首页 > 最新文献

Cognitive Robotics最新文献

英文 中文
Development of a user-following mobile robot with a stand-up assistance function 具有站立辅助功能的用户跟随移动机器人的研制
Pub Date : 2022-01-01 DOI: 10.1016/j.cogr.2022.03.003
Shenglin Mu, Satoru Shibata, Tomonori Yamamoto

In this paper, a user-following mobile robot which tracks and follows the user, offering stand-up assistance function is proposed. The proposed robot plays the role of a chair where the user can sit on, and offers a stand-up assistance function compensating the lack of muscle strength. In the proposed robot, a sensing method for buttocks recognition using a depth sensor is proposed. By measuring the distance from the user’s buttocks, the walking state is recognized and the tracking is performed at a fixed distance. As an approach to realize the tracking function, a human tracking method for mobile robots using PD control is constructed. According experimental study, usefulness of the proposed mobile robot with the function of user-following and stand-up assistance is confirmed. The user recognition method and the tracking method using PD control are confirmed effective. With the proposed robot system, improvement in welfare field can be expected.

本文提出了一种用户跟随移动机器人,它可以跟踪和跟随用户,并提供站立辅助功能。该机器人可以扮演椅子的角色,用户可以坐在上面,并提供站立辅助功能,以弥补肌肉力量的不足。在该机器人中,提出了一种基于深度传感器的臀部识别方法。通过测量与用户臀部的距离,识别行走状态,并在固定距离内进行跟踪。作为跟踪功能的实现途径,构造了一种基于PD控制的移动机器人人体跟踪方法。通过实验研究,验证了所设计的具有用户跟随和站立辅助功能的移动机器人的实用性。验证了用户识别方法和PD控制跟踪方法的有效性。通过提出的机器人系统,可以预期福利领域的改善。
{"title":"Development of a user-following mobile robot with a stand-up assistance function","authors":"Shenglin Mu,&nbsp;Satoru Shibata,&nbsp;Tomonori Yamamoto","doi":"10.1016/j.cogr.2022.03.003","DOIUrl":"https://doi.org/10.1016/j.cogr.2022.03.003","url":null,"abstract":"<div><p>In this paper, a user-following mobile robot which tracks and follows the user, offering stand-up assistance function is proposed. The proposed robot plays the role of a chair where the user can sit on, and offers a stand-up assistance function compensating the lack of muscle strength. In the proposed robot, a sensing method for buttocks recognition using a depth sensor is proposed. By measuring the distance from the user’s buttocks, the walking state is recognized and the tracking is performed at a fixed distance. As an approach to realize the tracking function, a human tracking method for mobile robots using PD control is constructed. According experimental study, usefulness of the proposed mobile robot with the function of user-following and stand-up assistance is confirmed. The user recognition method and the tracking method using PD control are confirmed effective. With the proposed robot system, improvement in welfare field can be expected.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 83-95"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241322000064/pdfft?md5=eb234cb3880e54b18b3ff70643c72736&pid=1-s2.0-S2667241322000064-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92091649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resource allocation in UAV assisted air ground intelligent inspection system 无人机辅助地空智能巡检系统中的资源分配
Pub Date : 2022-01-01 DOI: 10.1016/j.cogr.2021.12.002
Zhuoya Zhang , Fei Xu , Zengshi Qin , Yue Xie

With the progress of power grid technology and intelligent technology, intelligent inspection robot (IR) came into being and are expected to become the main force of substation inspection in the future. Among them, mobile edge computing provides a promising architecture to meet the explosive growth of communication and computing needs of inspection robot. Inspection robot can transmit the collected High Definition (HD) video to adjacent edge servers for data processing and state research and judgment. However, the communication constraints of long-distance transmission, high reliability and low delay pose challenges to task offloading optimization. Therefore, this paper introduced Unmanned Aerial Vehicle (UAV) and established UAV assisted mobile edge computing system. UAV assisted and mobile edge computing are combined to form edge computing nodes. In this way, it provided communication and computing services to the IR for fast data processing. Specifically, in order to optimize the system energy consumption, a resource allocation strategy based on genetic algorithm is proposed. By optimizing the offloading decision and computing resource allocation of the IRs, the computing task of the IRs are offloaded to an energy-efficient UAV. The experimental results show that the resource allocation strategy based on genetic algorithm can effectively reduce the energy consumption and cost of UAVs and IRs, and effectively realize the reasonable allocation of resources. The results verify the effectiveness and reliability of the algorithm in the real scene.

随着电网技术和智能技术的进步,智能巡检机器人应运而生,并有望成为未来变电站巡检的主力军。其中,移动边缘计算为满足巡检机器人通信和计算需求的爆炸式增长提供了一个很有前景的架构。巡检机器人可以将采集到的高清视频传输到相邻的边缘服务器进行数据处理和状态研究判断。然而,远程传输、高可靠性和低时延的通信约束对任务卸载优化提出了挑战。为此,本文引入无人机(UAV),建立了无人机辅助移动边缘计算系统。将无人机辅助边缘计算与移动边缘计算相结合,形成边缘计算节点。通过这种方式,它为IR提供通信和计算服务,以实现快速数据处理。具体而言,为了优化系统能耗,提出了一种基于遗传算法的资源分配策略。通过优化无人机的卸载决策和计算资源分配,将无人机的计算任务转移到高效节能的无人机上。实验结果表明,基于遗传算法的资源分配策略可以有效地降低无人机和红外无人机的能耗和成本,有效地实现资源的合理分配。实验结果验证了该算法在真实场景中的有效性和可靠性。
{"title":"Resource allocation in UAV assisted air ground intelligent inspection system","authors":"Zhuoya Zhang ,&nbsp;Fei Xu ,&nbsp;Zengshi Qin ,&nbsp;Yue Xie","doi":"10.1016/j.cogr.2021.12.002","DOIUrl":"10.1016/j.cogr.2021.12.002","url":null,"abstract":"<div><p>With the progress of power grid technology and intelligent technology, intelligent inspection robot (IR) came into being and are expected to become the main force of substation inspection in the future. Among them, mobile edge computing provides a promising architecture to meet the explosive growth of communication and computing needs of inspection robot. Inspection robot can transmit the collected High Definition (HD) video to adjacent edge servers for data processing and state research and judgment. However, the communication constraints of long-distance transmission, high reliability and low delay pose challenges to task offloading optimization. Therefore, this paper introduced Unmanned Aerial Vehicle (UAV) and established UAV assisted mobile edge computing system. UAV assisted and mobile edge computing are combined to form edge computing nodes. In this way, it provided communication and computing services to the IR for fast data processing. Specifically, in order to optimize the system energy consumption, a resource allocation strategy based on genetic algorithm is proposed. By optimizing the offloading decision and computing resource allocation of the IRs, the computing task of the IRs are offloaded to an energy-efficient UAV. The experimental results show that the resource allocation strategy based on genetic algorithm can effectively reduce the energy consumption and cost of UAVs and IRs, and effectively realize the reasonable allocation of resources. The results verify the effectiveness and reliability of the algorithm in the real scene.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 1-12"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241321000215/pdfft?md5=52655729279f3a497faeb732baa533df&pid=1-s2.0-S2667241321000215-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80206059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A novel level set model initialized with guided filter for automated PET-CT image segmentation 一种新的引导滤波初始化水平集模型用于PET-CT图像自动分割
Pub Date : 2022-01-01 DOI: 10.1016/j.cogr.2022.08.003
Shuhua Bai , Xiaojian Qiu , Rongqun Hu , Yunqiang Wu

Positron emission tomography (PET) and computed tomography (CT) scanner image analysis plays an important role in clinical radiotherapy treatment. PET and CT images provide complementary cues for identifying tumor tissues. In specific, PET images can clearly denote the tumor tissue, whereas this source suffers from the problem of low spatial resolution. On the contrary, CT images have a high resolution, but they can not recognize the tumor from normal tissues. In this work, we firstly fuse PET and CT images by using the guided filter. Then, a region and edge-based level set model is proposed to segment PET-CT fusion images. At last, a normalization term is designed by combining length, distance and H1 terms with the aim to improve segmentation accuracy. The proposed method was validated in the robust delineation of lung tumor tissues on 20 PET-CT samples. Both qualitative and quantitative results demonstrate significant improvement compared to both the data-independent and deep learning based segmentation methods.

正电子发射断层扫描(PET)和计算机断层扫描(CT)扫描图像分析在临床放射治疗中起着重要作用。PET和CT图像为识别肿瘤组织提供了互补的线索。具体而言,PET图像可以清晰地表示肿瘤组织,但该来源存在空间分辨率低的问题。相反,CT图像分辨率高,但不能从正常组织中识别肿瘤。在这项工作中,我们首先使用引导滤波器融合PET和CT图像。然后,提出了一种基于区域和边缘的水平集模型来分割PET-CT融合图像。最后,结合长度项、距离项和H1项设计一种归一化项,以提高分割精度。该方法在20个PET-CT样本上的肺肿瘤组织的鲁棒描绘中得到了验证。定性和定量结果都表明,与数据独立和基于深度学习的分割方法相比,该方法有了显著的改进。
{"title":"A novel level set model initialized with guided filter for automated PET-CT image segmentation","authors":"Shuhua Bai ,&nbsp;Xiaojian Qiu ,&nbsp;Rongqun Hu ,&nbsp;Yunqiang Wu","doi":"10.1016/j.cogr.2022.08.003","DOIUrl":"10.1016/j.cogr.2022.08.003","url":null,"abstract":"<div><p>Positron emission tomography (PET) and computed tomography (CT) scanner image analysis plays an important role in clinical radiotherapy treatment. PET and CT images provide complementary cues for identifying tumor tissues. In specific, PET images can clearly denote the tumor tissue, whereas this source suffers from the problem of low spatial resolution. On the contrary, CT images have a high resolution, but they can not recognize the tumor from normal tissues. In this work, we firstly fuse PET and CT images by using the guided filter. Then, a region and edge-based level set model is proposed to segment PET-CT fusion images. At last, a normalization term is designed by combining length, distance and H<sup>1</sup> terms with the aim to improve segmentation accuracy. The proposed method was validated in the robust delineation of lung tumor tissues on 20 PET-CT samples. Both qualitative and quantitative results demonstrate significant improvement compared to both the data-independent and deep learning based segmentation methods.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 193-201"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241322000180/pdfft?md5=19e625c37228b4881aaccfb4c3123000&pid=1-s2.0-S2667241322000180-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80496687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Spatiotemporal cue fusion-based saliency extraction and its application in video compression 基于时空线索融合的显著性提取及其在视频压缩中的应用
Pub Date : 2022-01-01 DOI: 10.1016/j.cogr.2022.06.003
Ke Li , Zhonghua Luo , Tong Zhang , Yinglan Ruan , Dan Zhou

Extracting salient regions plays an important role in computer vision tasks, e.g., object detection, recognition and video compression. Previous saliency detection study is mostly conducted on individual frames and tends to extract saliency with spatial cues. The development of various motion feature further extends the saliency concept to the motion saliency from videos. In contrast to image-based saliency extraction, video-based saliency extraction is more challenging due to the complicated distractors, e.g., the background dynamics and shadows. In this paper, we propose a novel saliency extraction method by fusing temporal and spatial cues. In specific, the long-term and short-term variations are comprehensively fused to extract the temporal cue, which is then utilized to establish the background guidance for generating the spatial cue. Herein, the long-term variations and spatial cues jointly highlight the contrast between objects and the background, which can solve the problem caused by shadows. The short-term variations contribute to the removal of background dynamics. Spatiotemporal cues are fully exploited to constrain the saliency extraction across frames. The saliency extraction performance of our method is demonstrated by comparing it to both unsupervised and supervised methods. Moreover, this novel saliency extraction model is applied in the video compression tasks, helping to accelerate the video compression task and achieve a larger PSNR value for the region of interest (ROI).

突出区域的提取在目标检测、识别和视频压缩等计算机视觉任务中起着重要的作用。以往的显著性检测研究大多是针对单个帧进行的,并且倾向于利用空间线索提取显著性。各种运动特征的发展进一步将显著性概念从视频扩展到运动显著性。与基于图像的显著性提取相比,由于背景动态和阴影等复杂的干扰因素,基于视频的显著性提取更具挑战性。本文提出了一种融合时空线索的显著性提取方法。具体而言,将长期和短期变化综合融合提取时间线索,然后利用时间线索建立生成空间线索的背景指导。其中,长期变化和空间线索共同突出了物体与背景的对比,可以解决阴影带来的问题。短期变化有助于消除背景动态。充分利用时空线索来约束帧间的显著性提取。通过与无监督和有监督方法的比较,证明了该方法的显著性提取性能。此外,将该显著性提取模型应用于视频压缩任务中,有助于加快视频压缩任务的速度,获得更大的感兴趣区域(ROI)的PSNR值。
{"title":"Spatiotemporal cue fusion-based saliency extraction and its application in video compression","authors":"Ke Li ,&nbsp;Zhonghua Luo ,&nbsp;Tong Zhang ,&nbsp;Yinglan Ruan ,&nbsp;Dan Zhou","doi":"10.1016/j.cogr.2022.06.003","DOIUrl":"10.1016/j.cogr.2022.06.003","url":null,"abstract":"<div><p>Extracting salient regions plays an important role in computer vision tasks, e.g., object detection, recognition and video compression. Previous saliency detection study is mostly conducted on individual frames and tends to extract saliency with spatial cues. The development of various motion feature further extends the saliency concept to the motion saliency from videos. In contrast to image-based saliency extraction, video-based saliency extraction is more challenging due to the complicated distractors, e.g., the background dynamics and shadows. In this paper, we propose a novel saliency extraction method by fusing temporal and spatial cues. In specific, the long-term and short-term variations are comprehensively fused to extract the temporal cue, which is then utilized to establish the background guidance for generating the spatial cue. Herein, the long-term variations and spatial cues jointly highlight the contrast between objects and the background, which can solve the problem caused by shadows. The short-term variations contribute to the removal of background dynamics. Spatiotemporal cues are fully exploited to constrain the saliency extraction across frames. The saliency extraction performance of our method is demonstrated by comparing it to both unsupervised and supervised methods. Moreover, this novel saliency extraction model is applied in the video compression tasks, helping to accelerate the video compression task and achieve a larger PSNR value for the region of interest (ROI).</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 177-185"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241322000131/pdfft?md5=181cb8030eca6d4778b64500c49f1fa8&pid=1-s2.0-S2667241322000131-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76038010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Knowledge graph embedding based on semantic hierarchy 基于语义层次的知识图嵌入
Pub Date : 2022-01-01 DOI: 10.1016/j.cogr.2022.06.002
Fan Linjuan, Sun Yongyong, Xu Fei, Zhou Hnghang

In view of the current knowledge graph embedding, it mainly focuses on symmetry/opposition, inversion and combination of relationship patterns, and does not fully consider the structure of the knowledge graph. We propose a Knowledge Graph Embedding Based on Semantic Hierarchy (SHKE), which fully considers the information of knowledge graph by fusing the semantic information of the knowledge graph and the hierarchical information. The knowledge graph is mapped to a polar coordinate system, where concentric circles naturally reflect the hierarchy, and entities can be divided into modulus parts and phase parts, and then the modulus part of the polar coordinate system is mapped to the relational vector space through the relational vector, thus the modulus part takes into account the semantic information of the knowledge graph, and the phase part takes into account the hierarchical information. Experiments show that compared with other models, the proposed model improves the knowledge graph link prediction index Hits@10% by about 10% and the accuracy of the triple group classification experiment by about 10%.

针对目前的知识图嵌入,主要关注关系模式的对称/对立、反转和组合,没有充分考虑知识图的结构。提出了一种基于语义层次的知识图嵌入方法(SHKE),通过融合知识图的语义信息和层次信息,充分考虑了知识图的信息。将知识图谱映射到极坐标系中,其中同心圆自然反映层次,实体可分为模部分和相部分,然后将极坐标系的模部分通过关系向量映射到关系向量空间,从而模部分考虑了知识图谱的语义信息,相部分考虑了层次信息。实验表明,与其他模型相比,该模型将知识图链接预测指标Hits@10%提高了约10%,三组分类实验的准确率提高了约10%。
{"title":"Knowledge graph embedding based on semantic hierarchy","authors":"Fan Linjuan,&nbsp;Sun Yongyong,&nbsp;Xu Fei,&nbsp;Zhou Hnghang","doi":"10.1016/j.cogr.2022.06.002","DOIUrl":"10.1016/j.cogr.2022.06.002","url":null,"abstract":"<div><p>In view of the current knowledge graph embedding, it mainly focuses on symmetry/opposition, inversion and combination of relationship patterns, and does not fully consider the structure of the knowledge graph. We propose a Knowledge Graph Embedding Based on Semantic Hierarchy (SHKE), which fully considers the information of knowledge graph by fusing the semantic information of the knowledge graph and the hierarchical information. The knowledge graph is mapped to a polar coordinate system, where concentric circles naturally reflect the hierarchy, and entities can be divided into modulus parts and phase parts, and then the modulus part of the polar coordinate system is mapped to the relational vector space through the relational vector, thus the modulus part takes into account the semantic information of the knowledge graph, and the phase part takes into account the hierarchical information. Experiments show that compared with other models, the proposed model improves the knowledge graph link prediction index Hits@10% by about 10% and the accuracy of the triple group classification experiment by about 10%.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 147-154"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266724132200012X/pdfft?md5=eff502f209037b9c55f942f433d918f1&pid=1-s2.0-S266724132200012X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83608118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on plant disease identification based on CNN 基于CNN的植物病害识别研究
Pub Date : 2022-01-01 DOI: 10.1016/j.cogr.2022.07.001
Xuewei Sun , Guohou Li , Peixin Qu , Xiwang Xie , Xipeng Pan , Weidong Zhang

Traditional digital image processing methods extract disease features manually, which have low efficiency and low recognition accuracy. To solve this problem, In this paper, we propose a convolutional neural network architecture FL-EfficientNet (Focal loss EfficientNet), which is used for multi-category identification of plant disease images. Firstly, through the Neural Architecture Search technology, the network width, network depth, and image resolution are adaptively adjusted according to a group of composite coefficients, to improve the balance of network dimension and model stability; Secondly, the valuable features in the disease image are extracted by introducing the moving flip bottleneck convolution and attention mechanism; Finally, the Focal loss function is used to replace the traditional Cross-Entropy loss function, to improve the ability of the network model to focus on the samples that are not easy to identify. The experiment uses the public data set new plant diseases dataset (NPDD) and compares it with ResNet50, DenseNet169, and EfficientNet. The experimental results show that the accuracy of FL-EfficientNet in identifying 10 diseases of 5 kinds of crops is 99.72%, which is better than the above comparison network. At the same time, FL-EfficientNet has the fastest convergence speed, and the training time of 15 epochs is 4.7 h.

传统的数字图像处理方法手工提取疾病特征,效率低,识别精度低。为了解决这一问题,本文提出了一种卷积神经网络架构FL-EfficientNet (Focal loss EfficientNet),用于植物病害图像的多类别识别。首先,通过神经结构搜索技术,根据一组复合系数自适应调整网络宽度、网络深度和图像分辨率,提高网络维度的平衡性和模型的稳定性;其次,通过引入运动翻转瓶颈卷积和注意机制,提取疾病图像中有价值的特征;最后,用Focal loss函数代替传统的Cross-Entropy loss函数,提高网络模型对不易识别的样本的聚焦能力。实验采用公共数据集新植物病害数据集(NPDD),并与ResNet50、DenseNet169和EfficientNet进行比较。实验结果表明,fl - effentnet对5种作物10种病害的识别准确率为99.72%,优于上述对比网络。同时,fl - effentnet的收敛速度最快,15次epoch的训练时间为4.7 h。
{"title":"Research on plant disease identification based on CNN","authors":"Xuewei Sun ,&nbsp;Guohou Li ,&nbsp;Peixin Qu ,&nbsp;Xiwang Xie ,&nbsp;Xipeng Pan ,&nbsp;Weidong Zhang","doi":"10.1016/j.cogr.2022.07.001","DOIUrl":"https://doi.org/10.1016/j.cogr.2022.07.001","url":null,"abstract":"<div><p>Traditional digital image processing methods extract disease features manually, which have low efficiency and low recognition accuracy. To solve this problem, In this paper, we propose a convolutional neural network architecture FL-EfficientNet (Focal loss EfficientNet), which is used for multi-category identification of plant disease images. Firstly, through the Neural Architecture Search technology, the network width, network depth, and image resolution are adaptively adjusted according to a group of composite coefficients, to improve the balance of network dimension and model stability; Secondly, the valuable features in the disease image are extracted by introducing the moving flip bottleneck convolution and attention mechanism; Finally, the Focal loss function is used to replace the traditional Cross-Entropy loss function, to improve the ability of the network model to focus on the samples that are not easy to identify. The experiment uses the public data set new plant diseases dataset (NPDD) and compares it with ResNet50, DenseNet169, and EfficientNet. The experimental results show that the accuracy of FL-EfficientNet in identifying 10 diseases of 5 kinds of crops is 99.72%, which is better than the above comparison network. At the same time, FL-EfficientNet has the fastest convergence speed, and the training time of 15 epochs is 4.7 h.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 155-163"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241322000143/pdfft?md5=7eb49b1ffcca835453b31264121944ff&pid=1-s2.0-S2667241322000143-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92080103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning model for discrimination of mild dementia patients using acoustic features 基于声学特征的轻度痴呆患者识别机器学习模型
Pub Date : 2022-01-01 DOI: 10.1016/j.cogr.2021.12.003
Kazu Nishikawa, Kuwahara Akihiro, Rin Hirakawa, Hideaki Kawano, Yoshihisa Nakatoh

In previous research on dementia discrimination by voice, a method using multiple acoustic features by machine learning has been proposed. However, they do not focus on speech analysis in mild dementia patients (MCI). Therefore, we propose a dementia discrimination system based on the analysis of vowel utterance features. The analysis results indicated that some cases of dementia appeared in the voice of mild dementia patients. These results can also be used as an index for future improvement of speech sounds in dementia. Taking advantage of these results, we propose an ensemble discrimination system using a classifier with statistical acoustic features and a Neural Network of transformer models, and the F-score is 0.907, which is better than the state-of-the-art methods.

在以往的语音识别痴呆症的研究中,提出了一种利用机器学习的多种声学特征的方法。然而,他们并没有关注轻度痴呆患者(MCI)的言语分析。因此,我们提出了一种基于元音语音特征分析的痴呆症识别系统。分析结果表明,部分痴呆病例出现在轻度痴呆患者的语音中。这些结果也可以作为未来痴呆症患者语音改善的指标。利用这些结果,我们提出了一种基于统计声学特征分类器和变压器模型神经网络的集成识别系统,其f值为0.907,优于现有的方法。
{"title":"Machine learning model for discrimination of mild dementia patients using acoustic features","authors":"Kazu Nishikawa,&nbsp;Kuwahara Akihiro,&nbsp;Rin Hirakawa,&nbsp;Hideaki Kawano,&nbsp;Yoshihisa Nakatoh","doi":"10.1016/j.cogr.2021.12.003","DOIUrl":"10.1016/j.cogr.2021.12.003","url":null,"abstract":"<div><p>In previous research on dementia discrimination by voice, a method using multiple acoustic features by machine learning has been proposed. However, they do not focus on speech analysis in mild dementia patients (MCI). Therefore, we propose a dementia discrimination system based on the analysis of vowel utterance features. The analysis results indicated that some cases of dementia appeared in the voice of mild dementia patients. These results can also be used as an index for future improvement of speech sounds in dementia. Taking advantage of these results, we propose an ensemble discrimination system using a classifier with statistical acoustic features and a Neural Network of transformer models, and the F-score is 0.907, which is better than the state-of-the-art methods.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 21-29"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241321000288/pdfft?md5=01f437a574b872e24a624b0dbf0fd73d&pid=1-s2.0-S2667241321000288-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76595547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Joint extraction of entities and relations by entity role recognition 基于实体角色识别的实体和关系的联合抽取
Pub Date : 2022-01-01 DOI: 10.1016/j.cogr.2022.11.001
Xi Han, Qi-Ming Liu

Joint extracting entities and relations from unstructured text is a fundamental task in information extraction and a key step in constructing large knowledge graphs, entities and relations are constructed as relational triples of the form (subject, relation, object) or (s, r, o). Although triple extraction has been extremely successful, there are still continuing challenges due to factors such as entity overlap. Recent work has shown us the excellent performance of joint extraction models, however these methods still suffer from some problems, such as the redundancy prediction problem. Traditional methods for solving the overlap problem require triple extraction under the full class of relations defined in the dataset, however the number of relations in a sentence is much smaller than the full relational class, which leads to a large number of redundant predictions. To solve this problem, this paper decomposes the task into two steps: entity and potential relation extraction and entity-semantic role determination of triples. Specifically, we design several modules to extract the entities and relations in the sentence separately, and we use these entities and relations to construct possible candidate triples and predict the semantic roles (subject or object) of the entities under the relational constraints to obtain the correct triples. In general we propose a model for identifying the semantic roles of entities in triples under relation constraints, which can effectively solve the problem of redundant prediction, We also evaluated our model on two widely used public datasets, and our model achieved advanced performance with F1 scores of 90.8 and 92.4 on NYT and WebNLG, respectively.

从非结构化文本中联合抽取实体和关系是信息抽取的基本任务,也是构建大型知识图谱的关键步骤,实体和关系被构造为(主体、关系、对象)或(s、r、o)形式的关系三元组。虽然三元组抽取已经非常成功,但由于实体重叠等因素仍然存在挑战。近年来的研究表明,联合抽取模型具有良好的性能,但这些方法仍然存在一些问题,如冗余预测问题。解决重叠问题的传统方法需要在数据集中定义的全类关系下进行三次提取,然而句子中的关系数量远远小于全类关系,这导致了大量的冗余预测。为了解决这一问题,本文将任务分解为两个步骤:实体和潜在关系提取和三元组的实体-语义角色确定。具体来说,我们设计了几个模块分别提取句子中的实体和关系,利用这些实体和关系构造可能的候选三元组,并在关系约束下预测实体的语义角色(主语或宾语),从而得到正确的三元组。总的来说,我们提出了一个在关系约束下识别三元组中实体语义角色的模型,可以有效地解决冗余预测问题。我们还在两个广泛使用的公共数据集上对我们的模型进行了评估,我们的模型在NYT和WebNLG上分别获得了90.8和92.4的F1分,取得了较好的性能。
{"title":"Joint extraction of entities and relations by entity role recognition","authors":"Xi Han,&nbsp;Qi-Ming Liu","doi":"10.1016/j.cogr.2022.11.001","DOIUrl":"10.1016/j.cogr.2022.11.001","url":null,"abstract":"<div><p>Joint extracting entities and relations from unstructured text is a fundamental task in information extraction and a key step in constructing large knowledge graphs, entities and relations are constructed as relational triples of the form (subject, relation, object) or (s, r, o). Although triple extraction has been extremely successful, there are still continuing challenges due to factors such as entity overlap. Recent work has shown us the excellent performance of joint extraction models, however these methods still suffer from some problems, such as the redundancy prediction problem. Traditional methods for solving the overlap problem require triple extraction under the full class of relations defined in the dataset, however the number of relations in a sentence is much smaller than the full relational class, which leads to a large number of redundant predictions. To solve this problem, this paper decomposes the task into two steps: entity and potential relation extraction and entity-semantic role determination of triples. Specifically, we design several modules to extract the entities and relations in the sentence separately, and we use these entities and relations to construct possible candidate triples and predict the semantic roles (subject or object) of the entities under the relational constraints to obtain the correct triples. In general we propose a model for identifying the semantic roles of entities in triples under relation constraints, which can effectively solve the problem of redundant prediction, We also evaluated our model on two widely used public datasets, and our model achieved advanced performance with F1 scores of 90.8 and 92.4 on NYT and WebNLG, respectively.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 234-241"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241322000210/pdfft?md5=52b08deb4b35e7b962f6357768547469&pid=1-s2.0-S2667241322000210-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80809723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eye fatigue estimation using blink detection based on Eye Aspect Ratio Mapping(EARM) 基于眼宽比映射(EARM)的眨眼检测眼疲劳估计
Pub Date : 2022-01-01 DOI: 10.1016/j.cogr.2022.01.003
Akihiro Kuwahara, Kazu Nishikawa, Rin Hirakawa, Hideaki Kawano, Yoshihisa Nakatoh

With the advent of the information society, the eyes' health is threatened all over the world. Rules and systems have been proposed to avoid these problems, but most users do not use them due to the physical and time constraints and costs involved and the lack of awareness of eye health. In this paper, we estimate the eye fatigue sensitivity by detecting spontaneous blinks with high accuracy. The experimental results show that the proposed Eye Aspect Ratio Mapping can classify blinks with high accuracy at a low cost. We also found a strong correlation between the median SBR (Spontaneous Blink Rate) and the time between the objective estimation of eye fatigue and the subject's awareness of eye fatigue.

随着信息社会的到来,眼睛的健康在全世界都受到威胁。已经提出了避免这些问题的规则和系统,但由于物理和时间限制以及所涉及的成本以及缺乏眼睛健康意识,大多数用户没有使用它们。在本文中,我们通过检测眼睛的自发眨眼来估计眼睛的疲劳敏感性。实验结果表明,该方法能够以较低的成本对眨眼进行高精度的分类。我们还发现自发眨眼率的中位数与客观估计眼睛疲劳和受试者意识到眼睛疲劳之间的时间有很强的相关性。
{"title":"Eye fatigue estimation using blink detection based on Eye Aspect Ratio Mapping(EARM)","authors":"Akihiro Kuwahara,&nbsp;Kazu Nishikawa,&nbsp;Rin Hirakawa,&nbsp;Hideaki Kawano,&nbsp;Yoshihisa Nakatoh","doi":"10.1016/j.cogr.2022.01.003","DOIUrl":"10.1016/j.cogr.2022.01.003","url":null,"abstract":"<div><p>With the advent of the information society, the eyes' health is threatened all over the world. Rules and systems have been proposed to avoid these problems, but most users do not use them due to the physical and time constraints and costs involved and the lack of awareness of eye health. In this paper, we estimate the eye fatigue sensitivity by detecting spontaneous blinks with high accuracy. The experimental results show that the proposed Eye Aspect Ratio Mapping can classify blinks with high accuracy at a low cost. We also found a strong correlation between the median SBR (Spontaneous Blink Rate) and the time between the objective estimation of eye fatigue and the subject's awareness of eye fatigue.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 50-59"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241322000039/pdfft?md5=c2e21075b740c06c6149dbaff21cd926&pid=1-s2.0-S2667241322000039-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90674752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Pinocchio: A language for action representation 皮诺曹:一种动作表示语言
Pub Date : 2022-01-01 DOI: 10.1016/j.cogr.2022.03.007
Pietro Morasso , Vishwanathan Mohan

The development of a language of action representation is a central issue for cognitive robotics, motor neuroscience, ergonomics, sport, and arts with a double goal: analysis and synthesis of action sequences that preserve the spatiotemporal invariants of biological motion, including the associated goals of learning and training. However, the notation systems proposed so far only achieved inconclusive results. By reviewing the underlying rationale of such systems, it is argued that the common flaw is the choice of the ‘primitives’ to be combined to produce complex gestures: basic movements with a different degree of “granularity”. The problem is that in motor cybernetics movements do not add: whatever the degree of granularity of the chosen primitives their simple summation is unable to produce the spatiotemporal invariants that characterize biological motion. The proposed alternative is based on the Equilibrium Point Hypothesis and, in particular, on a computational formulation named Passive Motion Paradigm, where whole-body gestures are produced by applying a small set of force fields to specific key points of the internal body schema: its animation by carefully selected force fields is analogous to the animation of a marionette using wires or strings. The crucial point is that force fields do add, thus suggesting to use force fields as a consistent set of primitives instead of basic movements. This is the starting point for suggesting a force field-based language of action representation, named Pinocchio in analogy with the famous marionette. The proposed language for action description and generation includes three main modules: 1) Primitive force field generators, 2) a Body-Model to be animated by the primitive generators, and 3) a graphical staff system for expressing any specific notated gesture. We suggest that such language is a crucial building block for the development of a cognitive architecture of cooperative robots.

动作表征语言的发展是认知机器人、运动神经科学、人体工程学、运动和艺术的核心问题,具有双重目标:分析和合成动作序列,保持生物运动的时空不变性,包括学习和训练的相关目标。然而,迄今为止提出的符号系统只取得了不确定的结果。通过回顾这类系统的基本原理,我们认为常见的缺陷是选择“原语”来组合产生复杂的手势:具有不同程度“粒度”的基本动作。问题在于,在运动控制论中,运动不能相加:无论所选原语的粒度有多大,它们的简单求和都无法产生表征生物运动的时空不变量。提出的替代方案是基于平衡点假说,特别是基于一个名为被动运动范式的计算公式,其中全身手势是通过将一小组力场应用于内部身体图式的特定关键点而产生的:其动画通过精心选择的力场类似于使用电线或绳子的牵线木偶的动画。关键的一点是力场确实会增加,因此建议使用力场作为一组一致的原语而不是基本运动。这是建议一种基于力场的动作表征语言的起点,与著名的木偶相似,被命名为匹诺曹。所提出的用于动作描述和生成的语言包括三个主要模块:1)原始力场生成器,2)由原始生成器生成动画的Body-Model,以及3)用于表达任何特定标记手势的图形化五线谱系统。我们认为,这种语言是开发协作机器人认知架构的关键组成部分。
{"title":"Pinocchio: A language for action representation","authors":"Pietro Morasso ,&nbsp;Vishwanathan Mohan","doi":"10.1016/j.cogr.2022.03.007","DOIUrl":"10.1016/j.cogr.2022.03.007","url":null,"abstract":"<div><p>The development of a language of action representation is a central issue for cognitive robotics, motor neuroscience, ergonomics, sport, and arts with a double goal: analysis and synthesis of action sequences that preserve the spatiotemporal invariants of biological motion, including the associated goals of learning and training. However, the notation systems proposed so far only achieved inconclusive results. By reviewing the underlying rationale of such systems, it is argued that the common flaw is the choice of the ‘primitives’ to be combined to produce complex gestures: basic movements with a different degree of “granularity”. The problem is that in motor cybernetics movements do not add: whatever the degree of granularity of the chosen primitives their simple summation is unable to produce the spatiotemporal invariants that characterize biological motion. The proposed alternative is based on the Equilibrium Point Hypothesis and, in particular, on a computational formulation named Passive Motion Paradigm, where whole-body gestures are produced by applying a small set of force fields to specific key points of the internal body schema: its animation by carefully selected force fields is analogous to the animation of a marionette using wires or strings. The crucial point is that force fields do add, thus suggesting to use force fields as a consistent set of primitives instead of basic movements. This is the starting point for suggesting a force field-based language of action representation, named Pinocchio in analogy with the famous marionette. The proposed language for action description and generation includes three main modules: 1) Primitive force field generators, 2) a Body-Model to be animated by the primitive generators, and 3) a graphical staff system for expressing any specific notated gesture. We suggest that such language is a crucial building block for the development of a cognitive architecture of cooperative robots.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 119-131"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667241322000106/pdfft?md5=a0ea6d039e0a4dc852711de82c9c4bd5&pid=1-s2.0-S2667241322000106-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91431809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Cognitive Robotics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1