. These findings reveal a novel molecular mechanism underlying viral lung injury and suggest potential therapeutic strategies for targeting FcRn.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"36"},"PeriodicalIF":6.2,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Perioperative neurocognitive disorder (PND) is a prevalent form of cognitive impairment in elderly patients following anesthesia and surgery. The underlying mechanisms of PND are closely related to perineuronal nets (PNNs). PNNs, which are complexes of extracellular matrix primarily surrounding neurons in the hippocampus, play a critical role in neurocognitive function. Connexin 43 (Cx43) contributes to cognitive function by modulating the components of PNNs. This study was designed to investigate the specific regulatory mechanisms of Cx43 on PNNs and its pivotal role in the development of PND.
Methods: Eighteen-month-old wild-type and Gja1fl/fl C57BL/6 mice were subjected to abdominal surgery under 1.4% isoflurane anesthesia. Cognitive functions, particularly learning and memory, were evaluated via the Y-maze test, Barnes maze (BM) and contextual fear conditioning test (CFT). The mRNA and protein expression levels of Cx43 were assessed by using quantitative reverse transcription polymerase chain reaction (qRT-PCR), fluorescent in situ hybridization (FISH), western blotting and flow cytometry. The quantity of PNNs was measured by Wisteria floribunda agglutinin (WFA) and Aggrecan staining.
Results: Aged mice subjected to anesthesia and surgery exhibited deficits in hippocampus-dependent cognitive functions, which were accompanied by increased Cx43 mRNA and protein expression. Conditional knockout (cKO) of Cx43 in astrocytes alleviated cognitive deficits and promoted the number of PNNs and dendritic spines in the hippocampus by targeting Dmp1. Knockdown of Dmp1 attenuated the beneficial effects of Cx43 cKO on cognitive deficits induced by anesthesia and surgery.
Conclusion: Our findings indicate that anesthesia and surgery induce an increase in Cx43 expression, which inhibits the formation of PNNs and dendritic spines in hippocampus by suppressing Dmp1 transcription, leading to cognitive deficits in aged mice. These results offer new mechanistic insights into the pathogenesis of PND and identify potential targets for therapeutic intervention.
{"title":"Connexin 43 contributes to perioperative neurocognitive disorder by attenuating perineuronal net of hippocampus in aged mice.","authors":"Qian Zhang, Yuxin Zhang, Peilin Cong, Qianqian Wu, Hanxi Wan, Xinwei Huang, Xinyang Li, Zhouxiang Li, Jingxuan Li, Huanghui Wu, Li Tian, Lize Xiong","doi":"10.1007/s00018-024-05530-7","DOIUrl":"https://doi.org/10.1007/s00018-024-05530-7","url":null,"abstract":"<p><strong>Background: </strong>Perioperative neurocognitive disorder (PND) is a prevalent form of cognitive impairment in elderly patients following anesthesia and surgery. The underlying mechanisms of PND are closely related to perineuronal nets (PNNs). PNNs, which are complexes of extracellular matrix primarily surrounding neurons in the hippocampus, play a critical role in neurocognitive function. Connexin 43 (Cx43) contributes to cognitive function by modulating the components of PNNs. This study was designed to investigate the specific regulatory mechanisms of Cx43 on PNNs and its pivotal role in the development of PND.</p><p><strong>Methods: </strong>Eighteen-month-old wild-type and Gja1<sup>fl/fl</sup> C57BL/6 mice were subjected to abdominal surgery under 1.4% isoflurane anesthesia. Cognitive functions, particularly learning and memory, were evaluated via the Y-maze test, Barnes maze (BM) and contextual fear conditioning test (CFT). The mRNA and protein expression levels of Cx43 were assessed by using quantitative reverse transcription polymerase chain reaction (qRT-PCR), fluorescent in situ hybridization (FISH), western blotting and flow cytometry. The quantity of PNNs was measured by Wisteria floribunda agglutinin (WFA) and Aggrecan staining.</p><p><strong>Results: </strong>Aged mice subjected to anesthesia and surgery exhibited deficits in hippocampus-dependent cognitive functions, which were accompanied by increased Cx43 mRNA and protein expression. Conditional knockout (cKO) of Cx43 in astrocytes alleviated cognitive deficits and promoted the number of PNNs and dendritic spines in the hippocampus by targeting Dmp1. Knockdown of Dmp1 attenuated the beneficial effects of Cx43 cKO on cognitive deficits induced by anesthesia and surgery.</p><p><strong>Conclusion: </strong>Our findings indicate that anesthesia and surgery induce an increase in Cx43 expression, which inhibits the formation of PNNs and dendritic spines in hippocampus by suppressing Dmp1 transcription, leading to cognitive deficits in aged mice. These results offer new mechanistic insights into the pathogenesis of PND and identify potential targets for therapeutic intervention.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"37"},"PeriodicalIF":6.2,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}