Turbasu Chatterjee, Arnav Das, Subhayu Kumar Bala, Amit Saha, Anupam Chattopadhyay, Amlan Chakrabarti
In recent years, numerous research advancements have extended the limit of classical simulation of quantum algorithms. Although, most of the state-of-the-art classical simulators are only limited to binary quantum systems, which restrict the classical simulation of higher-dimensional quantum computing systems. Through recent developments in higher-dimensional quantum computing systems, it is realised that implementing qudits improves the overall performance of a quantum algorithm by increasing memory space and reducing the asymptotic complexity of a quantum circuit. Hence, in this article, QuDiet, a state-of-the-art user-friendly python-based higher-dimensional quantum computing simulator is introduced. QuDiet offers multi-valued logic operations by utilising generalised quantum gates with an abstraction so that any naive user can simulate qudit systems with ease as compared to the existing ones. Various benchmark quantum circuits is simulated in QuDiet and show the considerable speedup in simulation time as compared to the other simulators without loss in precision. Finally, QuDiet provides a full qubit-qudit hybrid quantum simulator package with quantum circuit templates of well-known quantum algorithms for fast prototyping and simulation. Comprehensive simulation up to 20 qutrits circuit on depth 80 on QuDiet was successfully achieved. The complete code and packages of QuDiet is available at https://github.com/LegacYFTw/QuDiet.
{"title":"QuDiet: A classical simulation platform for qubit-qudit hybrid quantum systems","authors":"Turbasu Chatterjee, Arnav Das, Subhayu Kumar Bala, Amit Saha, Anupam Chattopadhyay, Amlan Chakrabarti","doi":"10.1049/qtc2.12058","DOIUrl":"10.1049/qtc2.12058","url":null,"abstract":"<p>In recent years, numerous research advancements have extended the limit of classical simulation of quantum algorithms. Although, most of the state-of-the-art classical simulators are only limited to binary quantum systems, which restrict the classical simulation of higher-dimensional quantum computing systems. Through recent developments in higher-dimensional quantum computing systems, it is realised that implementing qudits improves the overall performance of a quantum algorithm by increasing memory space and reducing the asymptotic complexity of a quantum circuit. Hence, in this article, <b>QuDiet</b>, a state-of-the-art user-friendly python-based higher-dimensional quantum computing simulator is introduced. <b>QuDiet</b> offers multi-valued logic operations by utilising generalised quantum gates with an abstraction so that any naive user can simulate qudit systems with ease as compared to the existing ones. Various benchmark quantum circuits is simulated in <b>QuDiet</b> and show the considerable speedup in simulation time as compared to the other simulators without loss in precision. Finally, <b>QuDiet</b> provides a full qubit-qudit hybrid quantum simulator package with quantum circuit templates of well-known quantum algorithms for fast prototyping and simulation. Comprehensive simulation up to 20 qutrits circuit on depth 80 on <b>QuDiet</b> was successfully achieved. The complete code and packages of <b>QuDiet</b> is available at https://github.com/LegacYFTw/QuDiet.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"4 4","pages":"167-180"},"PeriodicalIF":0.0,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85121249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quantum technologies (QT) promise to change the landscape of technologies disruptively in diverse industries. For this reason, many nations around the globe are investing to emerge within the global quantum ecosystem through initiating national programs and international partnerships. Nonetheless, some other countries are still running behind and yet their governments need to take series actions to help their private and public sectors adapt to the looming changes, considering the new regulations required and the huge influence that QT will present in the near future. In this opinion piece, we provide, for the best of our knowledge, the first generally applicable, yet comprehensive and brief, framework for leveraging the emerging quantum technologies to facilitate the establishment of national initiatives properly. The insights presented in this article were driven based on investigating various approaches, initiatives, and roadmaps adopted globally and meeting with local and regional leaders, professionals, and governmental officials. Furthermore, taken into account socioeconomic and institutional dimensions of the Libyan society, we project the framework for the Libyan nation. This opinion piece is intended to inspire researchers, technical industrial experts, stakeholders, and governmental bodies to find roles they need to play to bring QT forward.
{"title":"Why should and how can quantum technologies be leveraged at national levels?","authors":"AbdulMalek Baitulmal, Nadia Adem","doi":"10.1049/qtc2.12057","DOIUrl":"https://doi.org/10.1049/qtc2.12057","url":null,"abstract":"Quantum technologies (QT) promise to change the landscape of technologies disruptively in diverse industries. For this reason, many nations around the globe are investing to emerge within the global quantum ecosystem through initiating national programs and international partnerships. Nonetheless, some other countries are still running behind and yet their governments need to take series actions to help their private and public sectors adapt to the looming changes, considering the new regulations required and the huge influence that QT will present in the near future. In this opinion piece, we provide, for the best of our knowledge, the first generally applicable, yet comprehensive and brief, framework for leveraging the emerging quantum technologies to facilitate the establishment of national initiatives properly. The insights presented in this article were driven based on investigating various approaches, initiatives, and roadmaps adopted globally and meeting with local and regional leaders, professionals, and governmental officials. Furthermore, taken into account socioeconomic and institutional dimensions of the Libyan society, we project the framework for the Libyan nation. This opinion piece is intended to inspire researchers, technical industrial experts, stakeholders, and governmental bodies to find roles they need to play to bring QT forward.","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"4 2","pages":"96-101"},"PeriodicalIF":0.0,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50140062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Quantum computing combines mathematics, quantum physics, and computer science to optimise, learn, and simulate chemical, physical, and biological systems. It offers the ability to solve problems in a unique method and to speed up solutions compared to standard procedures. This computing may solve issues with intractable inputs. With the capabilities of quantum computers and the availability of quantum development kits, quantum computing is expected to become ubiquitous, and the demand for trained people is expected to rise significantly. Quantum technologies are rapidly developing globally with substantial disruptive potential. Quantum technology is opening up new frontiers in computing, communications, and cyber security with widespread applications. The range of quantum technologies is expected to be one of the significant technology disruptions that will change the entire paradigm of computation, communication, and encryption. It is perceived that the countries that achieve an edge in this emerging field will have a more significant advantage in garnering multifold economic growth and dominant leadership roles. It is expected that lots of commercial applications will emerge from the developing theoretical constructs in this area. In India, there is a growing interest in quantum computing and communication with active participation from students, developers, industry, and academia, leading to many recent initiatives and developments. This article provides an overview of some of the recent developments of quantum computing in India and the future ahead.</p><p>In its 2020 budget, the Indian government announced the National Mission on Quantum Technologies and Applications, which will be run by the Department of Science and Technology with a budget of 80 billion INR over five years [<span>1</span>]. Among the next-generation technologies that will be pushed by this mission are quantum computers and computing, quantum communication, quantum key distribution, cryptanalysis, quantum devices, quantum sensing, quantum materials, quantum clocks, and so on. The mission will focus on basic science, technology development, building up human and infrastructure resources, innovation, and new businesses to solve problems that are important to the country. By putting the mission into action, India would be able to develop and use quantum computers, secure communications through fibre and free space, quantum encryption and cryptanalysis, and other related technologies. It would also be able to deal with national and regional problems that are unique to India.</p><p>International Business Machines (IBM) and the Indian Institute of Technology, Madras (IIT-Madras) joined forces in September 2022 to help India learn more about quantum computing and accelerate research [<span>2</span>]. With this partnership, IIT Madras becomes one of the more than 180 members of the IBM Quantum Network around the world. IIT Madras is also the "first Indian institution" to join t
{"title":"Quantum computing in India: Recent developments and future","authors":"Varun G. Menon, Mainak Adhikari","doi":"10.1049/qtc2.12056","DOIUrl":"https://doi.org/10.1049/qtc2.12056","url":null,"abstract":"<p>Quantum computing combines mathematics, quantum physics, and computer science to optimise, learn, and simulate chemical, physical, and biological systems. It offers the ability to solve problems in a unique method and to speed up solutions compared to standard procedures. This computing may solve issues with intractable inputs. With the capabilities of quantum computers and the availability of quantum development kits, quantum computing is expected to become ubiquitous, and the demand for trained people is expected to rise significantly. Quantum technologies are rapidly developing globally with substantial disruptive potential. Quantum technology is opening up new frontiers in computing, communications, and cyber security with widespread applications. The range of quantum technologies is expected to be one of the significant technology disruptions that will change the entire paradigm of computation, communication, and encryption. It is perceived that the countries that achieve an edge in this emerging field will have a more significant advantage in garnering multifold economic growth and dominant leadership roles. It is expected that lots of commercial applications will emerge from the developing theoretical constructs in this area. In India, there is a growing interest in quantum computing and communication with active participation from students, developers, industry, and academia, leading to many recent initiatives and developments. This article provides an overview of some of the recent developments of quantum computing in India and the future ahead.</p><p>In its 2020 budget, the Indian government announced the National Mission on Quantum Technologies and Applications, which will be run by the Department of Science and Technology with a budget of 80 billion INR over five years [<span>1</span>]. Among the next-generation technologies that will be pushed by this mission are quantum computers and computing, quantum communication, quantum key distribution, cryptanalysis, quantum devices, quantum sensing, quantum materials, quantum clocks, and so on. The mission will focus on basic science, technology development, building up human and infrastructure resources, innovation, and new businesses to solve problems that are important to the country. By putting the mission into action, India would be able to develop and use quantum computers, secure communications through fibre and free space, quantum encryption and cryptanalysis, and other related technologies. It would also be able to deal with national and regional problems that are unique to India.</p><p>International Business Machines (IBM) and the Indian Institute of Technology, Madras (IIT-Madras) joined forces in September 2022 to help India learn more about quantum computing and accelerate research [<span>2</span>]. With this partnership, IIT Madras becomes one of the more than 180 members of the IBM Quantum Network around the world. IIT Madras is also the \"first Indian institution\" to join t","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"4 2","pages":"93-95"},"PeriodicalIF":0.0,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50140061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arun Govindankutty, Sudarshan K. Srinivasan, Nimish Mathure
With the race to build large-scale quantum computers and efforts to exploit quantum algorithms for efficient problem solving in science and engineering disciplines, the requirement to have efficient and scalable verification methods are of vital importance. A novel formal verification method that is targeted at Quantum Fourier Transform (QFT) circuits is proposed. Quantum Fourier Transform is a fundamental quantum algorithm that forms the basis of many quantum computing applications. The verification method employs abstractions of quantum gates used in QFT that leads to a reduction of the verification problem from Hilbert space to the quantifier free logic of bit-vectors. Very efficient decision procedures are available to reason about bit-vectors. Therefore, this method is able to scale up to the verification of QFT circuits with 10,000 qubits and 50 million quantum gates, providing a meteoric advance in the size of QFT circuits thus far verified using formal verification methods.
{"title":"Rotational abstractions for verification of quantum Fourier transform circuits","authors":"Arun Govindankutty, Sudarshan K. Srinivasan, Nimish Mathure","doi":"10.1049/qtc2.12055","DOIUrl":"https://doi.org/10.1049/qtc2.12055","url":null,"abstract":"<p>With the race to build large-scale quantum computers and efforts to exploit quantum algorithms for efficient problem solving in science and engineering disciplines, the requirement to have efficient and scalable verification methods are of vital importance. A novel formal verification method that is targeted at Quantum Fourier Transform (QFT) circuits is proposed. Quantum Fourier Transform is a fundamental quantum algorithm that forms the basis of many quantum computing applications. The verification method employs abstractions of quantum gates used in QFT that leads to a reduction of the verification problem from Hilbert space to the quantifier free logic of bit-vectors. Very efficient decision procedures are available to reason about bit-vectors. Therefore, this method is able to scale up to the verification of QFT circuits with 10,000 qubits and 50 million quantum gates, providing a meteoric advance in the size of QFT circuits thus far verified using formal verification methods.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"4 2","pages":"84-92"},"PeriodicalIF":0.0,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50132030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Keshav Kasliwal, Jayanthi P N, Adarsh Jain, Rajesh Kumar Bahl
Classical Cryptography has been in use for a long time. It has been the only way of securing people's communication. However, there are some flaws observed during the execution of classical cryptography. One of them being the staunch belief that the number composed of multiplication of two large prime numbers cannot be factorised easily, which is under a threat thanks to the computational power of the quantum computers. The next flaw is the non-detection of the hacker, both of which can be eliminated by using quantum mechanical principles for encryption purposes, which is known as quantum cryptography. Quantum Key Distribution, which provides an information-theoretically safe solution to the key exchange problem, is the most well-known example of quantum cryptography. The benefit of quantum cryptography is that it makes it possible to perform a variety of cryptographic operations that have been demonstrated or are hypothesised to be impractical when using solely traditional (i.e., non-quantum) communication. Free-space quantum communication has been successfully demonstrated across 300 m by the Indian Space Research Organization (ISRO) in March 2021. With this, ISRO is trying to achieve the same using a satellite-based communication mechanism, which would revolutionise the mode of modern communication. It is justified that the key generation rate depends on factors like the aperture diameter of the sender and receiver, distance between them, the quantum bit error rate, and many more. The results vary with the parameters in the discussion as explained in the upcoming sections. The avenue of different types of losses that occur while transmitting at large distances, such as Atmospheric Loss, Pointing Loss and Geometric Loss, is explored.
{"title":"Enhancing satellite-to-ground communication using quantum key distribution","authors":"Keshav Kasliwal, Jayanthi P N, Adarsh Jain, Rajesh Kumar Bahl","doi":"10.1049/qtc2.12053","DOIUrl":"https://doi.org/10.1049/qtc2.12053","url":null,"abstract":"<p>Classical Cryptography has been in use for a long time. It has been the only way of securing people's communication. However, there are some flaws observed during the execution of classical cryptography. One of them being the staunch belief that the number composed of multiplication of two large prime numbers cannot be factorised easily, which is under a threat thanks to the computational power of the quantum computers. The next flaw is the non-detection of the hacker, both of which can be eliminated by using quantum mechanical principles for encryption purposes, which is known as quantum cryptography. Quantum Key Distribution, which provides an information-theoretically safe solution to the key exchange problem, is the most well-known example of quantum cryptography. The benefit of quantum cryptography is that it makes it possible to perform a variety of cryptographic operations that have been demonstrated or are hypothesised to be impractical when using solely traditional (i.e., non-quantum) communication. Free-space quantum communication has been successfully demonstrated across 300 m by the Indian Space Research Organization (ISRO) in March 2021. With this, ISRO is trying to achieve the same using a satellite-based communication mechanism, which would revolutionise the mode of modern communication. It is justified that the key generation rate depends on factors like the aperture diameter of the sender and receiver, distance between them, the quantum bit error rate, and many more. The results vary with the parameters in the discussion as explained in the upcoming sections. The avenue of different types of losses that occur while transmitting at large distances, such as Atmospheric Loss, Pointing Loss and Geometric Loss, is explored.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"4 2","pages":"57-69"},"PeriodicalIF":0.0,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50119047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anthony Chagneau, Laëticia Nathoo, Jérémy Alloul, Bertrand Gabriel
Physics systems are becoming increasingly complex and require more and more computing time. Quantum computing, which has shown its efficiency on some problems, such as the factorisation of a number with Shor's algorithm, may be the solution to reduce these computation times. Here, the authors propose two quantum numerical schemes for the simulation of physics phenomena, based on the finite difference method. The aim is to see if quantum versions of standard numerical schemes offer an advantage over their classical counterparts, either in accuracy, stability or computation time. First, the authors will present the different phenomena studied as well as the classical solution methods chosen. The authors will then describe the implementation of the quantum numerical schemes and present some results obtained on the different physics phenomena beforehand and then compare both approaches, classical and quantum.
{"title":"Quantum finite difference solvers for physics simulation","authors":"Anthony Chagneau, Laëticia Nathoo, Jérémy Alloul, Bertrand Gabriel","doi":"10.1049/qtc2.12054","DOIUrl":"https://doi.org/10.1049/qtc2.12054","url":null,"abstract":"<p>Physics systems are becoming increasingly complex and require more and more computing time. Quantum computing, which has shown its efficiency on some problems, such as the factorisation of a number with Shor's algorithm, may be the solution to reduce these computation times. Here, the authors propose two quantum numerical schemes for the simulation of physics phenomena, based on the finite difference method. The aim is to see if quantum versions of standard numerical schemes offer an advantage over their classical counterparts, either in accuracy, stability or computation time. First, the authors will present the different phenomena studied as well as the classical solution methods chosen. The authors will then describe the implementation of the quantum numerical schemes and present some results obtained on the different physics phenomena beforehand and then compare both approaches, classical and quantum.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"4 2","pages":"70-83"},"PeriodicalIF":0.0,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50119048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The combination of quantum communication technology and wireless networks brings a flexible and secure communication method that adapts to a more complex and open network environment. A new multi-hop teleportation scheme is investigated for transferring arbitrary unknown multi-qudit states between two distant parties. Based on a more general quantum routing protocol, intermediate nodes are introduced and linked with each other via d-level entangled Greenberger-Horne-Zeilinger states as quantum channels. In this multi-hop teleportation protocol, the source node and all the intermediate nodes can perform the entanglement measurement and transmit the measurement results simultaneously, thus reducing the time consumption largely. Furthermore, a general matrix formula is derived between the measurement results and the receiver's state, which enables the receiver to restore the unknown state efficiently. Compared with previous multi-hop teleportation protocols, the teleportation protocol of arbitrary unknown multi-qudit states of the authors can transfer more information, and it demonstrates lower computational complexity and higher flexibility.
{"title":"Multi-hop teleportation of arbitrary multi-qudit states based on d-level GHZ channels","authors":"Yi Ding, Min Jiang","doi":"10.1049/qtc2.12052","DOIUrl":"https://doi.org/10.1049/qtc2.12052","url":null,"abstract":"<p>The combination of quantum communication technology and wireless networks brings a flexible and secure communication method that adapts to a more complex and open network environment. A new multi-hop teleportation scheme is investigated for transferring arbitrary unknown multi-qudit states between two distant parties. Based on a more general quantum routing protocol, intermediate nodes are introduced and linked with each other via <i>d</i>-level entangled Greenberger-Horne-Zeilinger states as quantum channels. In this multi-hop teleportation protocol, the source node and all the intermediate nodes can perform the entanglement measurement and transmit the measurement results simultaneously, thus reducing the time consumption largely. Furthermore, a general matrix formula is derived between the measurement results and the receiver's state, which enables the receiver to restore the unknown state efficiently. Compared with previous multi-hop teleportation protocols, the teleportation protocol of arbitrary unknown multi-qudit states of the authors can transfer more information, and it demonstrates lower computational complexity and higher flexibility.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"4 1","pages":"39-55"},"PeriodicalIF":0.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50145467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wireless Sensor Networks (WSNs) due to their numerous applications have become a significant research topic in recent years, which include monitoring, tracking/detection, medical, military surveillance, and industrial. Due to the small sensors' difficulty in being easily recharged after random deployment, energy consumption is a challenging research problem for WSNs in general. One popular scenario for reducing energy consumption for WSNs is to use cluster-based technology to reduce sensor node communication distance. Along with focusing on the Chain Cluster Based routing protocol classes. Initially, the Calinski Harabasz approach is utilized to find the optimum number of clusters. This modification will take place for two stages that pass via improving techniques of enhancing the Improved Energy-Efficient PEGASIS-Based (IEEPB) protocol to achieve the main goal of this study. The network lifetime was then extended by using the K-means algorithm. As a result, rather than using a single long path, data is transferred over shorter parallel lines. The protocol is simulated with the MatlabR2015b simulator, which produces clear and effective simulation results, particularly in terms of energy savings. The outcome of the simulation results shows that the Improved energy-efficient PEGASIS-based routing protocol- KMeans optimisation (Improved EEPB- K-means Optimisation) protocol outperforms the Low-energy adaptive clustering hierarchy, Power-efficient gathering in sensor information systems, IEEPB, and MIEEPB protocols.
{"title":"Energy-efficient routing protocol developed for internet of things networks","authors":"Ban Ayad Ahmmad, Salah Abdulghani Alabady","doi":"10.1049/qtc2.12051","DOIUrl":"https://doi.org/10.1049/qtc2.12051","url":null,"abstract":"<p>Wireless Sensor Networks (WSNs) due to their numerous applications have become a significant research topic in recent years, which include monitoring, tracking/detection, medical, military surveillance, and industrial. Due to the small sensors' difficulty in being easily recharged after random deployment, energy consumption is a challenging research problem for WSNs in general. One popular scenario for reducing energy consumption for WSNs is to use cluster-based technology to reduce sensor node communication distance. Along with focusing on the Chain Cluster Based routing protocol classes. Initially, the Calinski Harabasz approach is utilized to find the optimum number of clusters. This modification will take place for two stages that pass via improving techniques of enhancing the Improved Energy-Efficient PEGASIS-Based (IEEPB) protocol to achieve the main goal of this study. The network lifetime was then extended by using the K-means algorithm. As a result, rather than using a single long path, data is transferred over shorter parallel lines. The protocol is simulated with the MatlabR2015b simulator, which produces clear and effective simulation results, particularly in terms of energy savings. The outcome of the simulation results shows that the Improved energy-efficient PEGASIS-based routing protocol- KMeans optimisation (Improved EEPB- K-means Optimisation) protocol outperforms the Low-energy adaptive clustering hierarchy, Power-efficient gathering in sensor information systems, IEEPB, and MIEEPB protocols.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"4 1","pages":"25-38"},"PeriodicalIF":0.0,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50134105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Kolmogorov complexity of a string is the minimum length of a programme that can produce that string. Information distance between two strings based on Kolmogorov complexity is defined as the minimum length of a programme that can transform either string into the other one, both ways. The second quantised Kolmogorov complexity of a quantum state is the minimum average length of a quantum programme that can reproduce that state. In this paper, a second quantised information distance is defined based on the second quantised Kolmogorov complexity. It is described as the minimum average length of a transformation quantum programme between two quantum states. This distance's basic properties are discussed. A practical analogue of quantum information distance is also developed based on quantum data compression.
{"title":"Second quantised information distance","authors":"Songsong Dai","doi":"10.1049/qtc2.12050","DOIUrl":"https://doi.org/10.1049/qtc2.12050","url":null,"abstract":"<p>The Kolmogorov complexity of a string is the minimum length of a programme that can produce that string. Information distance between two strings based on Kolmogorov complexity is defined as the minimum length of a programme that can transform either string into the other one, both ways. The second quantised Kolmogorov complexity of a quantum state is the minimum average length of a quantum programme that can reproduce that state. In this paper, a second quantised information distance is defined based on the second quantised Kolmogorov complexity. It is described as the minimum average length of a transformation quantum programme between two quantum states. This distance's basic properties are discussed. A practical analogue of quantum information distance is also developed based on quantum data compression.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"4 1","pages":"17-24"},"PeriodicalIF":0.0,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12050","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50146990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a modified formulation of generalised probabilistic theories that will always give rise to the structure of Hilbert space of quantum mechanics, in any finite outcome space, is presented and the guidelines to how to extend this work to infinite dimensional Hilbert spaces are given. Moreover, this new formulation which will be called as extended operational-probabilistic theories, applies not only to quantum systems, but also equally well to classical systems, without violating Bell's theorem, and at the same time solves the measurement problem. A new answer to the question of why our universe is quantum mechanical rather than classical will be presented. Besides, this extended probability theory shows that it is non-determinacy, or to be more precise, the non-deterministic description of the universe, that makes the laws of physics the way they are. In addition, this paper shows that there is still a possibility that there might be a deterministic level from which our universe emerges, which if understood correctly, may open the door wide to applications in areas such as quantum computing. In addition, this paper explains the deep reason why complex Hilbert spaces in quantum mechanics are needed.
{"title":"Generalised probabilistic theories in a new light","authors":"Raed Shaiia","doi":"10.1049/qtc2.12045","DOIUrl":"10.1049/qtc2.12045","url":null,"abstract":"<p>In this paper, a modified formulation of generalised probabilistic theories that will always give rise to the structure of Hilbert space of quantum mechanics, in any finite outcome space, is presented and the guidelines to how to extend this work to infinite dimensional Hilbert spaces are given. Moreover, this new formulation which will be called as extended operational-probabilistic theories, applies not only to quantum systems, but also equally well to classical systems, without violating Bell's theorem, and at the same time solves the measurement problem. A new answer to the question of why our universe is quantum mechanical rather than classical will be presented. Besides, this extended probability theory shows that it is non-determinacy, or to be more precise, the non-deterministic description of the universe, that makes the laws of physics the way they are. In addition, this paper shows that there is still a possibility that there might be a deterministic level from which our universe emerges, which if understood correctly, may open the door wide to applications in areas such as quantum computing. In addition, this paper explains the deep reason why complex Hilbert spaces in quantum mechanics are needed.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"3 4","pages":"229-254"},"PeriodicalIF":0.0,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.12045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124053287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}