Pub Date : 2025-07-23DOI: 10.1016/j.engmic.2025.100227
Jingxian Zhang , Peng Xu , Yongjun Wei
Cycloastragenol is a bioactive, high-value triterpenoid derived from Astragalus membranaceus. Conventional plant-based extraction and chemical synthesis methods are expensive. To our knowledge, this is the first report on the de novo biosynthesis of cycloastragenol in yeast. The mevalonate pathway was reconstituted in yeast peroxisomes, and the engineered yeast produced 656.55 mg/L squalene. Further introduction of heterologous enzymes led the engineered yeast to produce 1.04 mg/L cycloastragenol, which demonstrated the yeast production of value-added medicinal molecules.
{"title":"Production of cycloastragenol in metabolically engineered yeast","authors":"Jingxian Zhang , Peng Xu , Yongjun Wei","doi":"10.1016/j.engmic.2025.100227","DOIUrl":"10.1016/j.engmic.2025.100227","url":null,"abstract":"<div><div>Cycloastragenol is a bioactive, high-value triterpenoid derived from <em>Astragalus membranaceus</em>. Conventional plant-based extraction and chemical synthesis methods are expensive. To our knowledge, this is the first report on the <em>de novo</em> biosynthesis of cycloastragenol in yeast. The mevalonate pathway was reconstituted in yeast peroxisomes, and the engineered yeast produced 656.55 mg/L squalene. Further introduction of heterologous enzymes led the engineered yeast to produce 1.04 mg/L cycloastragenol, which demonstrated the yeast production of value-added medicinal molecules.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 3","pages":"Article 100227"},"PeriodicalIF":0.0,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-22DOI: 10.1016/j.engmic.2025.100225
Jie Cui , Caifeng Li , Gongze Cao , Yuxia Wu , Shouying Xu , Youming Zhang , Xiaoying Bian , Qiang Tu , Wentao Zheng
Engineering microorganisms to withstand extreme temperatures (>80 °C) remains a critical challenge in industrial biotechnology owing to limited genetic tools and poor mechanistic understanding of microbial thermoadaptation. We aimed to develop a novel Geobacillus stearothermophilus strain with remarkable thermal resilience through an integrated approach combining adaptive laboratory evolution and rational genetic engineering. Progressive thermal adaptation (70–80 °C) followed by genome reduction generated a mutant (SL-1–80) with enhanced stability at 80 °C. Subsequent combinatorial overexpression of eight heat-associated genes (murD, cysM, grpE, groES, hsp33, hslO, hrcA, clpE) synergistically extended its survival to 85 °C. Genomic and transcriptomic analyses revealed a triple mechanism: (1) strategic deletion of transposable elements (IS5377/IS4/IS110) reduced genomic instability, (2) co-activation of chaperone systems (GroES-GrpE) and redox homeostasis enzymes (HslOHsp33) enhanced protein folding and oxidative stress resistance, and (3) metabolic plasticity (BglG and HTH-domain transcriptional repressor), motility optimization (FliY), and transcriptional reprogramming (Sigma-D, DUF47-family chaperone and HTH-domain transcriptional repressor) facilitated nutrient acquisition and motility-based environmental navigation under stress. Furthermore, we established the first high-efficiency electroporation protocol (104 transformants/µg DNA) for this genus, enabling ATP-enhanced heterologous protein expression under heat stress. This study provided a robust platform organism for high-temperature bioprocessing and a mechanistic blueprint for engineering microbial thermotolerance, addressing key limitations in applications such as microbial-enhanced oil recovery and industrial enzyme production.
{"title":"Screening of molecular elements and improvement of heat resistance in a thermophilic bacterium","authors":"Jie Cui , Caifeng Li , Gongze Cao , Yuxia Wu , Shouying Xu , Youming Zhang , Xiaoying Bian , Qiang Tu , Wentao Zheng","doi":"10.1016/j.engmic.2025.100225","DOIUrl":"10.1016/j.engmic.2025.100225","url":null,"abstract":"<div><div>Engineering microorganisms to withstand extreme temperatures (>80 °C) remains a critical challenge in industrial biotechnology owing to limited genetic tools and poor mechanistic understanding of microbial thermoadaptation. We aimed to develop a novel <em>Geobacillus stearothermophilus</em> strain with remarkable thermal resilience through an integrated approach combining adaptive laboratory evolution and rational genetic engineering. Progressive thermal adaptation (70–80 °C) followed by genome reduction generated a mutant (SL-1–80) with enhanced stability at 80 °C. Subsequent combinatorial overexpression of eight heat-associated genes (<em>murD, cysM, grpE, groES, hsp33, hslO, hrcA, clpE</em>) synergistically extended its survival to 85 °C. Genomic and transcriptomic analyses revealed a triple mechanism: (1) strategic deletion of transposable elements (IS5377/IS4/IS110) reduced genomic instability, (2) co-activation of chaperone systems (GroES-GrpE) and redox homeostasis enzymes (HslO<img>Hsp33) enhanced protein folding and oxidative stress resistance, and (3) metabolic plasticity (BglG and HTH-domain transcriptional repressor), motility optimization (FliY), and transcriptional reprogramming (Sigma-D, DUF47-family chaperone and HTH-domain transcriptional repressor) facilitated nutrient acquisition and motility-based environmental navigation under stress. Furthermore, we established the first high-efficiency electroporation protocol (10<sup>4</sup> transformants/µg DNA) for this genus, enabling ATP-enhanced heterologous protein expression under heat stress. This study provided a robust platform organism for high-temperature bioprocessing and a mechanistic blueprint for engineering microbial thermotolerance, addressing key limitations in applications such as microbial-enhanced oil recovery and industrial enzyme production.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 3","pages":"Article 100225"},"PeriodicalIF":0.0,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144866337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-03DOI: 10.1016/j.engmic.2025.100223
Xiao-Jie Yuan , Rui Liu , Jian Li , Wen-Xiao Zhao , Hui-Hui Fu , Yan-Rong Zhou , Mei-Ling Sun , Xiu-Lan Chen , Yu-Qiang Zhang
Phytic acid, also known as inositol hexaphosphate (IP6), is one of the most abundant organophosphorus compounds in nature. Its degradation by phytase plays a key role in the natural phosphorus cycle. In addition, phytases are widely used in livestock and poultry feed to enhance phosphorus utilization. While most reported and commercial phytases are derived from terrestrial organisms, relatively few originate from marine microorganisms, and information on the diversity of phytase-producing marine bacteria remains limited. In this study, following enrichment with sodium phytate, we analyzed the bacterial diversity in seawater and sediment samples collected from the coast of Aoshan Bay in Qingdao, China, using 16S rRNA gene amplicon sequencing. A total of 138 OTUs representing 10 phyla, 15 classes, 37 orders, 55 families, and 70 genera were identified. Furthermore, 27 phytase-producing bacterial strains were isolated from the enrichment cultures, primarily belonging to the phyla Firmicutes (14/27) and Proteobacteria (12/27). Five extracellular phytase genes were identified through genome sequencing of three representative strains. These phytases were subsequently expressed and characterized. All were classified as histidine acid phosphatase-type phytases, exhibiting optimal activity at temperatures of 50–60 °C and pH values of 4.0–5.0. Notably, phytase 3919 showed a specific activity as high as 2485.25 U/mg, indicating strong potential for practical applications. This study provides insight into the diversity of coastal bacteria involved in phytic acid degradation, contributing to our understanding of bacterial-driven phosphorus cycling in coastal ecosystems and facilitating the discovery of phytases with industrial potential.
{"title":"Diversity analysis of phytase-producing bacteria from coastal seawater and sediment and characterization of their phytases","authors":"Xiao-Jie Yuan , Rui Liu , Jian Li , Wen-Xiao Zhao , Hui-Hui Fu , Yan-Rong Zhou , Mei-Ling Sun , Xiu-Lan Chen , Yu-Qiang Zhang","doi":"10.1016/j.engmic.2025.100223","DOIUrl":"10.1016/j.engmic.2025.100223","url":null,"abstract":"<div><div>Phytic acid, also known as inositol hexaphosphate (IP6), is one of the most abundant organophosphorus compounds in nature. Its degradation by phytase plays a key role in the natural phosphorus cycle. In addition, phytases are widely used in livestock and poultry feed to enhance phosphorus utilization. While most reported and commercial phytases are derived from terrestrial organisms, relatively few originate from marine microorganisms, and information on the diversity of phytase-producing marine bacteria remains limited. In this study, following enrichment with sodium phytate, we analyzed the bacterial diversity in seawater and sediment samples collected from the coast of Aoshan Bay in Qingdao, China, using 16S rRNA gene amplicon sequencing. A total of 138 OTUs representing 10 phyla, 15 classes, 37 orders, 55 families, and 70 genera were identified. Furthermore, 27 phytase-producing bacterial strains were isolated from the enrichment cultures, primarily belonging to the phyla Firmicutes (14/27) and Proteobacteria (12/27). Five extracellular phytase genes were identified through genome sequencing of three representative strains. These phytases were subsequently expressed and characterized. All were classified as histidine acid phosphatase-type phytases, exhibiting optimal activity at temperatures of 50–60 °C and pH values of 4.0–5.0. Notably, phytase 3919 showed a specific activity as high as 2485.25 U/mg, indicating strong potential for practical applications. This study provides insight into the diversity of coastal bacteria involved in phytic acid degradation, contributing to our understanding of bacterial-driven phosphorus cycling in coastal ecosystems and facilitating the discovery of phytases with industrial potential.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 4","pages":"Article 100223"},"PeriodicalIF":0.0,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144893085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder characterized by debilitating motor and non-motor symptoms. Its etiology is multifactorial, with no single definitive cause identified, although aging is a significant risk factor. Additional risks include genetic predisposition, family history, and environmental factors such as pesticide exposure and Helicobacter pylori infection. Dysbiosis of the gut microbiota, and in particular bacterial imbalances, has been implicated in the disruption of the gut-brain axis, contributing to both systemic and neuroinflammation. Environmental factors such as antibiotic exposure and toxins can precipitate microbial dysregulation, potentially accelerating PD progression. Understanding the mechanisms of the gut-brain axis and identifying strategies to preserve a healthy microbiome are essential for developing novel therapeutic approaches. This review synthesizes current therapeutic strategies and ongoing research focused on restoring gut-brain balance to combat PD. These approaches include fecal microbiota transplantation, dietary interventions, and probiotic therapies, all of which show promise in mitigating both motor and non-motor symptoms. Furthermore, we emphasize the urgent need for continued research into probiotics and innovative therapeutic approaches for gut-brain axis modulation, presenting novel opportunities for effective PD management.
{"title":"The role of microbiota dysbiosis in Parkinson’s disease: Pathophysiology and therapeutic opportunities","authors":"Shabnam Santos , Ivonne Salinas , Nicolás Almeida , Andrés Caicedo","doi":"10.1016/j.engmic.2025.100222","DOIUrl":"10.1016/j.engmic.2025.100222","url":null,"abstract":"<div><div>Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder characterized by debilitating motor and non-motor symptoms. Its etiology is multifactorial, with no single definitive cause identified, although aging is a significant risk factor. Additional risks include genetic predisposition, family history, and environmental factors such as pesticide exposure and <em>Helicobacter pylori</em> infection. Dysbiosis of the gut microbiota, and in particular bacterial imbalances, has been implicated in the disruption of the gut-brain axis, contributing to both systemic and neuroinflammation. Environmental factors such as antibiotic exposure and toxins can precipitate microbial dysregulation, potentially accelerating PD progression. Understanding the mechanisms of the gut-brain axis and identifying strategies to preserve a healthy microbiome are essential for developing novel therapeutic approaches. This review synthesizes current therapeutic strategies and ongoing research focused on restoring gut-brain balance to combat PD. These approaches include fecal microbiota transplantation, dietary interventions, and probiotic therapies, all of which show promise in mitigating both motor and non-motor symptoms. Furthermore, we emphasize the urgent need for continued research into probiotics and innovative therapeutic approaches for gut-brain axis modulation, presenting novel opportunities for effective PD management.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 3","pages":"Article 100222"},"PeriodicalIF":0.0,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144703538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-23DOI: 10.1016/j.engmic.2025.100221
Zihan Huang, Lei Zhang, Ting Cai, Ruijun Liu, Xiaoyan Qi, Xia Wang
Polycyclic aromatic sulfur heterocycles, such as dibenzothiophene (DBT), and their alkylated derivatives are recognized as persistent and toxic contaminants that pose major risks to the environment and human health. Here, a novel electroactive gram-positive bacterium, Lysinibacillus macroides AP, was isolated and identified from a microbial fuel cell (MFC) powered by aromatic compounds. An electricity generation performance with a maximum discharge voltage of 424.59 mV and a power density of 420.95 mW m⁻2 was obtained using L. macroides AP in an MFC fueled with sodium formate. An analysis of the extracellular electron transfer (EET) mechanism indicated that the endogenous redox mediators produced by L. macroides AP were not detected, but exogenous redox mediators such as thionine acetate and anthraquinone-2, 6-disulfonate could temporarily enhance EET. The characterization of biofilm morphology revealed a dense network of microbial nanowires on the cell surface of L. macroides AP; the abundance of these nanowires was positively correlated with the discharge efficiency of the MFC, suggesting that the nanowires generated by L. macroides AP cells were likely to promote EET. Additionally, effective bioelectricity generation and simultaneous DBT degradation were successfully achieved using L. macroides AP in MFCs, with a power density of 385.20 mW m⁻2 and 88.72 % DBT removal. This is the first report on a novel ecological role of L. macroides AP as a gram-positive electroactive bacterium, emphasizing its potential applications in environmental remediation and energy recovery.
多环芳香族硫杂环,如二苯并噻吩(DBT)及其烷基化衍生物被认为是对环境和人类健康构成重大风险的持久性有毒污染物。本文从芳香族化合物驱动的微生物燃料电池(MFC)中分离并鉴定了一种新的电活性革兰氏阳性细菌——大内溶杆菌(Lysinibacillus macroides)。在以甲酸钠为燃料的MFC中,大环内酯酸钠的最大放电电压为424.59 mV,功率密度为420.95 mW m - 2。胞外电子转移(EET)机制分析表明,未检测到大环内酯AP产生的内源性氧化还原介质,但外源性氧化还原介质如乙酸硫氨酸和蒽醌- 2,6 -二磺酸盐可以暂时增强EET。生物膜形态表征表明,大圆叶藻细胞表面存在密集的微生物纳米线网络;这些纳米线的丰度与MFC的放电效率呈正相关,表明L. macroides AP细胞产生的纳米线可能促进EET。此外,使用L. macroides AP在mfc中成功地实现了有效的生物发电和同时降解DBT,功率密度为385.20 mW m - 2, DBT去除率为88.72%。本文首次报道了大胞内酯杆菌作为革兰氏阳性电活性细菌的新生态作用,强调了其在环境修复和能量回收方面的潜在应用。
{"title":"Electricity generation and dibenzothiophene biodegradation using a novel electroactive bacterium Lysinibacillus macroides AP in microbial fuel cells","authors":"Zihan Huang, Lei Zhang, Ting Cai, Ruijun Liu, Xiaoyan Qi, Xia Wang","doi":"10.1016/j.engmic.2025.100221","DOIUrl":"10.1016/j.engmic.2025.100221","url":null,"abstract":"<div><div>Polycyclic aromatic sulfur heterocycles, such as dibenzothiophene (DBT), and their alkylated derivatives are recognized as persistent and toxic contaminants that pose major risks to the environment and human health. Here, a novel electroactive gram-positive bacterium, <em>Lysinibacillus macroides</em> AP, was isolated and identified from a microbial fuel cell (MFC) powered by aromatic compounds. An electricity generation performance with a maximum discharge voltage of 424.59 mV and a power density of 420.95 mW m⁻<sup>2</sup> was obtained using <em>L. macroides</em> AP in an MFC fueled with sodium formate. An analysis of the extracellular electron transfer (EET) mechanism indicated that the endogenous redox mediators produced by <em>L. macroides</em> AP were not detected, but exogenous redox mediators such as thionine acetate and anthraquinone-2, 6-disulfonate could temporarily enhance EET. The characterization of biofilm morphology revealed a dense network of microbial nanowires on the cell surface of <em>L. macroides</em> AP; the abundance of these nanowires was positively correlated with the discharge efficiency of the MFC, suggesting that the nanowires generated by <em>L. macroides</em> AP cells were likely to promote EET. Additionally, effective bioelectricity generation and simultaneous DBT degradation were successfully achieved using <em>L. macroides</em> AP in MFCs, with a power density of 385.20 mW m⁻<sup>2</sup> and 88.72 % DBT removal. This is the first report on a novel ecological role of <em>L. macroides</em> AP as a gram-positive electroactive bacterium, emphasizing its potential applications in environmental remediation and energy recovery.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 4","pages":"Article 100221"},"PeriodicalIF":0.0,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144572628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Efficient conversion of corn stover to bioethanol via simultaneous saccharification and fermentation (SSF) is a promising strategy for sustainable biofuel production. A major current barrier to this process is the limited thermotolerance of Saccharomyces cerevisiae, which hampers its performance under the high-temperature conditions required for efficient SSF. In this study, we identified TrRCC1, a gene from Trichoderma reesei, as a candidate for improving microbial stress resistance. Overexpression of TrRCC1 in both T. reesei Rut C30 and S. cerevisiae BY4741 significantly enhanced thermotolerance. In T. reesei Rut C30, TrRCC1 overexpression improved heat resistance and increased cellulase production by 2.5-fold compared to the wild-type strain. In S. cerevisiae BY4741, TrRCC1 overexpression resulted in enhanced thermotolerance and a 21.8 % increase in ethanol production during SSF of corn stover. The ethanol concentration achieved in the SSF process with TrRCC1-overexpressing S. cerevisiae was 44.1 g/L, which was a notable improvement over control strain production. These findings highlight the potential of TrRCC1 as a key gene for engineering microbial strains with improved stress resistance to enhance the efficiency of bioethanol production from lignocellulosic biomass.
{"title":"Engineering thermotolerant microbial strains via TrRCC1 overexpression for efficient bioethanol production","authors":"Tingting Chen, Xiao He, Xinyan Zhang, Tian Tian, Jian Cheng, Tingting Long, Yonghao Li","doi":"10.1016/j.engmic.2025.100212","DOIUrl":"10.1016/j.engmic.2025.100212","url":null,"abstract":"<div><div>Efficient conversion of corn stover to bioethanol via simultaneous saccharification and fermentation (SSF) is a promising strategy for sustainable biofuel production. A major current barrier to this process is the limited thermotolerance of <em>Saccharomyces cerevisiae</em>, which hampers its performance under the high-temperature conditions required for efficient SSF. In this study, we identified <em>TrRCC1</em>, a gene from <em>Trichoderma reesei</em>, as a candidate for improving microbial stress resistance. Overexpression of <em>TrRCC1</em> in both <em>T. reesei</em> Rut C30 and <em>S. cerevisiae</em> BY4741 significantly enhanced thermotolerance. In <em>T. reesei</em> Rut C30, <em>TrRCC1</em> overexpression improved heat resistance and increased cellulase production by 2.5-fold compared to the wild-type strain. In <em>S. cerevisiae</em> BY4741, <em>TrRCC1</em> overexpression resulted in enhanced thermotolerance and a 21.8 % increase in ethanol production during SSF of corn stover. The ethanol concentration achieved in the SSF process with <em>TrRCC1</em>-overexpressing <em>S. cerevisiae</em> was 44.1 g/L, which was a notable improvement over control strain production. These findings highlight the potential of <em>TrRCC1</em> as a key gene for engineering microbial strains with improved stress resistance to enhance the efficiency of bioethanol production from lignocellulosic biomass.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 2","pages":"Article 100212"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144230932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1016/j.engmic.2025.100211
Harman Gill, John L. Sorensen
Despite the isolation of over 1000 known bioactive lichen mycobiont-derived secondary metabolites (SMs), understanding the genetic basis of their biosynthesis remains elusive. Biosynthetic gene clusters (BGCs) have been tentatively linked to chemical structures, with core genes such as polyketide synthases (PKSs) surrounded by accessory genes like decarboxylases. In this study, we focused on a decarboxylase gene from the genome of the lichen cladonia uncialis (named as Cu-decarboxylase) to elucidate its role in SM biosynthesis. A 963 bp gene was cloned from C. uncialis and expressed in Escherichia coli (BL21(DE3) cells using the pQE80L expression vector. The resulting 35 kDa protein was purified by applying a Ni+-NTA column using an FPLC system. Functional activity assays revealed the decarboxylation and reversible carboxylation of resorcinol to 2,4-dihydroxybenzoic acid and orcinol to orsellinic acid. This suggests a potential role for this Cu-decarboxylase in SM biosynthesis.
Furthermore, the lack of activity on substrates like anthranilic acid and aniline highlighted the importance of the phenolic OH group in facilitating these reactions. The 3D protein structure was predicted with AlphaFold3, based on sequence similarity with a known decarboxylases and revealed the importance of a zinc cofactor for the catalytic activity of the enzyme. The optimization of the reaction conditions, particularly for orsellinic acid production from orcinol, may enhance conversion rates and offer a viable route for industrial-scale production of bioactive compounds. This study marks the first known instance of functional heterologous expression of a non-codon-optimized gene isolated from lichen in E. coli.
{"title":"Functional heterologous expression of the reversible Cu-decarboxylase from the lichen, Cladonia uncialis","authors":"Harman Gill, John L. Sorensen","doi":"10.1016/j.engmic.2025.100211","DOIUrl":"10.1016/j.engmic.2025.100211","url":null,"abstract":"<div><div>Despite the isolation of over 1000 known bioactive lichen mycobiont-derived secondary metabolites (SMs), understanding the genetic basis of their biosynthesis remains elusive. Biosynthetic gene clusters (BGCs) have been tentatively linked to chemical structures, with core genes such as polyketide synthases (PKSs) surrounded by accessory genes like decarboxylases. In this study, we focused on a decarboxylase gene from the genome of the lichen <em>cladonia uncialis</em> (named as <em>Cu</em>-decarboxylase) to elucidate its role in SM biosynthesis. A 963 bp gene was cloned from <em>C. uncialis</em> and expressed in <em>Escherichia coli</em> (BL21(DE3) cells using the pQE80L expression vector. The resulting 35 kDa protein was purified by applying a Ni<sup>+</sup>-NTA column using an FPLC system. Functional activity assays revealed the decarboxylation and reversible carboxylation of resorcinol to 2,4-dihydroxybenzoic acid and orcinol to orsellinic acid. This suggests a potential role for this <em>Cu</em>-decarboxylase in SM biosynthesis.</div><div>Furthermore, the lack of activity on substrates like anthranilic acid and aniline highlighted the importance of the phenolic OH group in facilitating these reactions. The 3D protein structure was predicted with AlphaFold3, based on sequence similarity with a known decarboxylases and revealed the importance of a zinc cofactor for the catalytic activity of the enzyme. The optimization of the reaction conditions, particularly for orsellinic acid production from orcinol, may enhance conversion rates and offer a viable route for industrial-scale production of bioactive compounds. This study marks the first known instance of functional heterologous expression of a non-codon-optimized gene isolated from lichen in <em>E. coli</em>.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 2","pages":"Article 100211"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144230931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1016/j.engmic.2025.100204
Maofeng Wang , Cancan Wu , Nan Liu , Xiaoqiong Jiang , Hongjie Dong , Shubao Zhao , Chaonan Li , Sujuan Xu , Lichuan Gu
{"title":"Erratum to “Regulation of protein thermal stability and its potential application in the development of thermo-attenuated vaccines” [Engineering Microbiology 4 (2024) 100162]","authors":"Maofeng Wang , Cancan Wu , Nan Liu , Xiaoqiong Jiang , Hongjie Dong , Shubao Zhao , Chaonan Li , Sujuan Xu , Lichuan Gu","doi":"10.1016/j.engmic.2025.100204","DOIUrl":"10.1016/j.engmic.2025.100204","url":null,"abstract":"","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 2","pages":"Article 100204"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144481428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1016/j.engmic.2025.100207
Yuanyuan Jiang , Zhong Li , Shengying Li
Conventional heme enzymes utilize iron–oxygen intermediates to activate substrates and drive reactions. Recently, Chen et al. discovered a novel NADPH-independent superoxide mechanism of heme catalase EasC, which facilitates an O2-dependent radical oxidative cyclization reaction during ergot alkaloid biosynthesis. This enzyme coordinates superoxide-mediated catalysis by connecting spatially distinct NADPH-binding pocket and heme pocket via a slender tunnel, offering a novel perspective on the catalytic mechanisms of heme enzymes in nature.
{"title":"Superoxide-mediated O2 activation drives radical cyclization in ergot alkaloid biosynthesis","authors":"Yuanyuan Jiang , Zhong Li , Shengying Li","doi":"10.1016/j.engmic.2025.100207","DOIUrl":"10.1016/j.engmic.2025.100207","url":null,"abstract":"<div><div>Conventional heme enzymes utilize iron–oxygen intermediates to activate substrates and drive reactions. Recently, Chen et al. discovered a novel NADPH-independent superoxide mechanism of heme catalase EasC, which facilitates an O<sub>2</sub>-dependent radical oxidative cyclization reaction during ergot alkaloid biosynthesis. This enzyme coordinates superoxide-mediated catalysis by connecting spatially distinct NADPH-binding pocket and heme pocket via a slender tunnel, offering a novel perspective on the catalytic mechanisms of heme enzymes in nature.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 2","pages":"Article 100207"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144203944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01DOI: 10.1016/j.engmic.2025.100209
Dongchun Ni
Bacteria employ diverse immune systems, such as CRISPR-Cas, to fend off phage infections. A recent study uncovered the unprecedented mechanistic features of the Kongming bacterial defense system, which uniquely exploits phage-derived enzymes to synthesize deoxyinosine triphosphate (dITP), thereby triggering host immunity through NAD+ depletion. In response, some phages have evolved countermeasures to disrupt dITP synthesis, highlighting the ongoing evolutionary arms race between hosts and pathogens. This discovery not only deepens our understanding of bacterial defense strategies but also paves the way for new insights in biomedical research and synthetic biology.
{"title":"The Kongming defense: Host-pathogen battles take a new face","authors":"Dongchun Ni","doi":"10.1016/j.engmic.2025.100209","DOIUrl":"10.1016/j.engmic.2025.100209","url":null,"abstract":"<div><div>Bacteria employ diverse immune systems, such as CRISPR-Cas, to fend off phage infections. A recent study uncovered the unprecedented mechanistic features of the Kongming bacterial defense system, which uniquely exploits phage-derived enzymes to synthesize deoxyinosine triphosphate (dITP), thereby triggering host immunity through NAD+ depletion. In response, some phages have evolved countermeasures to disrupt dITP synthesis, highlighting the ongoing evolutionary arms race between hosts and pathogens. This discovery not only deepens our understanding of bacterial defense strategies but also paves the way for new insights in biomedical research and synthetic biology.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 2","pages":"Article 100209"},"PeriodicalIF":0.0,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144178643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}