首页 > 最新文献

Cognitive Robotics最新文献

英文 中文
Improving log anomaly detection via spatial pooling: Combining SPClassifier with ensemble method 通过空间池改进日志异常检测:将 SPClassifier 与集合方法相结合
Pub Date : 2024-01-01 DOI: 10.1016/j.cogr.2024.10.001
Hironori Uchida , Keitaro Tominaga , Hideki Itai , Yujie Li , Yoshihisa Nakatoh
In the ever-updating field of software development, new bugs emerge daily, requiring significant time for analysis. As a result, research is being conducted on automating bug resolution using techniques such as anomaly detection through deep learning applied to text logs. This study focuses on anomaly detection using text logs and aims to address current challenges. Specifically, we aim to improve the accuracy of SPClassifier, a robust and lightweight AI model capable of handling dynamic log datasets through ad-hoc learning. We employ three ensemble learning methods to enhance the accuracy of SPClassifier. The method that achieved the greatest improvement was Improved Bagging, which combines the non-overlapping sampling of Pasting with the overlapping sampling of Bagging, resulting in a maximum F1-score improvement of 155 %. Additionally, on certain datasets, the F1-score surpassed that of well-known DNN methods by 130 %. Furthermore, the proposed method demonstrated lower variance compared to DNN methods, indicating its advantage, particularly in environments where datasets frequently fluctuate, such as development fields. These results highlight the clear superiority of the proposed method, which is lightweight in terms of computational resources and supports ad-hoc learning.
在不断更新的软件开发领域,每天都会出现新的错误,需要大量时间进行分析。因此,人们正在研究如何利用深度学习对文本日志进行异常检测等技术来自动解决错误。本研究侧重于使用文本日志进行异常检测,旨在应对当前的挑战。具体来说,我们的目标是提高 SPClassifier 的准确性,这是一种稳健、轻量级的人工智能模型,能够通过临时学习处理动态日志数据集。我们采用了三种集合学习方法来提高 SPClassifier 的准确性。改进型 Bagging 是提高幅度最大的方法,它结合了 Pasting 的非重叠采样和 Bagging 的重叠采样,使 F1 分数提高了 155%。此外,在某些数据集上,F1 分数比著名的 DNN 方法高出 130%。此外,与 DNN 方法相比,所提出的方法显示出更低的方差,这表明了它的优势,尤其是在数据集经常波动的环境中,如开发领域。这些结果凸显了所提方法的明显优势,因为它在计算资源方面非常轻便,而且支持临时学习。
{"title":"Improving log anomaly detection via spatial pooling: Combining SPClassifier with ensemble method","authors":"Hironori Uchida ,&nbsp;Keitaro Tominaga ,&nbsp;Hideki Itai ,&nbsp;Yujie Li ,&nbsp;Yoshihisa Nakatoh","doi":"10.1016/j.cogr.2024.10.001","DOIUrl":"10.1016/j.cogr.2024.10.001","url":null,"abstract":"<div><div>In the ever-updating field of software development, new bugs emerge daily, requiring significant time for analysis. As a result, research is being conducted on automating bug resolution using techniques such as anomaly detection through deep learning applied to text logs. This study focuses on anomaly detection using text logs and aims to address current challenges. Specifically, we aim to improve the accuracy of SPClassifier, a robust and lightweight AI model capable of handling dynamic log datasets through ad-hoc learning. We employ three ensemble learning methods to enhance the accuracy of SPClassifier. The method that achieved the greatest improvement was Improved Bagging, which combines the non-overlapping sampling of Pasting with the overlapping sampling of Bagging, resulting in a maximum F1-score improvement of 155 %. Additionally, on certain datasets, the F1-score surpassed that of well-known DNN methods by 130 %. Furthermore, the proposed method demonstrated lower variance compared to DNN methods, indicating its advantage, particularly in environments where datasets frequently fluctuate, such as development fields. These results highlight the clear superiority of the proposed method, which is lightweight in terms of computational resources and supports ad-hoc learning.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 217-227"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RDSM: Underwater multi-AUV relay deployment and selection mechanism in 3D space RDSM:三维空间中的水下多AUV中继部署和选择机制
Pub Date : 2024-01-01 DOI: 10.1016/j.cogr.2024.11.001
Yafei Liu , Na Liu , Hao Li , Yi Jiang , Junwu zhu
Underwater Wireless Sensor Networks (UWSNs) are widely used in naval military field and marine resource exploration. However, challenges such as resource inefficiency and unbalanced energy consumption severely hinder their practical applications. In this paper, we establish a model of underwater multi-hop wireless sensor network with multiple AUVs as relay nodes, which describes the data transmission process within the network. Based on this, an underwater multi-AUV Relay Deployment and Selection Mechanism in 3D space (RDSM) is proposed to achieve efficient underwater networking. Specifically, the RDSM includes the following key components. Firstly, an optimized relay node deployment strategy (RNDS) is used to deploy AUV nodes to effectively ensure network connectivity. Compared with traditional methods, this strategy has unique advantages in considering underwater space characteristics and can better adapt to the complex underwater environment. Secondly, a new utility function is constructed by integrating factors such as throughput, energy consumption, and load. The relay selection strategy based on utility maximization (RSS-UM) is used to select the next-hop relay node. This strategy is innovative in improving relay selection efficiency and optimizing network performance. Finally, in response to the problem of rapid energy consumption of relay nodes close to the base station, a power adjustment scheme is introduced to achieve a balance in node energy consumption, which is of great significance for prolonging network lifetime and improving overall stability. Experimental results show that compared with existing methods, the proposed mechanism achieves high utility and throughput, while maintaining balanced node energy consumption.
水下无线传感器网络(UWSN)广泛应用于海军军事领域和海洋资源勘探。然而,资源效率低下和能量消耗不均衡等挑战严重阻碍了其实际应用。本文建立了一个以多个 AUV 为中继节点的水下多跳无线传感器网络模型,描述了网络内的数据传输过程。在此基础上,提出了一种三维空间水下多 AUV 中继部署与选择机制(RDSM),以实现高效的水下联网。具体来说,RDSM 包括以下关键部分。首先,采用优化的中继节点部署策略(RNDS)来部署 AUV 节点,以有效确保网络连接。与传统方法相比,该策略在考虑水下空间特性方面具有独特优势,能更好地适应复杂的水下环境。其次,综合吞吐量、能耗和负载等因素构建了新的效用函数。基于效用最大化的中继选择策略(RSS-UM)用于选择下一跳中继节点。该策略在提高中继选择效率和优化网络性能方面具有创新性。最后,针对靠近基站的中继节点能量消耗快的问题,引入了功率调整方案,以实现节点能量消耗的平衡,这对延长网络寿命和提高整体稳定性具有重要意义。实验结果表明,与现有方法相比,所提出的机制在保持节点能量消耗平衡的同时,实现了较高的效用和吞吐量。
{"title":"RDSM: Underwater multi-AUV relay deployment and selection mechanism in 3D space","authors":"Yafei Liu ,&nbsp;Na Liu ,&nbsp;Hao Li ,&nbsp;Yi Jiang ,&nbsp;Junwu zhu","doi":"10.1016/j.cogr.2024.11.001","DOIUrl":"10.1016/j.cogr.2024.11.001","url":null,"abstract":"<div><div>Underwater Wireless Sensor Networks (UWSNs) are widely used in naval military field and marine resource exploration. However, challenges such as resource inefficiency and unbalanced energy consumption severely hinder their practical applications. In this paper, we establish a model of underwater multi-hop wireless sensor network with multiple AUVs as relay nodes, which describes the data transmission process within the network. Based on this, an underwater multi-AUV Relay Deployment and Selection Mechanism in 3D space (RDSM) is proposed to achieve efficient underwater networking. Specifically, the RDSM includes the following key components. Firstly, an optimized relay node deployment strategy (RNDS) is used to deploy AUV nodes to effectively ensure network connectivity. Compared with traditional methods, this strategy has unique advantages in considering underwater space characteristics and can better adapt to the complex underwater environment. Secondly, a new utility function is constructed by integrating factors such as throughput, energy consumption, and load. The relay selection strategy based on utility maximization (RSS-UM) is used to select the next-hop relay node. This strategy is innovative in improving relay selection efficiency and optimizing network performance. Finally, in response to the problem of rapid energy consumption of relay nodes close to the base station, a power adjustment scheme is introduced to achieve a balance in node energy consumption, which is of great significance for prolonging network lifetime and improving overall stability. Experimental results show that compared with existing methods, the proposed mechanism achieves high utility and throughput, while maintaining balanced node energy consumption.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 204-216"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142704754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
YOLOT: Multi-scale and diverse tire sidewall text region detection based on You-Only-Look-Once(YOLOv5) YOLOT:基于 "只看一次"(YOLOv5)的多尺度、多样化轮胎侧壁文字区域检测
Pub Date : 2024-01-01 DOI: 10.1016/j.cogr.2024.03.001
Dehua Liu , Yongqin Tian , Yibo Xu , Wenyi Zhao , Xipeng Pan , Xu Ji , Mu Yang , Huihua Yang

Driving safety is significant to building a people-oriented and harmonious society, Tires are one of the key components of a vehicle and the character information on the tire sidewall is critical to their storage and usage. However, due to the diverse and differentiated features of typographic fonts, simultaneously extracting comprehensive characteristics is an extremely challenging task. To effectively break through these performance degradation issues, a multi-scale tire sidewall text region detection algorithm based on YOLOv5 is introduced, called YOLOT, which fuses comprehensive feature information in both width and depth directions. In this study, we firstly propose the Width and Depth Awareness (WDA) module in the text region detection field and successfully integrated it with the FPN structure to form the WDA-FPN. The purpose of WDA-FPN is to empower the network to capture multi-scale and multi-shape features in images, thereby augmenting the algorithm’s abstraction and representation of image features and concurrently boosting its robustness and generalization performance. Experimental findings indicate that, compared to the primary algorithm, YOLOT achieves significant improvement in accuracy, providing a higher detection reliability. The dataset and code for the paper are available at: https://github.com/Cloude-dehua/YOLOT.

行车安全对于建设以人为本的和谐社会意义重大。轮胎是汽车的关键部件之一,轮胎侧壁上的文字信息对于轮胎的储存和使用至关重要。然而,由于排版字体的多样性和差异化特征,同时提取综合特征是一项极具挑战性的任务。为了有效突破这些性能下降的问题,我们提出了一种基于 YOLOv5 的多尺度轮胎侧壁文字区域检测算法,称为 YOLOT,它融合了宽度和深度两个方向的综合特征信息。在本研究中,我们首先在文本区域检测领域提出了宽度和深度感知(WDA)模块,并成功地将其与 FPN 结构集成,形成了 WDA-FPN 结构。WDA-FPN 的目的是使网络能够捕捉图像中的多尺度和多形状特征,从而增强算法对图像特征的抽象和表示能力,同时提高算法的鲁棒性和泛化性能。实验结果表明,与主要算法相比,YOLOT 的准确性有了显著提高,提供了更高的检测可靠性。本文的数据集和代码可在以下网址获取:https://github.com/Cloude-dehua/YOLOT。
{"title":"YOLOT: Multi-scale and diverse tire sidewall text region detection based on You-Only-Look-Once(YOLOv5)","authors":"Dehua Liu ,&nbsp;Yongqin Tian ,&nbsp;Yibo Xu ,&nbsp;Wenyi Zhao ,&nbsp;Xipeng Pan ,&nbsp;Xu Ji ,&nbsp;Mu Yang ,&nbsp;Huihua Yang","doi":"10.1016/j.cogr.2024.03.001","DOIUrl":"10.1016/j.cogr.2024.03.001","url":null,"abstract":"<div><p>Driving safety is significant to building a people-oriented and harmonious society, Tires are one of the key components of a vehicle and the character information on the tire sidewall is critical to their storage and usage. However, due to the diverse and differentiated features of typographic fonts, simultaneously extracting comprehensive characteristics is an extremely challenging task. To effectively break through these performance degradation issues, a multi-scale tire sidewall text region detection algorithm based on YOLOv5 is introduced, called YOLOT, which fuses comprehensive feature information in both width and depth directions. In this study, we firstly propose the Width and Depth Awareness (WDA) module in the text region detection field and successfully integrated it with the FPN structure to form the WDA-FPN. The purpose of WDA-FPN is to empower the network to capture multi-scale and multi-shape features in images, thereby augmenting the algorithm’s abstraction and representation of image features and concurrently boosting its robustness and generalization performance. Experimental findings indicate that, compared to the primary algorithm, YOLOT achieves significant improvement in accuracy, providing a higher detection reliability. The dataset and code for the paper are available at: https://github.com/Cloude-dehua/YOLOT.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 74-87"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266724132400003X/pdfft?md5=19ce0153cf7a9ea3214d8e7517f90940&pid=1-s2.0-S266724132400003X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140277459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable and cohesive swarm control based on reinforcement learning 基于强化学习的可扩展、有凝聚力的蜂群控制
Pub Date : 2024-01-01 DOI: 10.1016/j.cogr.2024.05.003
Marc-Andrė Blais, Moulay A. Akhloufi

Unmanned vehicles have seen a significant increase in a wide variety of fields such as for logistics, agriculture and other commercial applications. Controlling swarms of unmanned vehicles is a challenging task that requires complex autonomous control systems. Reinforcement learning has been proposed as a solution to this challenge. We propose an approach based on agent masking to enable a simple Deep Q-Network algorithm to scale on large swarms while training on relatively smaller swarms. We train our approach using multiple swarm sizes and learning rates and compare our results using metrics such as the number of collisions. We also compare the ability of our approach to scale on swarms ranging from five to 25 agents using metrics and visual analysis. Our proposed solution was able to guide a swarm of up to 100 agents to a target while keeping a good swarm cohesion and avoiding collision.

无人驾驶飞行器在物流、农业和其他商业应用等多个领域都有显著增长。控制无人车群是一项具有挑战性的任务,需要复杂的自主控制系统。强化学习已被提出作为应对这一挑战的解决方案。我们提出了一种基于代理掩蔽的方法,使简单的深度 Q 网络算法能够在大型蜂群上扩展,同时在相对较小的蜂群上进行训练。我们使用多种蜂群规模和学习率来训练我们的方法,并使用碰撞次数等指标来比较我们的结果。我们还使用指标和视觉分析比较了我们的方法在 5 到 25 个代理的蜂群上的扩展能力。我们提出的解决方案能够引导多达 100 个代理的蜂群到达目标,同时保持良好的蜂群凝聚力并避免碰撞。
{"title":"Scalable and cohesive swarm control based on reinforcement learning","authors":"Marc-Andrė Blais,&nbsp;Moulay A. Akhloufi","doi":"10.1016/j.cogr.2024.05.003","DOIUrl":"https://doi.org/10.1016/j.cogr.2024.05.003","url":null,"abstract":"<div><p>Unmanned vehicles have seen a significant increase in a wide variety of fields such as for logistics, agriculture and other commercial applications. Controlling swarms of unmanned vehicles is a challenging task that requires complex autonomous control systems. Reinforcement learning has been proposed as a solution to this challenge. We propose an approach based on agent masking to enable a simple Deep Q-Network algorithm to scale on large swarms while training on relatively smaller swarms. We train our approach using multiple swarm sizes and learning rates and compare our results using metrics such as the number of collisions. We also compare the ability of our approach to scale on swarms ranging from five to 25 agents using metrics and visual analysis. Our proposed solution was able to guide a swarm of up to 100 agents to a target while keeping a good swarm cohesion and avoiding collision.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 88-103"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241324000053/pdfft?md5=3db6df465ddd69e88b21f962232e9c5e&pid=1-s2.0-S2667241324000053-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent path planning for cognitive mobile robot based on Dhouib-Matrix-SPP method 基于 Dhouib-Matrix-SPP 方法的认知型移动机器人智能路径规划
Pub Date : 2024-01-01 DOI: 10.1016/j.cogr.2024.02.001
Souhail Dhouib

The Mobile Robot Path Problem looks to find the optimal shortest path from the starting point to the target point with collision-free for a mobile robot. This is a popular issue in robotics and in this paper the environment is considered as static and represented as a bidirectional grid map. Besides, the novel optimal method Dhouib-Matrix-SPP (DM-SPP) is applied to create the optimal shortest path for a mobile robot in a static environment. DM-SPP is a greedy method based on a column row navigation in the distance matrix and characterized by its rapidity to solve sparse graphs. The comparative analysis is conducted by applying DM-SPP on thirteen test cases and comparing its results to the results given by four metaheuristics the Max-Min Ant System, the Ant System with punitive measures, the A* and the Improved Hybrid A*. The outcomes acquired from different scenarios indicate that the proposed DM-SPP method can rapidly outperform the four predefined artificial intelligence methods.

移动机器人路径问题旨在为移动机器人找到从起点到目标点的最佳无碰撞最短路径。在本文中,环境被视为静态,并表示为双向网格图。此外,本文还采用了新颖的最优方法 Dhouib-Matrix-SPP (DM-SPP) 为移动机器人在静态环境中创建最优最短路径。DM-SPP 是一种基于距离矩阵列行导航的贪婪方法,其特点是能快速求解稀疏图。通过在 13 个测试案例中应用 DM-SPP 并将其结果与四种元启发式方法(最大最小蚂蚁系统、带惩罚措施的蚂蚁系统、A* 和改进的混合 A*)的结果进行比较分析。从不同场景获得的结果表明,拟议的 DM-SPP 方法可以迅速超越四种预定义的人工智能方法。
{"title":"Intelligent path planning for cognitive mobile robot based on Dhouib-Matrix-SPP method","authors":"Souhail Dhouib","doi":"10.1016/j.cogr.2024.02.001","DOIUrl":"10.1016/j.cogr.2024.02.001","url":null,"abstract":"<div><p>The Mobile Robot Path Problem looks to find the optimal shortest path from the starting point to the target point with collision-free for a mobile robot. This is a popular issue in robotics and in this paper the environment is considered as static and represented as a bidirectional grid map. Besides, the novel optimal method Dhouib-Matrix-SPP (DM-SPP) is applied to create the optimal shortest path for a mobile robot in a static environment. DM-SPP is a greedy method based on a column row navigation in the distance matrix and characterized by its rapidity to solve sparse graphs. The comparative analysis is conducted by applying DM-SPP on thirteen test cases and comparing its results to the results given by four metaheuristics the Max-Min Ant System, the Ant System with punitive measures, the A* and the Improved Hybrid A*. The outcomes acquired from different scenarios indicate that the proposed DM-SPP method can rapidly outperform the four predefined artificial intelligence methods.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 62-73"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241324000028/pdfft?md5=753a3935e8733e20519f0d68f97e618f&pid=1-s2.0-S2667241324000028-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139966008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power inspection UAV task assignment matrix reversal genetic algorithm 电力巡检无人机任务分配矩阵反转遗传算法
Pub Date : 2024-01-01 DOI: 10.1016/j.cogr.2024.11.006
Kai Liu , Meizhao Liu , Ming Tang , Chen Zhang
Traditional manual power inspections are characterized by low efficiency, lengthy processes, and high costs. Existing research on UAV-based power inspections has often overlooked critical factors such as the risk levels of target tasks, the duration of tasks executed by UAVs, and the utility per unit task. To address these gaps, this paper proposes a task allocation method for UAV power inspections based on the Time Window Matrix Reversal Genetic Algorithm (TMGA). Firstly, the proposed cost model accounts for the risk levels of inspection tasks and the impact of low-altitude flight on energy consumption. Secondly, an inspection task allocation model is constructed with the goal of maximizing UAV inspection unit utility. The model is then optimized using two-point crossover and single-point reversal mutation operations, which enhance the UAV unit utility and generate an optimal allocation matrix. The performance of TMGA is evaluated through simulation experiments in three different scenarios, comparing it with existing algorithms. The results show that TMGA outperforms these algorithms in terms of average task time, task completion rate, and unit utility. Specifically, TMGA reduces the average task time by 37% compared to the Cluster Grouping Consensus-base Bundle Algorithm and improves task unit utility by 56.91% compared to the Genetic Algorithm.
传统的人工巡检效率低、流程长、成本高。现有的基于无人机的电力检测研究往往忽略了目标任务的风险水平、无人机执行任务的持续时间以及单位任务的效用等关键因素。针对这些不足,提出了一种基于时间窗矩阵反转遗传算法(TMGA)的无人机电源巡检任务分配方法。首先,提出的成本模型考虑了检查任务的风险水平和低空飞行对能耗的影响。其次,以无人机巡检单元效用最大化为目标,构建了巡检任务分配模型;然后采用两点交叉和单点反转突变操作对模型进行优化,提高了无人机的单位效用,生成了最优分配矩阵。通过三种不同场景下的仿真实验,对TMGA的性能进行了评价,并与现有算法进行了比较。结果表明,TMGA在平均任务时间、任务完成率和单位效用方面优于这些算法。具体来说,TMGA比基于共识的聚类分组算法减少了37%的平均任务时间,比遗传算法提高了56.91%的任务单元利用率。
{"title":"Power inspection UAV task assignment matrix reversal genetic algorithm","authors":"Kai Liu ,&nbsp;Meizhao Liu ,&nbsp;Ming Tang ,&nbsp;Chen Zhang","doi":"10.1016/j.cogr.2024.11.006","DOIUrl":"10.1016/j.cogr.2024.11.006","url":null,"abstract":"<div><div>Traditional manual power inspections are characterized by low efficiency, lengthy processes, and high costs. Existing research on UAV-based power inspections has often overlooked critical factors such as the risk levels of target tasks, the duration of tasks executed by UAVs, and the utility per unit task. To address these gaps, this paper proposes a task allocation method for UAV power inspections based on the Time Window Matrix Reversal Genetic Algorithm (TMGA). Firstly, the proposed cost model accounts for the risk levels of inspection tasks and the impact of low-altitude flight on energy consumption. Secondly, an inspection task allocation model is constructed with the goal of maximizing UAV inspection unit utility. The model is then optimized using two-point crossover and single-point reversal mutation operations, which enhance the UAV unit utility and generate an optimal allocation matrix. The performance of TMGA is evaluated through simulation experiments in three different scenarios, comparing it with existing algorithms. The results show that TMGA outperforms these algorithms in terms of average task time, task completion rate, and unit utility. Specifically, TMGA reduces the average task time by 37% compared to the Cluster Grouping Consensus-base Bundle Algorithm and improves task unit utility by 56.91% compared to the Genetic Algorithm.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 245-258"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robot assisted knee joint RoM exercise: A PID parallel compensator architecture through impedance estimation 机器人辅助膝关节 RoM 运动:通过阻抗估计实现 PID 并行补偿器架构
Pub Date : 2023-12-09 DOI: 10.1016/j.cogr.2023.11.003
M. Akhtaruzzaman , Amir A. Shafie , Md Raisuddin Khan , Md Mozasser Rahman

Knee joint rehabilitation exercise refers to a therapeutic procedure of a patient having dysfunctions in certain abilities to move knee joint due to some medical conditions like trauma or paralysis. The exercise is basically a series of repeated assistive physical movements within the range of motion (RoM) of the joint. Reflex action of limbs during RoM exercise causes inappropriate balance of load which may cause secondary injuries, such as damages of muscle or tendon tissues. Establishing correlation between impedance data and limb motions is important to solve this problem. This paper aims to design and modeling of a robotic arm with an original approach in control strategy which is developed based on the correlation in between the joint-impedances and joint-motion characteristics during exercise. The knee joint impedances are estimated based on the internal feedback of the system dynamics, that lead to design the torque compensator to improve the overall control signals in real time. This paper also demonstrates the characteristics of various responses of the system during exercise with human subject. Results have reflected good performances with low position and velocity tracking errors, ±0.02 and 0.04rad.sec1 during hold phase; and ±0.14 and 0.17rad.sec1 during motion phse. Though, the limitation of the prototype is its current RoM (limited to 025), the system has potential in the application of RoM exercise for paraplegic or monoplegic patients.

膝关节康复锻炼是指对因外伤或瘫痪等疾病导致膝关节活动能力障碍的患者进行的一种治疗程序。这项运动基本上是在关节活动范围(RoM)内反复进行一系列辅助性肢体运动。在 RoM 运动过程中,肢体的反射动作会导致不适当的负荷平衡,从而可能造成二次伤害,如肌肉或肌腱组织损伤。建立阻抗数据与肢体运动之间的相关性对于解决这一问题非常重要。本文旨在设计一种机械臂,并根据运动时关节阻抗和关节运动特性之间的相关性,采用一种新颖的控制策略对其进行建模。膝关节阻抗是根据系统动态的内部反馈进行估算的,从而设计出扭矩补偿器,实时改善整体控制信号。本文还展示了该系统在人体运动时的各种响应特性。结果表明,该系统性能良好,位置和速度跟踪误差小,在保持阶段分别为 ±0.02∘ 和 0.04rad.sec-1;在运动阶段分别为 ±0.14∘ 和 0.17rad.sec-1。虽然该原型的局限性在于其当前的 RoM(仅限于 0∘-25∘),但该系统在截瘫或单瘫患者的 RoM 运动应用方面具有潜力。
{"title":"Robot assisted knee joint RoM exercise: A PID parallel compensator architecture through impedance estimation","authors":"M. Akhtaruzzaman ,&nbsp;Amir A. Shafie ,&nbsp;Md Raisuddin Khan ,&nbsp;Md Mozasser Rahman","doi":"10.1016/j.cogr.2023.11.003","DOIUrl":"10.1016/j.cogr.2023.11.003","url":null,"abstract":"<div><p>Knee joint rehabilitation exercise refers to a therapeutic procedure of a patient having dysfunctions in certain abilities to move knee joint due to some medical conditions like trauma or paralysis. The exercise is basically a series of repeated assistive physical movements within the range of motion (RoM) of the joint. Reflex action of limbs during RoM exercise causes inappropriate balance of load which may cause secondary injuries, such as damages of muscle or tendon tissues. Establishing correlation between impedance data and limb motions is important to solve this problem. This paper aims to design and modeling of a robotic arm with an original approach in control strategy which is developed based on the correlation in between the joint-impedances and joint-motion characteristics during exercise. The knee joint impedances are estimated based on the internal feedback of the system dynamics, that lead to design the torque compensator to improve the overall control signals in real time. This paper also demonstrates the characteristics of various responses of the system during exercise with human subject. Results have reflected good performances with low position and velocity tracking errors, <span><math><mrow><mo>±</mo><mn>0</mn><mo>.</mo><msup><mn>02</mn><mo>∘</mo></msup></mrow></math></span> and <span><math><mrow><mn>0.04</mn><mi>r</mi><mi>a</mi><mi>d</mi><mo>.</mo><mi>s</mi><mi>e</mi><msup><mi>c</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> during hold phase; and <span><math><mrow><mo>±</mo><mn>0</mn><mo>.</mo><msup><mn>14</mn><mo>∘</mo></msup></mrow></math></span> and <span><math><mrow><mn>0.17</mn><mi>r</mi><mi>a</mi><mi>d</mi><mo>.</mo><mi>s</mi><mi>e</mi><msup><mi>c</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></math></span> during motion phse. Though, the limitation of the prototype is its current RoM (limited to <span><math><msup><mn>0</mn><mo>∘</mo></msup></math></span>–<span><math><msup><mn>25</mn><mo>∘</mo></msup></math></span>), the system has potential in the application of RoM exercise for paraplegic or monoplegic patients.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 42-61"},"PeriodicalIF":0.0,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266724132300040X/pdfft?md5=e66adda08f021e960ed5946bd42e69d8&pid=1-s2.0-S266724132300040X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138619946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Speech Emotion Recognition with Hilbert Curve and convolutional neural network 利用希尔伯特曲线和卷积神经网络优化语音情感识别
Pub Date : 2023-12-05 DOI: 10.1016/j.cogr.2023.12.001
Zijun Yang , Shi Zhou , Lifeng Zhang , Seiichi Serikawa

In the realm of speech emotion recognition, researchers strive to refine representation methods for improved emotional information capture. Traditional one-dimensional time series classification falls short in expressing intricate emotional patterns present in speech signals, posing challenges in accuracy and robustness. This study introduces an innovative algorithm leveraging Hilbert curves to transform one-dimensional speech data into two-dimensional form, enhancing feature extraction accuracy. A tiling module based on Hilbert curve maximizes Hilbert curve arrangements for improved emotional information capture. Results reveal spatial efficiency gains up to 23,195 times pixel units, enhancing data storage. With an exceptional 98.73% accuracy, the proposed approach traditional methods, affirming its superior emotion classification performance on the same dataset. These empirical findings underscore the effectiveness of our proposed method in advancing speech emotion recognition.

在语音情感识别领域,研究人员努力改进表示方法,以提高情感信息捕捉能力。传统的一维时间序列分类法无法表达语音信号中错综复杂的情感模式,在准确性和鲁棒性方面存在挑战。本研究引入了一种创新算法,利用希尔伯特曲线将一维语音数据转换为二维形式,从而提高特征提取的准确性。基于希尔伯特曲线的平铺模块最大限度地利用了希尔伯特曲线排列,从而提高了情感信息的捕捉能力。结果显示,空间效率提高了 23 195 倍像素单位,增强了数据存储能力。所提出的方法的准确率高达 98.73%,超越了传统方法,肯定了其在相同数据集上的卓越情感分类性能。这些实证研究结果凸显了我们提出的方法在推进语音情感识别方面的有效性。
{"title":"Optimizing Speech Emotion Recognition with Hilbert Curve and convolutional neural network","authors":"Zijun Yang ,&nbsp;Shi Zhou ,&nbsp;Lifeng Zhang ,&nbsp;Seiichi Serikawa","doi":"10.1016/j.cogr.2023.12.001","DOIUrl":"10.1016/j.cogr.2023.12.001","url":null,"abstract":"<div><p>In the realm of speech emotion recognition, researchers strive to refine representation methods for improved emotional information capture. Traditional one-dimensional time series classification falls short in expressing intricate emotional patterns present in speech signals, posing challenges in accuracy and robustness. This study introduces an innovative algorithm leveraging Hilbert curves to transform one-dimensional speech data into two-dimensional form, enhancing feature extraction accuracy. A tiling module based on Hilbert curve maximizes Hilbert curve arrangements for improved emotional information capture. Results reveal spatial efficiency gains up to 23,195 times pixel units, enhancing data storage. With an exceptional 98.73% accuracy, the proposed approach traditional methods, affirming its superior emotion classification performance on the same dataset. These empirical findings underscore the effectiveness of our proposed method in advancing speech emotion recognition.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 30-41"},"PeriodicalIF":0.0,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241323000411/pdfft?md5=bfed8ff77493b33cdfb6f93a3ba0a2c9&pid=1-s2.0-S2667241323000411-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138609217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An improved single short detection method for smart vision-based water garbage cleaning robot 基于智能视觉的水上垃圾清洁机器人的改进型单短检测方法
Pub Date : 2023-11-22 DOI: 10.1016/j.cogr.2023.11.002
Anandakumar Haldorai, Babitha Lincy R, Suriya M, Minu Balakrishnan

These days, plastic trash is exponentially overwhelming our waterways. The catastrophe has attracted global attention at this point. As a result, protecting the environment on the water's surface has received increasing focus. Currently, manpower can be used to clean up contaminated water bodies like ponds, rivers, and oceans. Using the current cleaning approach results in low efficiency and hazard. The detection, collection, sorting, and removal of plastic trash from such water surfaces has been the subject of relatively little robotic research, despite the dire circumstances. From private sources, there are very few individual efforts to be found. In order to attain great efficiency without human assistance or operation, a fully autonomous water surface cleaning robot is proposed in this study. The robot was created to adapt to any type of water body found in the real world. An efficient object identification machine learning technique can be suggested for the creation of autonomous cleaning robots. This study improved the Single Short Detection (SSD) method to recognise objects accurately. Because of the enhanced detection techniques, the robot is able to collect trash on its own. With a mean average precision (mAP) of 94.099 % and a detection speed of up to 64.67 frames per second, experimental findings show that the enhanced SSD has exceptional detection speed and accuracy.

如今,塑料垃圾正以指数级的速度淹没我们的水道。目前,这场灾难已引起全球关注。因此,保护水面环境越来越受到重视。目前,可以利用人力清理池塘、河流和海洋等受污染的水体。目前的清理方法效率低、危害大。尽管情况危急,但有关检测、收集、分类和清除这些水体表面塑料垃圾的机器人研究却相对较少。从私人来源来看,也很少有单独的研究成果。为了在无人协助或操作的情况下实现高效率,本研究提出了一种完全自主的水面清洁机器人。该机器人可适应现实世界中任何类型的水体。建议采用高效的物体识别机器学习技术来创建自主清洁机器人。本研究改进了单短检测(SSD)方法,以准确识别物体。由于采用了增强型检测技术,机器人能够自行收集垃圾。实验结果表明,增强型 SSD 的平均精度 (mAP) 为 94.099 %,检测速度高达每秒 64.67 帧,具有出色的检测速度和精度。
{"title":"An improved single short detection method for smart vision-based water garbage cleaning robot","authors":"Anandakumar Haldorai,&nbsp;Babitha Lincy R,&nbsp;Suriya M,&nbsp;Minu Balakrishnan","doi":"10.1016/j.cogr.2023.11.002","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.11.002","url":null,"abstract":"<div><p>These days, plastic trash is exponentially overwhelming our waterways. The catastrophe has attracted global attention at this point. As a result, protecting the environment on the water's surface has received increasing focus. Currently, manpower can be used to clean up contaminated water bodies like ponds, rivers, and oceans. Using the current cleaning approach results in low efficiency and hazard. The detection, collection, sorting, and removal of plastic trash from such water surfaces has been the subject of relatively little robotic research, despite the dire circumstances. From private sources, there are very few individual efforts to be found. In order to attain great efficiency without human assistance or operation, a fully autonomous water surface cleaning robot is proposed in this study. The robot was created to adapt to any type of water body found in the real world. An efficient object identification machine learning technique can be suggested for the creation of autonomous cleaning robots. This study improved the Single Short Detection (SSD) method to recognise objects accurately. Because of the enhanced detection techniques, the robot is able to collect trash on its own. With a mean average precision (mAP) of 94.099 % and a detection speed of up to 64.67 frames per second, experimental findings show that the enhanced SSD has exceptional detection speed and accuracy.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 19-29"},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241323000393/pdfft?md5=a8305dcc49d8d37defb2594ad2b10d51&pid=1-s2.0-S2667241323000393-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138738971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on YOLOv3 model compression strategy for UAV deployment 无人机部署中YOLOv3模型压缩策略研究
Pub Date : 2023-11-17 DOI: 10.1016/j.cogr.2023.11.001
Fei Xu , Litao Huang , Xiaoyang Gao , Tingting Yu , Leyi Zhang

UAVs are often limited by limited resources when performing flight tasks, especially the contradiction between storage resources and computing resources when the huge YOLOv3 model is deployed on the edge UAVs. In this paper, we tend to compress YOLOv3 model in different aspects to achieve load availability at the edge. In this paper, deep separable convolution is introduced to reduce the computation of the model. Then, PR regularization term is used as the regularization term of sparse training to better distinguish scaling factors, and then the hybrid pruning combining channel pruning and layer pruning is carried out on the model according to scaling factors, in order to reduce the number of model parameters and the amount of calculation. Finally, since the training data is a 32-bit floating point number, DoReFa-Net quantization method is used to quantify the model, so as to compress the storage capacity of the model. The experimental results show that the compression scheme proposed in this paper can effectively reduce the number of parameters by 97.5 % and the calculation amount by 82.3 %, and can maintain the original detection efficiency of UAVs.

无人机在执行飞行任务时往往受到有限资源的限制,特别是在边缘无人机上部署庞大的YOLOv3模型时,存储资源与计算资源之间的矛盾尤为突出。在本文中,我们倾向于对YOLOv3模型进行不同方面的压缩,以实现边缘的负载可用性。本文引入深度可分离卷积来减少模型的计算量。然后,利用PR正则化项作为稀疏训练的正则化项,更好地区分尺度因子,然后根据尺度因子对模型进行通道剪枝和层剪枝相结合的混合剪枝,以减少模型参数的数量和计算量。最后,由于训练数据为32位浮点数,采用DoReFa-Net量化方法对模型进行量化,从而压缩模型的存储容量。实验结果表明,本文提出的压缩方案可有效减少97.5%的参数个数和82.3%的计算量,并能保持无人机原有的检测效率。
{"title":"Research on YOLOv3 model compression strategy for UAV deployment","authors":"Fei Xu ,&nbsp;Litao Huang ,&nbsp;Xiaoyang Gao ,&nbsp;Tingting Yu ,&nbsp;Leyi Zhang","doi":"10.1016/j.cogr.2023.11.001","DOIUrl":"https://doi.org/10.1016/j.cogr.2023.11.001","url":null,"abstract":"<div><p>UAVs are often limited by limited resources when performing flight tasks, especially the contradiction between storage resources and computing resources when the huge YOLOv3 model is deployed on the edge UAVs. In this paper, we tend to compress YOLOv3 model in different aspects to achieve load availability at the edge. In this paper, deep separable convolution is introduced to reduce the computation of the model. Then, PR regularization term is used as the regularization term of sparse training to better distinguish scaling factors, and then the hybrid pruning combining channel pruning and layer pruning is carried out on the model according to scaling factors, in order to reduce the number of model parameters and the amount of calculation. Finally, since the training data is a 32-bit floating point number, DoReFa-Net quantization method is used to quantify the model, so as to compress the storage capacity of the model. The experimental results show that the compression scheme proposed in this paper can effectively reduce the number of parameters by 97.5 % and the calculation amount by 82.3 %, and can maintain the original detection efficiency of UAVs.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"4 ","pages":"Pages 8-18"},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241323000381/pdfft?md5=c325aa36bb6e1759d99185c61f3a6b9f&pid=1-s2.0-S2667241323000381-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138439137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cognitive Robotics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1