MicroRNAs (miRNAs) provide insight into both the biology and clinical behavior of many human cancers, including nasopharyngeal carcinoma (NPC). The dysregulation of miRNAs in NPC results in a variety of tumor-promoting effects. Furthermore, several miRNAs are prognostic markers for NPC. In addition to cellular miRNAs, NPC samples also often contain miRNAs encoded by Epstein-Barr virus, and these miRNAs may impact NPC biology by targeting both cellular and viral genes. Given their numerous putative roles in NPC development and progression, a thorough understanding of the impact of miRNA dysregulation in NPC is expected to shed light on useful biomarkers and therapeutic targets for the clinical management of this disease. In this review, we describe the efforts to date to identify and characterize such miRNAs in the context of NPC.
Although the Epstein-Barr virus (EBV) has spread to all populations in the world, EBV-associated nasopharyngeal carcinoma (NPC) is prevalent only in South China and Southeast Asia. The role of EBV in the malignant transformation of nasopharyngeal epithelium is the main focus of current researches. Radiotherapy and chemoradiotherapy have been successful in treating early stage NPC, but the recurrence rates remain high. Unfortunately, local relapse and metastasis are commonly unresponsive to conventional treatments. These recurrent and metastatic lesions are believed to arise from residual or surviving cells that have the properties of cancer stem cells. These cancer stem-like cells (CSCs) have the ability to self-renew, differentiate, and sustain propagation. They are also chemo-resistant and can form spheres in anchorage-independent environments. This review summarizes recent researches on the CSCs in EBV-associated NPC, including the findings regarding cell surface markers, stem cell-related transcription factors, and various signaling pathways. In particular, the review focuses on the roles of EBV latent genes [latent membrane protein 1 (LMP1) and latent membrane protein 2A (LMP2A)], cellular microRNAs, and adenosine triphosphate (ATP)-binding cassette chemodrug transporters in contributing to the properties of CSCs, including the epithelial-mesenchymal transition, stem-like transition, and chemo-resistance. Novel therapeutics that enhance the efficacy of radiotherapy and chemoradiotherapy and inhibitors that suppress the properties of CSCs are also discussed.
The interplay between host cell genetics and Epstein-Barr virus (EBV) infection contributes to the development of nasopharyngeal carcinoma (NPC). Understanding the host genetic and epigenetic alterations and the influence of EBV on cell signaling and host gene regulation will aid in understanding the molecular pathogenesis of NPC and provide useful biomarkers and targets for diagnosis and therapy. In this review, we provide an update of the oncogenes and tumor suppressor genes associated with NPC, as well as genes associated with NPC risk including those involved in carcinogen detoxification and DNA repair. We also describe the importance of host genetics that govern the human leukocyte antigen (HLA) complex and immune responses, and we describe the impact of EBV infection on host cell signaling changes and epigenetic regulation of gene expression. High-power genomic sequencing approaches are needed to elucidate the genetic basis for inherited susceptibility to NPC and to identify the genes and pathways driving its molecular pathogenesis.
The parapharyngeal space (PPS) is an inverted pyramid-shaped deep space in the head and neck region, and a variety of tumors, such as salivary gland tumors, neurogenic tumors, nasopharyngeal carcinomas with parapharyngeal invasion, and lymphomas, can be found in this space. The differential diagnosis of PPS tumors remains challenging for radiologists. This study aimed to develop and test a modified method for locating PPS tumors on magnetic resonance (MR) images to improve preoperative differential diagnosis. The new protocol divided the PPS into three compartments: a prestyloid compartment, the carotid sheath, and the areas outside the carotid sheath. PPS tumors were located in these compartments according to the displacements of the tensor veli palatini muscle and the styloid process, with or without blood vessel separations and medial pterygoid invasion. This protocol, as well as a more conventional protocol that is based on displacements of the internal carotid artery (ICA), was used to assess MR images captured from a series of 58 PPS tumors. The consequent distributions of PPS tumor locations determined by both methods were compared. Of all 58 tumors, our new method determined that 57 could be assigned to precise PPS compartments. Nearly all (13/14; 93%) tumors that were located in the pre-styloid compartment were salivary gland tumors. All 15 tumors within the carotid sheath were neurogenic tumors. The vast majority (18/20; 90%) of trans-spatial lesions were malignancies. However, according to the ICA-based method, 28 tumors were located in the pre-styloid compartment, and 24 were located in the post-styloid compartment, leaving 6 tumors that were difficult to locate. Lesions located in both the pre-styloid and the post-styloid compartments comprised various types of tumors. Compared with the conventional ICA-based method, our new method can help radiologists to narrow the differential diagnosis of PPS tumors to specific compartments.
The outcome of hepatocellular carcinoma (HCC) patients significantly differs between western and eastern population centers. Our group previously developed and validated the Chinese University Prognostic Index (CUPI) for the prognostication of HCC among the Asian HCC patient population. In the current study, we aimed to validate the CUPI using an international cohort of patients with HCC and to compare the CUPI to two widely used staging systems, the Barcelona Clinic Liver Cancer (BCLC) classification and the Cancer of the Liver Italian Program (CLIP). To accomplish this goal, two cohorts of patients were enrolled in the United Kingdom (UK; n = 567; 2006-2011) and Hong Kong (HK; n = 517; 2007-2012). The baseline clinical data were recorded. The performances of the CUPI, BCLC, and CLIP were compared in terms of a concordance index (C-index) and were evaluated in subgroups of patients according to treatment intent. The results revealed that the median follow-up durations of the UK and HK cohorts were 27.9 and 29.8 months, respectively. The median overall survival of the UK and HK cohorts were 22.9 and 8.6 months, respectively. The CUPI stratified the patients in both cohorts into three risk subgroups corresponding to distinct outcomes. The median overall survival of the CUPI low-, intermediate-, and high-risk subgroups were 3.15, 1.24, and 0.29 years, respectively, in the UK cohort and were 2.07, 0.32, and 0.10 years, respectively, in the HK cohort. For the patients who underwent curative treatment, the prognostic performance did not differ between the three staging systems, and all were suboptimal. For those who underwent palliative treatment, the CUPI displayed the highest C-index, indicating that this staging system was the most informative for both cohorts. In conclusion, the CUPI is applicable to both western and eastern HCC patient populations. The performances of the three staging systems differed according to treatment intent, and the CUPI was demonstrated to be optimal for those undergoing palliative treatment. A more precise staging system for early-stage disease patients is required.
Outdoor air pollution has been recently classified as a class I human carcinogen by the World Health Organization (WHO). Cumulative evidence from across the globe shows that polluted air is associated with increased risk of lung, head and neck, and nasopharyngeal cancers--all of which affect the upper aerodigestive tract. Importantly, these cancers have been previously linked to smoking. In this article, we review epidemiologic and experimental evidence of the genotoxic and mutagenic effects of air pollution on DNA, purportedly a key mechanism for cancer development. The alarming increase in cancers of the upper aerodigestive tract in Asia suggests a need to focus government efforts and research on reducing air pollution, promoting clean energy, and investigating the carcinogenic effects of air pollution on humans.
The establishment and maintenance of mammary epithelial cell identity depends on the activity of a group of proteins, collectively called maintenance proteins, that act as epigenetic regulators of gene transcription through DNA methylation, histone modification, and chromatin remodeling. Increasing evidence indicates that dysregulation of these crucial proteins may disrupt epithelial cell integrity and trigger breast tumor initiation. Therefore, we explored in silico the expression pattern of a panel of 369 genes known to be involved in the establishment and maintenance of epithelial cell identity and mammary gland remodeling in cell subpopulations isolated from normal human mammary tissue and selectively enriched in their content of bipotent progenitors, committed luminal progenitors, and differentiated myoepithelial or differentiated luminal cells. The results indicated that, compared to bipotent cells, differentiated myoepithelial and luminal subpopulations were both characterized by the differential expression of 4 genes involved in cell identity maintenance: CBX6 and PCGF2, encoding proteins belonging to the Polycomb group, and SMARCD3 and SMARCE1, encoding proteins belonging to the Trithorax group. In addition to these common genes, the myoepithelial phenotype was associated with the differential expression of HDAC1, which encodes histone deacetylase 1, whereas the luminal phenotype was associated with the differential expression of SMARCA4 and HAT1, which encode a Trithorax protein and histone acetylase 1, respectively. The luminal compartment was further characterized by the overexpression of ALDH1A3 and GATA3, and the down-regulation of NOTCH4 and CCNB1, with the latter suggesting a block in cell cycle progression at the G2 phase. In contrast, myoepithelial differentiation was associated with the overexpression of MYC and the down-regulation of CCNE1, with the latter suggesting a block in cell cycle progression at the G1 phase.
Over half of the world's population is exposed to household air pollution from the burning of solid fuels at home. Household air pollution from solid fuel use is a leading risk factor for global disease and remains a major public health problem, especially in low- and mid-income countries. This is a particularly serious problem in China, where many people in rural areas still use coal for household heating and cooking. This review focuses on several decades of research carried out in Xuanwei County, Yunnan Province, where household coal use is a major source of household air pollution and where studies have linked household air pollution exposure to high rates of lung cancer. We conducted a series of case-control and cohort studies in Xuanwei to characterize the lung cancer risk in this population and the factors associated with it. We found lung cancer risk to vary substantially between different coal types, with a higher risk associated with smoky (i.e., bituminous) coal use compared to smokeless (i.e., anthracite) coal use. The installation of a chimney in homes resulted in a substantial reduction in lung cancer incidence and mortality. Overall, our research underscores the need among existing coal users to improve ventilation, use the least toxic fuel, and eventually move toward the use of cleaner fuels, such as gas and electricity.
Gastric cancer is a leading cause of cancer deaths in the world. The treatment of gastric cancer is challenging because of its highly heterogeneous etiology and clinical characteristics. Recent genomic and molecular characterization of gastric cancer, especially the findings reported by the Cancer Genome Atlas (TCGA), have shed light on the heterogeneity and potential targeted therapeutics for four different subtypes of gastric cancer.