Pub Date : 2022-08-01DOI: 10.1016/j.efmat.2022.08.001
Casey Onggowarsito, An Feng, Shudi Mao, Stella Zhang, I. Ibrahim, Leonard Tijin, Qiang Fu, H. Ngo
{"title":"Development of an innovative MnO2 nanorod for efficient solar vapor generator","authors":"Casey Onggowarsito, An Feng, Shudi Mao, Stella Zhang, I. Ibrahim, Leonard Tijin, Qiang Fu, H. Ngo","doi":"10.1016/j.efmat.2022.08.001","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.08.001","url":null,"abstract":"","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74922038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.efmat.2022.07.001
Penghui Shao, Xiaoyuan Zhou, Ying Cao, Feng Wei, Jinyi Tian, Meipeng Jian, Li Zhang, Liming Yang, Xubiao Luo
{"title":"Understanding role of reactor configuration in electrochemical decomplexation of Ni-EDTA via experiments and simulations","authors":"Penghui Shao, Xiaoyuan Zhou, Ying Cao, Feng Wei, Jinyi Tian, Meipeng Jian, Li Zhang, Liming Yang, Xubiao Luo","doi":"10.1016/j.efmat.2022.07.001","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.07.001","url":null,"abstract":"","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"114 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77623880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.1016/j.efmat.2022.07.003
Yiling He, Yi Zhou, Ji Feng, M. Xing
{"title":"Photothermal conversion of CO2 to fuel with nickel-based catalysts: A review","authors":"Yiling He, Yi Zhou, Ji Feng, M. Xing","doi":"10.1016/j.efmat.2022.07.003","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.07.003","url":null,"abstract":"","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"47 37 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88100354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient degradation of toluene over ultra-low Pd supported on UiO-66 and its functional materials: Reaction mechanism, water-resistance, and influence of SO2","authors":"Fukun Bi, Zhen-zhong Zhao, Yang Yang, Qiang Liu, Wenyuan Huang, Yuandong Huang, Xiaodong Zhang","doi":"10.1016/j.efmat.2022.07.002","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.07.002","url":null,"abstract":"","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"110 3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85587160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.efmat.2022.08.002
Ting Li, Lixiang Zhou
Iron-based heterogeneous Fenton is a promising economic and eco-friendly technology in the degradation of organic pollutants, but the low conversion of ≡Fe3+ to ≡Fe2+ causes the low catalytic activity. Schwertmannite (Sch) formed via Fe(II) oxidation mediated by Acidithiobacillus ferrooxidans (A. ferrooxidans), resulting in the existence of low organic carbon (mainly from A. ferrooxidans cells) in Sch. Owing to magnetic inter-attraction between magnetosome-containing A. ferrooxidans and Fe3O4, A. ferrooxidans as organic carbon (OC) modified Fe3O4/Sch (namely Fe3O4/Sch/OC) was obtained by the introduction of Fe3O4 into synthetic process of Sch. Fe3O4/Sch/OC exhibited higher degradation efficiency (>95%) of antibiotics than Sch, Fe3O4 and Fe3O4/Sch, which was mainly ascribed to OC as electron donor and electron-transfer mediator for promoting ≡Fe2+ regeneration. Moreover, in situ H2O2 could be generated at a wide initial pH (3–9) via Fe3O4/Sch/OC-driven oxygen reduction reaction, and H2O2 was immediately activated to produce •OH for degrading organic pollutants (e.g., dyes, antibiotics). Considering the excellent arsenic (As) adsorption performance of Sch and the property of Fe3O4/Sch/OC to produce in situ H2O2, Fe3O4/Sch/OC-catalyzed in situ-generated H2O2 will be a promising strategy to synchronously remove antibiotics and As from livestock and poultry breeding wastewater.
{"title":"Improving heterogeneous Fenton reactivity of schwertmannite by increasing organic carbon and its promising application","authors":"Ting Li, Lixiang Zhou","doi":"10.1016/j.efmat.2022.08.002","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.08.002","url":null,"abstract":"<div><p>Iron-based heterogeneous Fenton is a promising economic and eco-friendly technology in the degradation of organic pollutants, but the low conversion of ≡Fe<sup>3+</sup> to ≡Fe<sup>2+</sup> causes the low catalytic activity. Schwertmannite (Sch) formed via Fe(II) oxidation mediated by <em>Acidithiobacillus ferrooxidans</em> (<em>A. ferrooxidans</em>), resulting in the existence of low organic carbon (mainly from <em>A. ferrooxidans</em> cells) in Sch. Owing to magnetic inter-attraction between magnetosome-containing <em>A. ferrooxidans</em> and Fe<sub>3</sub>O<sub>4</sub>, <em>A. ferrooxidans</em> as organic carbon (OC) modified Fe<sub>3</sub>O<sub>4</sub>/Sch (namely Fe<sub>3</sub>O<sub>4</sub>/Sch/OC) was obtained by the introduction of Fe<sub>3</sub>O<sub>4</sub> into synthetic process of Sch. Fe<sub>3</sub>O<sub>4</sub>/Sch/OC exhibited higher degradation efficiency (>95%) of antibiotics than Sch, Fe<sub>3</sub>O<sub>4</sub> and Fe<sub>3</sub>O<sub>4</sub>/Sch, which was mainly ascribed to OC as electron donor and electron-transfer mediator for promoting ≡Fe<sup>2+</sup> regeneration. Moreover, <em>in situ</em> H<sub>2</sub>O<sub>2</sub> could be generated at a wide initial pH (3–9) via Fe<sub>3</sub>O<sub>4</sub>/Sch/OC-driven oxygen reduction reaction, and H<sub>2</sub>O<sub>2</sub> was immediately activated to produce •OH for degrading organic pollutants (e.g., dyes, antibiotics). Considering the excellent arsenic (As) adsorption performance of Sch and the property of Fe<sub>3</sub>O<sub>4</sub>/Sch/OC to produce <em>in situ</em> H<sub>2</sub>O<sub>2</sub>, Fe<sub>3</sub>O<sub>4</sub>/Sch/OC-catalyzed <em>in situ</em>-generated H<sub>2</sub>O<sub>2</sub> will be a promising strategy to synchronously remove antibiotics and As from livestock and poultry breeding wastewater.</p></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"1 2","pages":"Pages 160-165"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773058122000242/pdfft?md5=51073be6f9868c2a070d8e0f58762f79&pid=1-s2.0-S2773058122000242-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71875317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.efmat.2022.03.001
Feng Xiao
Biochar, the product of anaerobic pyrolysis of biomass, has attracted immense interest not only as an adsorbent in agricultural and environmental remediation applications but also as a carbonaceous redox catalyst in air/water purification research. Various chemical approaches have been developed to modify biochar; however, most of them are costly because they require additional chemicals and a series of treatment steps, such as the dewatering the so-treated biochar and post-treatment removal of oxidant products. Recently, researchers, including the author of this article, developed a convenient and inexpensive method for enhancing adsorption of organic and inorganic compounds by subjecting the biochar to a brief thermal air oxidation (AO) step. In this review, the author outlines the basic mechanisms of thermal AO and critically examines the property changes of biochar after the thermal AO treatment. This review aims to improve the understanding of biochar after it is exposed to hot air (e.g., wildfires), provide a detailed discussion of scientific evidence, and offer major directions for future research concerning thermal AO and its applications. A comprehensive review of relevant literature indicates that the important factors governing the resultant biochar after thermal AO include the heat treatment temperature (HTT) at which biochar is made and the feedstocks of biochar. Biochar made from lignin-rich feedstocks such as coconut shells and nutshells is preferable for thermal AO treatment. Thermal reactions between molecular oxygen and biochar (1) improve surface oxygen functionality more effectively for biochar made at HTTs than for high-HTT biochar, (2) increase the surface area and porosity especially for high-HTT biochar; and (3) create new adsorption sites and/or relieve steric restrictions of organic molecules to micropores, thereby enhancing the adsorptivity of biochar.
{"title":"A review of biochar functionalized by thermal air oxidation","authors":"Feng Xiao","doi":"10.1016/j.efmat.2022.03.001","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.03.001","url":null,"abstract":"<div><p>Biochar, the product of anaerobic pyrolysis of biomass, has attracted immense interest not only as an adsorbent in agricultural and environmental remediation applications but also as a carbonaceous redox catalyst in air/water purification research. Various chemical approaches have been developed to modify biochar; however, most of them are costly because they require additional chemicals and a series of treatment steps, such as the dewatering the so-treated biochar and post-treatment removal of oxidant products. Recently, researchers, including the author of this article, developed a convenient and inexpensive method for enhancing adsorption of organic and inorganic compounds by subjecting the biochar to a brief thermal air oxidation (AO) step. In this review, the author outlines the basic mechanisms of thermal AO and critically examines the property changes of biochar after the thermal AO treatment. This review aims to improve the understanding of biochar after it is exposed to hot air (e.g., wildfires), provide a detailed discussion of scientific evidence, and offer major directions for future research concerning thermal AO and its applications. A comprehensive review of relevant literature indicates that the important factors governing the resultant biochar after thermal AO include the heat treatment temperature (HTT) at which biochar is made and the feedstocks of biochar. Biochar made from lignin-rich feedstocks such as coconut shells and nutshells is preferable for thermal AO treatment. Thermal reactions between molecular oxygen and biochar (1) improve surface oxygen functionality more effectively for biochar made at HTTs than for high-HTT biochar, (2) increase the surface area and porosity especially for high-HTT biochar; and (3) create new adsorption sites and/or relieve steric restrictions of organic molecules to micropores, thereby enhancing the adsorptivity of biochar.</p></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"1 2","pages":"Pages 187-195"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773058122000011/pdfft?md5=e8bff6e9384949ff8d93558b32fd0043&pid=1-s2.0-S2773058122000011-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71875314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.efmat.2022.08.003
Dawei Wang , Yingying Li , Yilan Jiang , Xinyang Cai , Xiaxi Yao
Heterogeneous advanced oxidation processes (AOPs) over nanostructured catalysts have been developed as a potential technique for wastewater treatment with the advantages, including high performance, wide operational pH range, and low chemical dosage. However, the surface reaction process and the correlation of catalyst properties and catalytic performance still need to be clarified. In this perspective, we overviewed the heterogeneous catalytic reaction steps of AOPs and summarized the monitoring of catalytic process with molecule-scale insights, and proposed the future challenges and research focuses.
{"title":"Perspectives on surface chemistry of nanostructured catalysts for heterogeneous advanced oxidation processes","authors":"Dawei Wang , Yingying Li , Yilan Jiang , Xinyang Cai , Xiaxi Yao","doi":"10.1016/j.efmat.2022.08.003","DOIUrl":"https://doi.org/10.1016/j.efmat.2022.08.003","url":null,"abstract":"<div><p>Heterogeneous advanced oxidation processes (AOPs) over nanostructured catalysts have been developed as a potential technique for wastewater treatment with the advantages, including high performance, wide operational pH range, and low chemical dosage. However, the surface reaction process and the correlation of catalyst properties and catalytic performance still need to be clarified. In this perspective, we overviewed the heterogeneous catalytic reaction steps of AOPs and summarized the monitoring of catalytic process with molecule-scale insights, and proposed the future challenges and research focuses.</p></div>","PeriodicalId":100481,"journal":{"name":"Environmental Functional Materials","volume":"1 2","pages":"Pages 182-186"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773058122000254/pdfft?md5=d077ea6f824c6df3669a2b5d47d3e3cc&pid=1-s2.0-S2773058122000254-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71875313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}