This paper presents the formulation and results of a simple numerical model designed to simulate the climate of an urban canyon. The model is two-dimensional in nature and is based on the observation that ambient airflow which tranverses the long-axis of a symmetrical canyon drives a circulating vortex within the canyon air space which results in the exchange of heat, mass and momentum at the canyon top. A simple model is described which consists of two components: a semi-empirical model to relate within-canyon airflow to ambient wind velocity, and an energy budget model for canyon surfaces. The model is capable of simulating many aspects of the canyon climate, including the canyon surface and top energy budget and surface and air temperatures. Sensitivity tests with the model indicate that the canyon top energy budget is remarkably stable for many changes in canyon parameters. Canyon geometry (expressed as a height/width ratio) caused the greatest changes with increased narrowness being associated with less heat exchange across the canyon top. The model's predictions appear intuitively reasonable and compare well with existing measurement data. The results suggest that the coupling between the urban boundary and canopy layers in terms of heat exchange may be a function of canyon geometry.