首页 > 最新文献

Nuclear Energy and Technology最新文献

英文 中文
Nuclear data uncertainty on generation IV fast reactors criticality calculations analysis comparison Nuclear第四代快堆临界计算的数据不确定性分析比较
Pub Date : 2023-10-20 DOI: 10.3897/nucet.9.111919
Dimitar G. Chereshkov, Mikhail Yu. Ternovykh, Georgiy V. Tikhomirov, Alexander A. Ryzhkov
The new calculation code capabilities are applied in the current work as well as important fast reactor criticality parameters uncertainty assessment articles’ results based on different nuclear data libraries and covariance matrices. A comparative analysis of uncertainty estimations related to neutron reactions is presented for lead-cooled reactor models and sodium-cooled reactor models. For the models of advanced BN and BR fast reactors with three fuel types (UO 2 , MOX, MNUP), the multiplication factor uncertainty calculations are performed using 252-group covariance matrices based on ENDF/B-VII.1 library via the SCALE 6.2.4 code system. The main nuclear data uncertainty contributors in the multiplication factor are determined. Recommendations are formulated for improving the cross sections accuracy for several nuclides in order to provide more reliable results of fast reactor criticality calculations. Lead-cooled reactors have no operational history compared to light-water and sodium-cooled reactors. The experimental data insufficiency calls in the question about reliability of the simulation results and requires a comprehensive initial data uncertainty analysis for the neutron transport simulation. The obtained results support the idea that lead- and sodium-cooled reactors have close nuclear data sensitivity using one and the same computation tools, nuclear data libraries and fuel compositions. This makes it possible to use the accumulated data of benchmarks for sodium-cooled reactors in the safety determination of lead-cooled reactors.
新的计算代码功能已应用于目前的工作以及基于不同核数据库和协方差矩阵的重要快堆临界参数不确定性评估文章的结果。对铅冷堆模型和钠冷堆模型的中子反应不确定度进行了比较分析。针对三种燃料类型(UO 2、MOX、MNUP)的先进BN和BR快堆模型,采用基于ENDF/B-VII的252组协方差矩阵进行乘法因子不确定性计算。1库通过SCALE 6.2.4代码系统。确定了乘法因子中核数据不确定度的主要贡献因子。为了提供更可靠的快堆临界计算结果,提出了改进几种核素截面精度的建议。与轻水和钠冷却反应堆相比,铅冷却反应堆没有运行历史。实验数据的不足使模拟结果的可靠性受到质疑,需要对中子输运模拟的初始数据进行全面的不确定性分析。所获得的结果支持这样的观点,即使用相同的计算工具、核数据库和燃料成分,铅和钠冷却反应堆具有相近的核数据敏感性。这使得利用钠冷却堆的基准累积数据来确定铅冷却堆的安全性成为可能。
{"title":"Nuclear data uncertainty on generation IV fast reactors criticality calculations analysis comparison","authors":"Dimitar G. Chereshkov, Mikhail Yu. Ternovykh, Georgiy V. Tikhomirov, Alexander A. Ryzhkov","doi":"10.3897/nucet.9.111919","DOIUrl":"https://doi.org/10.3897/nucet.9.111919","url":null,"abstract":"The new calculation code capabilities are applied in the current work as well as important fast reactor criticality parameters uncertainty assessment articles’ results based on different nuclear data libraries and covariance matrices. A comparative analysis of uncertainty estimations related to neutron reactions is presented for lead-cooled reactor models and sodium-cooled reactor models. For the models of advanced BN and BR fast reactors with three fuel types (UO 2 , MOX, MNUP), the multiplication factor uncertainty calculations are performed using 252-group covariance matrices based on ENDF/B-VII.1 library via the SCALE 6.2.4 code system. The main nuclear data uncertainty contributors in the multiplication factor are determined. Recommendations are formulated for improving the cross sections accuracy for several nuclides in order to provide more reliable results of fast reactor criticality calculations. Lead-cooled reactors have no operational history compared to light-water and sodium-cooled reactors. The experimental data insufficiency calls in the question about reliability of the simulation results and requires a comprehensive initial data uncertainty analysis for the neutron transport simulation. The obtained results support the idea that lead- and sodium-cooled reactors have close nuclear data sensitivity using one and the same computation tools, nuclear data libraries and fuel compositions. This makes it possible to use the accumulated data of benchmarks for sodium-cooled reactors in the safety determination of lead-cooled reactors.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135617701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple usage of thorium-based fuel in a VVER-1000 reactor Multiple在VVER-1000反应堆中钍基燃料的使用
Pub Date : 2023-06-20 DOI: 10.3897/nucet.9.101762
Yury A. Kazansky, Nikita O. Kushnir, Ekaterina S. Khnykina
This paper considers the use of unconventional fuel in nuclear power reactors, using the example of a VVER-type unit, in order to find out the possibility of saving natural fissile uranium nuclei. Saving fissile uranium is one of the important tasks, the solution of which will give time for the development of a two-component nuclear power industry that will have no problems with fuel resources. However, at present, the reserves of cheap uranium can provide the existing level of global nuclear energy for only 80–100 years. The main components of this proposed fuel are 232 Th and fissile isotopes of uranium: 235 U (loaded) and 233 U (produced from thorium). All the uranium isotopes and added 235 U nuclei at the beginning of the campaign account for about 6% of the number of thorium nuclei and uranium isotopes. The abbreviated name of this fuel is TORUR-5. To keep fissionable nuclei in the fuel cycle after the spent fuel is unloaded, it is envisaged that all the heavy nuclei will be returned back to the reactor after they have been cleaned from fission fragments, i.e., the fuel cycle will be closed. At the same time, the principle of annual movement of fuel assemblies (as they burn up) is the same as in the existing VVER-1000 reactors. Using the Serpent software, a reactor model was built, the composition and dimensions of which were close to the parameters of the VVER-1000 serial unit. The main results of calculations were the quantitative compositions of isotopes annually loaded into the reactor as well as the amounts of 235 U and thorium added also annually. The analysis of the obtained results allowed us to make the following conclusions. The annual reloading of 235 U during the computation period is required almost at a constant level and, in comparison with uranium fuel, is about half as much. This is feasible for the following reasons. Part of the fissions of 235 U is replaced by the fission of 233 U produced from 232 Th. In addition, fissionable nuclei are kept in the closed Th-U fuel cycle. This is the first “advantage” of the proposed fuel. TORUR-5 requires uranium enriched to at least 90%, the cost of which is several times higher than that of 3–5% enriched uranium. But since much less highly enriched uranium is required, the cost of fuel for a TORUR-5-fueled VVER-1000 reactor is significantly lower. This is the second “advantage” of the proposed fuel. The negative characteristic of TORUR-5, which requires further investigation, is that, after the initial loading, several uranium isotopes appear in the returned fuel, the total radioactivity of which, according to estimates, exceeds the radioactivity of traditional 3–5% enriched uranium fuel by several thousand times. At the same time, the radioactivity of discharged spent conventional fuel exceeds the radioactivity of fresh fuel by millions of times, and this problem has been solved at NPPs both organizationally and technically. Therefore, it will be necessary to develop a technology for
本文以某vver型机组为例,研究了在核动力反应堆中使用非常规燃料的问题,以探索节约天然可裂变铀核的可能性。节约可裂变铀是一项重要任务,解决这一问题将为发展没有燃料资源问题的双组分核动力工业争取时间。然而,目前,廉价铀的储量只能提供全球现有水平的核能80-100年。这种拟议燃料的主要成分是232th和铀的可裂变同位素:235u(装载)和233u(由钍产生)。所有铀同位素和活动开始时添加的235个U核约占钍核和铀同位素数量的6%。这种燃料的缩写是TORUR-5。为了在乏燃料卸载后将可裂变的核保留在燃料循环中,设想所有重核在从裂变碎片中清除后将返回反应堆,即关闭燃料循环。同时,燃料组件的年度运动原理(燃烧时)与现有的VVER-1000反应堆相同。利用Serpent软件建立了反应器模型,其组成和尺寸与VVER-1000系列机组参数接近。计算的主要结果是每年装载到反应堆中的同位素的定量组成,以及每年添加的铀235和钍的数量。对所得结果的分析使我们能够得出以下结论。在计算期间,每年需要的235铀的重新装填量几乎是恒定的,与铀燃料相比,大约是前者的一半。这是可行的,原因如下。233u的部分裂变被233th产生的233u的裂变所取代。此外,可裂变的原子核被保存在封闭的钍铀燃料循环中。这是该燃料的第一个“优势”。TORUR-5需要浓缩到90%以上的铀,其成本比浓缩到3-5%的铀高出几倍。但由于所需的高浓缩铀要少得多,因此torur -5燃料的VVER-1000反应堆的燃料成本要低得多。这是该燃料的第二个“优势”。TORUR-5的负面特征是,在初始装载后,在返回的燃料中出现了几种铀同位素,据估计,其总放射性超过传统的3-5%浓缩铀燃料的放射性数千倍,这需要进一步调查。同时,排放的乏燃料的放射性是新燃料的数百万倍,这一问题在核电厂已经从组织上和技术上得到了解决。因此,考虑到估计的放射性,有必要开发一种装载TORUR-5的技术。
{"title":"Multiple usage of thorium-based fuel in a VVER-1000 reactor","authors":"Yury A. Kazansky, Nikita O. Kushnir, Ekaterina S. Khnykina","doi":"10.3897/nucet.9.101762","DOIUrl":"https://doi.org/10.3897/nucet.9.101762","url":null,"abstract":"This paper considers the use of unconventional fuel in nuclear power reactors, using the example of a VVER-type unit, in order to find out the possibility of saving natural fissile uranium nuclei. Saving fissile uranium is one of the important tasks, the solution of which will give time for the development of a two-component nuclear power industry that will have no problems with fuel resources. However, at present, the reserves of cheap uranium can provide the existing level of global nuclear energy for only 80–100 years. The main components of this proposed fuel are 232 Th and fissile isotopes of uranium: 235 U (loaded) and 233 U (produced from thorium). All the uranium isotopes and added 235 U nuclei at the beginning of the campaign account for about 6% of the number of thorium nuclei and uranium isotopes. The abbreviated name of this fuel is TORUR-5. To keep fissionable nuclei in the fuel cycle after the spent fuel is unloaded, it is envisaged that all the heavy nuclei will be returned back to the reactor after they have been cleaned from fission fragments, i.e., the fuel cycle will be closed. At the same time, the principle of annual movement of fuel assemblies (as they burn up) is the same as in the existing VVER-1000 reactors. Using the Serpent software, a reactor model was built, the composition and dimensions of which were close to the parameters of the VVER-1000 serial unit. The main results of calculations were the quantitative compositions of isotopes annually loaded into the reactor as well as the amounts of 235 U and thorium added also annually. The analysis of the obtained results allowed us to make the following conclusions. The annual reloading of 235 U during the computation period is required almost at a constant level and, in comparison with uranium fuel, is about half as much. This is feasible for the following reasons. Part of the fissions of 235 U is replaced by the fission of 233 U produced from 232 Th. In addition, fissionable nuclei are kept in the closed Th-U fuel cycle. This is the first “advantage” of the proposed fuel. TORUR-5 requires uranium enriched to at least 90%, the cost of which is several times higher than that of 3–5% enriched uranium. But since much less highly enriched uranium is required, the cost of fuel for a TORUR-5-fueled VVER-1000 reactor is significantly lower. This is the second “advantage” of the proposed fuel. The negative characteristic of TORUR-5, which requires further investigation, is that, after the initial loading, several uranium isotopes appear in the returned fuel, the total radioactivity of which, according to estimates, exceeds the radioactivity of traditional 3–5% enriched uranium fuel by several thousand times. At the same time, the radioactivity of discharged spent conventional fuel exceeds the radioactivity of fresh fuel by millions of times, and this problem has been solved at NPPs both organizationally and technically. Therefore, it will be necessary to develop a technology for ","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135187959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isotope kinetics modeling in a circulating fuel system: a case study of the MBIR reactor loop Isotope在循环燃料系统动力学建模:一个案例研究的MBIR反应堆回路
Pub Date : 2023-06-20 DOI: 10.3897/nucet.9.107761
D. S. Kuzenkova, Victor Yu. Blandinskiy
The paper presents the results of modeling of changes in the isotopic composition of the liquid-salt fuel circulating in the experimental channel of the MBIR reactor facility. The authors tested the ISTAR software environment adapted for solving burnup equations in problems with variable power levels. The loop channel parameters, including two heat exchanger options, were estimated to obtain the appropriate salt transit time through the loop channel zones. Two problems of a circulating fuel system (loop) modeling are considered, namely: (1) modeling the equilibrium salt isotope composition in such a system; and (2) developing a technique for modeling nonstationary isotope kinetics in the MBIR reactor loop. Non-stationary isotope kinetics can be modeled as sequential burnup of nuclides in the neutron field and decay during movement in the external circuit. The authors also developed an algorithm for modeling changes in the isotopic composition of fuel salt during its circulation, taking into account the sequential transfer of a given salt volume from the burnup zone to the zone outside the reactor core. Based on this algorithm, a software package was created using the Python 3.9 programming language and ISTAR modules. In addition, a description of the calculation methodology was given and some calculation results obtained using the software were presented. In the process of working with the program, it was found that, for the given times of the fuel being in each of the zones (2 and 200 seconds, respectively), modeling the change in the isotopic composition during the fuel campaign (500 days) will require the calculation of more than 500 thousand steps. In order to save time, it is necessary to find out whether it will be possible to reduce the number of calls to the neutronic calculation code due to a slight change in the isotopic composition of the fuel in the loop per one burnup step. Work is currently underway to optimize this process.
本文介绍了MBIR反应堆实验通道内循环液盐燃料同位素组成变化的模拟结果。作者对ISTAR软件环境进行了测试,该环境适用于解决具有可变功率水平的燃耗方程问题。估算了环路通道参数,包括两种热交换器选项,以获得通过环路通道区域的适当盐传递时间。考虑了循环燃料系统(循环)建模的两个问题,即:(1)系统中平衡盐同位素组成的建模;(2)开发了一种模拟MBIR反应堆回路中非平稳同位素动力学的技术。非平稳同位素动力学可以用中子场中核素的连续燃烧和外电路中运动过程中的衰变来模拟。作者还开发了一种算法,用于模拟燃料盐在循环过程中同位素组成的变化,考虑到给定盐体积从燃燃区到反应堆堆芯外区域的顺序转移。基于该算法,利用Python 3.9编程语言和ISTAR模块构建了软件包。此外,给出了计算方法的描述,并给出了使用该软件得到的一些计算结果。在使用该程序的过程中,发现对于燃料在每个区域的给定时间(分别为2秒和200秒),在燃料活动(500天)期间模拟同位素组成的变化将需要计算超过50万步。为了节省时间,有必要弄清楚是否有可能减少调用中子计算代码的次数,因为每一个燃燃步骤中回路中燃料的同位素组成有轻微的变化。目前正在进行优化这一过程的工作。
{"title":"Isotope kinetics modeling in a circulating fuel system: a case study of the MBIR reactor loop","authors":"D. S. Kuzenkova, Victor Yu. Blandinskiy","doi":"10.3897/nucet.9.107761","DOIUrl":"https://doi.org/10.3897/nucet.9.107761","url":null,"abstract":"The paper presents the results of modeling of changes in the isotopic composition of the liquid-salt fuel circulating in the experimental channel of the MBIR reactor facility. The authors tested the ISTAR software environment adapted for solving burnup equations in problems with variable power levels. The loop channel parameters, including two heat exchanger options, were estimated to obtain the appropriate salt transit time through the loop channel zones. Two problems of a circulating fuel system (loop) modeling are considered, namely: (1) modeling the equilibrium salt isotope composition in such a system; and (2) developing a technique for modeling nonstationary isotope kinetics in the MBIR reactor loop. Non-stationary isotope kinetics can be modeled as sequential burnup of nuclides in the neutron field and decay during movement in the external circuit. The authors also developed an algorithm for modeling changes in the isotopic composition of fuel salt during its circulation, taking into account the sequential transfer of a given salt volume from the burnup zone to the zone outside the reactor core. Based on this algorithm, a software package was created using the Python 3.9 programming language and ISTAR modules. In addition, a description of the calculation methodology was given and some calculation results obtained using the software were presented. In the process of working with the program, it was found that, for the given times of the fuel being in each of the zones (2 and 200 seconds, respectively), modeling the change in the isotopic composition during the fuel campaign (500 days) will require the calculation of more than 500 thousand steps. In order to save time, it is necessary to find out whether it will be possible to reduce the number of calls to the neutronic calculation code due to a slight change in the isotopic composition of the fuel in the loop per one burnup step. Work is currently underway to optimize this process.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"77 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82627038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen explosion safety for the Bilibino NPP EGP-6 reactor in conditions of a beyond design basis accident Hydrogen比利比诺核电站EGP-6反应堆在超出设计基础事故条件下的爆炸安全性
Pub Date : 2023-06-20 DOI: 10.3897/nucet.9.107760
Anatoly A. Kazantsev, Ol’ga V. Supotnitskaya, Evgeniya A. Ivanova, Irina V. Moskovchenko, Ruben I. Mukhamadeev, Vladimir F. Timofeev, Nataliya E. Astakhova
The paper presents the results of simulating a beyond design basis accident with regard to radiolytic hydrogen transport and analysis of hydrogen explosion safety in the reactor cavity and in the central reactor hall of the Bilibino NPP. The KUPOL-M code, version 1.10a, is used as the calculation tool for justifying hydrogen explosion safety. The accident under investigation is a beyond design basis accident, the initial event for which is spontaneous travel of two pairs of automatic control rods and a failure of the reactor scram system. The accident leads to the maximum possible release of positive reactivity, mass destruction of fuel elements, and escape of radiolytic hydrogen, as part of the gas mixture, into the reactor cavity and the central hall and further, through the broken windows, into the atmosphere. The calculation results show that no explosive concentrations of hydrogen are formed in the reactor cavity and in the central hall. Therefore, hydrogen explosion safety is ensured throughout the duration of the design basis accident for the Bilibino NPP unit with the EGP-6 reactor.
本文介绍了比利比诺核电站一次超出设计基础的放射性氢输运事故的模拟结果,并对反应堆腔体和反应堆中央大厅的氢爆炸安全性进行了分析。KUPOL-M代码版本1.10a被用作证明氢气爆炸安全性的计算工具。正在调查的事故是一个超出设计基础的事故,其初始事件是两对自动控制棒的自发移动和反应堆停堆系统的故障。事故导致最大可能的正反应性释放,燃料元件的大规模破坏,以及作为气体混合物的一部分的放射性氢逸出,进入反应堆腔和中央大厅,并进一步通过破碎的窗户进入大气。计算结果表明,反应器内腔和中央大厅内未形成爆炸浓度的氢气。因此,使用EGP-6反应堆的Bilibino核电站机组在整个设计基础事故期间都能保证氢气爆炸安全。
{"title":"Hydrogen explosion safety for the Bilibino NPP EGP-6 reactor in conditions of a beyond design basis accident","authors":"Anatoly A. Kazantsev, Ol’ga V. Supotnitskaya, Evgeniya A. Ivanova, Irina V. Moskovchenko, Ruben I. Mukhamadeev, Vladimir F. Timofeev, Nataliya E. Astakhova","doi":"10.3897/nucet.9.107760","DOIUrl":"https://doi.org/10.3897/nucet.9.107760","url":null,"abstract":"The paper presents the results of simulating a beyond design basis accident with regard to radiolytic hydrogen transport and analysis of hydrogen explosion safety in the reactor cavity and in the central reactor hall of the Bilibino NPP. The KUPOL-M code, version 1.10a, is used as the calculation tool for justifying hydrogen explosion safety. The accident under investigation is a beyond design basis accident, the initial event for which is spontaneous travel of two pairs of automatic control rods and a failure of the reactor scram system. The accident leads to the maximum possible release of positive reactivity, mass destruction of fuel elements, and escape of radiolytic hydrogen, as part of the gas mixture, into the reactor cavity and the central hall and further, through the broken windows, into the atmosphere. The calculation results show that no explosive concentrations of hydrogen are formed in the reactor cavity and in the central hall. Therefore, hydrogen explosion safety is ensured throughout the duration of the design basis accident for the Bilibino NPP unit with the EGP-6 reactor.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135188186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of remix spent mixed fuel plutonium in the BN-1200 reactor Use在BN-1200反应堆中重新混合乏燃料钚
Pub Date : 2023-06-20 DOI: 10.3897/nucet.9.107762
Nikita V. Kovalev, Alexander M. Prokoshin, Alexander S. Kudinov, Vladimir A. Nevinitsa
The VVER-1000 thermal neutron reactor can operate on mixed uranium-plutonium fuel with a content of reactor-grade plutonium up to 5% with a 100% loaded core. In this case, plutonium burns up to 56% of odd isotopes. The energy potential of such plutonium is very low, and its further use in thermal reactors is impractical. However, such plutonium can be used in fast neutron reactors. The paper presents the results of investigating the possibility for such isotopic plutonium composition to be used in the BN-1200 thermal neutron reactor and its value be increased for the plutonium recycle in the reactor. For this purpose, a precision model of the BN-1200 reactor has been developed using the Serpent Monte Carlo code. The model has been verified against the reference values of the nuclear fuel burnup and breeding ratios. The study has shown that such plutonium can be used in the BN-1200 reactor MOX fuel. Maintaining the operating cycle length requires the plutonium fraction in the MOX fuel to be increased up to 2%. In the BN-1200 reactor, the isotopic composition has been found to improve for the further recycle of plutonium in the thermal reactor, i.e. odd plutonium isotopes increase. The fewer odd plutonium isotopes at the beginning of the BN-1200 operating cycle, the greater their increase. It can be seen as the result of the calculation that plutonium from VVER-1000 spent mixed fuel must be loaded into the BN-1200 reactor at least twice to increase the fraction of odd isotopes to the level of reactor-grade plutonium.
VVER-1000热中子反应堆可以在反应堆级钚含量高达5%的混合铀-钚燃料上运行,堆芯负荷为100%。在这种情况下,钚燃烧了多达56%的奇数同位素。这种钚的能量潜力非常低,在热反应堆中进一步使用是不切实际的。然而,这种钚可以用于快中子反应堆。本文介绍了在BN-1200热中子反应堆中使用这种同位素钚成分的可能性的研究结果,以及在反应堆中钚循环利用中增加其值的研究结果。为此,利用Serpent蒙特卡罗代码开发了BN-1200反应堆的精确模型。用核燃料燃耗比和增殖比的参考值对模型进行了验证。研究表明,这种钚可以用于BN-1200反应堆的MOX燃料。维持运行周期长度需要将MOX燃料中的钚含量提高到2%。在BN-1200反应堆中,发现同位素组成改善了钚在热堆中的进一步循环,即奇数钚同位素增加。BN-1200运行周期开始时,奇数钚同位素越少,它们的增加就越大。可以看出,计算结果表明,从VVER-1000用过的混合燃料中提取的钚必须至少两次装载到BN-1200反应堆中,才能将奇数同位素的比例提高到反应堆级钚的水平。
{"title":"Use of remix spent mixed fuel plutonium in the BN-1200 reactor","authors":"Nikita V. Kovalev, Alexander M. Prokoshin, Alexander S. Kudinov, Vladimir A. Nevinitsa","doi":"10.3897/nucet.9.107762","DOIUrl":"https://doi.org/10.3897/nucet.9.107762","url":null,"abstract":"The VVER-1000 thermal neutron reactor can operate on mixed uranium-plutonium fuel with a content of reactor-grade plutonium up to 5% with a 100% loaded core. In this case, plutonium burns up to 56% of odd isotopes. The energy potential of such plutonium is very low, and its further use in thermal reactors is impractical. However, such plutonium can be used in fast neutron reactors. The paper presents the results of investigating the possibility for such isotopic plutonium composition to be used in the BN-1200 thermal neutron reactor and its value be increased for the plutonium recycle in the reactor. For this purpose, a precision model of the BN-1200 reactor has been developed using the Serpent Monte Carlo code. The model has been verified against the reference values of the nuclear fuel burnup and breeding ratios. The study has shown that such plutonium can be used in the BN-1200 reactor MOX fuel. Maintaining the operating cycle length requires the plutonium fraction in the MOX fuel to be increased up to 2%. In the BN-1200 reactor, the isotopic composition has been found to improve for the further recycle of plutonium in the thermal reactor, i.e. odd plutonium isotopes increase. The fewer odd plutonium isotopes at the beginning of the BN-1200 operating cycle, the greater their increase. It can be seen as the result of the calculation that plutonium from VVER-1000 spent mixed fuel must be loaded into the BN-1200 reactor at least twice to increase the fraction of odd isotopes to the level of reactor-grade plutonium.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135188192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled modeling of neutronics and thermal-hydraulics processes in LFR under SG-leakage condition Coupled sg泄漏条件下LFR的中子和热工过程建模
Pub Date : 2023-06-20 DOI: 10.3897/nucet.9.99154
Yurii S. Khomyakov, Valerii I. Rachkov, Iurii E. Shvetsov
The lead cooled reactor BREST-OD-300 is developing as a part of Russian federal project “PRORYV”. Two- circuit scheme is used in the reactor for heat removal. An inherent risk of two- circuit reactor is the potential danger of water steam ingression in the core in the case of large leakage in steam generator initiated, for example, Steam Generator Tube Rupture (SGTR). Reactor power and temperature response on vapor penetration to the core is studied, but pressurization effects are not in the purview of the paper. The 3D multi-physics (neutronics + thermal-hydraulics) UNICO-2F code was developed for study of SGTR accident. The code calculates unsteady 3D space dependent distributions of coolant velocity, pressure and temperature, space distributions of vapor concentration and heat release density in the core and 3D temperature distributions in the fuel pins. Guillotine rupture of one tube in Steam Generator (SG) is considered as initial event of the accident. It is shown that even with the most conservative assumptions reactivity insertion due to vapor ingress in the core causes small increase of power in level and as a result maximum cladding temperature continue to stay well below safe operation design limit in the entire transient. Hypothetical option of simultaneous tube rupture in few SG belonging to different loops is also analyzed. It is demonstrated that even in the case of simultaneous large leak in two SG the transient stays mild and temperature in the core after two small oscillations is stabilized at acceptable level. In the long term the analysis confirmed the high level of reactor self-protection against SGTR accident.
作为俄罗斯联邦项目“PRORYV”的一部分,BREST-OD-300铅冷却反应堆正在开发中。反应器采用双回路散热方案。双回路反应堆的一个固有风险是,在蒸汽发生器发生大泄漏的情况下,水蒸汽进入堆芯的潜在危险,例如蒸汽发生器管破裂(SGTR)。研究了反应堆功率和温度对蒸汽穿透堆芯的响应,但加压效应不在本文的研究范围之内。为研究SGTR事故,开发了三维多物理场(中子+热工-水力学)UNICO-2F程序。该程序计算了冷却剂速度、压力和温度的非定常三维空间分布,堆芯内蒸汽浓度和放热密度的空间分布以及燃料钉内的三维温度分布。蒸汽发生器一管断头台断裂被认为是事故的初始事件。结果表明,即使在最保守的假设下,由于蒸汽进入堆芯而导致的反应性插入也会导致功率水平的小幅增加,因此在整个瞬态过程中,最大包层温度继续保持在远低于安全运行设计极限的水平。分析了不同回路的几个SG同时破管的假设选择。结果表明,即使在两个SG同时发生大泄漏的情况下,瞬态仍保持温和,并且经过两次小振荡后,堆芯温度稳定在可接受的水平。从长期来看,分析证实了反应堆对SGTR事故的高水平自我保护。
{"title":"Coupled modeling of neutronics and thermal-hydraulics processes in LFR under SG-leakage condition","authors":"Yurii S. Khomyakov, Valerii I. Rachkov, Iurii E. Shvetsov","doi":"10.3897/nucet.9.99154","DOIUrl":"https://doi.org/10.3897/nucet.9.99154","url":null,"abstract":"The lead cooled reactor BREST-OD-300 is developing as a part of Russian federal project “PRORYV”. Two- circuit scheme is used in the reactor for heat removal. An inherent risk of two- circuit reactor is the potential danger of water steam ingression in the core in the case of large leakage in steam generator initiated, for example, Steam Generator Tube Rupture (SGTR). Reactor power and temperature response on vapor penetration to the core is studied, but pressurization effects are not in the purview of the paper. The 3D multi-physics (neutronics + thermal-hydraulics) UNICO-2F code was developed for study of SGTR accident. The code calculates unsteady 3D space dependent distributions of coolant velocity, pressure and temperature, space distributions of vapor concentration and heat release density in the core and 3D temperature distributions in the fuel pins. Guillotine rupture of one tube in Steam Generator (SG) is considered as initial event of the accident. It is shown that even with the most conservative assumptions reactivity insertion due to vapor ingress in the core causes small increase of power in level and as a result maximum cladding temperature continue to stay well below safe operation design limit in the entire transient. Hypothetical option of simultaneous tube rupture in few SG belonging to different loops is also analyzed. It is demonstrated that even in the case of simultaneous large leak in two SG the transient stays mild and temperature in the core after two small oscillations is stabilized at acceptable level. In the long term the analysis confirmed the high level of reactor self-protection against SGTR accident.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135188181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of the spatial grid type on the result of calculating the neutron fields in the nuclear power plant shielding 空间网格型对核电厂屏蔽中子场计算结果的影响Influence
Pub Date : 2023-06-20 DOI: 10.3897/nucet.9.102507
Olga V. Nikolaeva, Sergey A. Gaifulin, Leonid P. Bass, Denis V. Dmitriev, Alexandr A. Nikolaev
The paper considers the influence of the spatial grid type on the result of solving the equation of neutron transport in the nuclear power plant (NPP) shielding. Neutron fields were calculated in a realistic model of a liquid metal cooled fast neutron tank reactor with an integral equipment layout. Structured cubic and unstructured hexahedral grids (pmsnsys and FRIGATE codes) and unstructured tetrahedral and prismatic grids (RADUGA T code) are used. Limiting values of the group fluxes averaged over the material zones for refined grids have been obtained. It has been shown that the calculation results depend on the type of approximation for the curvilinear inner boundaries between the material zones rather than on the grid cell type (cube, hexahedron, tetrahedron, prism). Using “toothed” approximations for curvilinear boundaries leads to an increase in the area of the boundaries, as well as to the neutron flux refraction condition arising on them. These effects lead to an upward bias in the transport equation solution, and for all energy groups. Conclusion. When solving an equation of neutron transport in the NPP shielding by a grid technique, it is necessary to use grids other than leading to “toothed” approximations of the inner boundaries. Tetrahedral or prismatic grids, or grids of arbitrary hexahedrons can be recommended, as well as composite grids in which cubic cells are located inside the material zone, and hexahedron cells are located near the zone boundary.
本文考虑了空间网格类型对核电厂屏蔽层中子输运方程求解结果的影响。对采用整体式设备布置的液态金属冷却快中子槽式反应堆进行了中子场计算。采用结构化立方网格和非结构化六面体网格(pmsnsys和FRIGATE代码)和非结构化四面体网格和棱镜网格(RADUGA T代码)。得到了精细化网格在材料区域上平均的群通量的极限值。结果表明,计算结果取决于材料区域间曲线内边界的近似类型,而不是取决于网格单元类型(立方体、六面体、四面体、棱镜)。对曲线边界使用“齿状”近似会导致边界面积的增加,以及在边界上产生的中子通量折射条件的增加。这些效应导致输运方程的解有一个向上的偏置,对所有的能量群都是如此。结论。在用网格技术求解核电站屏蔽中中子输运方程时,有必要使用网格,而不是导致内部边界的“齿状”近似。推荐使用四面体网格或棱柱体网格,或任意六面体网格,以及立方体单元位于材料区域内,六面体单元位于区域边界附近的复合网格。
{"title":"Influence of the spatial grid type on the result of calculating the neutron fields in the nuclear power plant shielding","authors":"Olga V. Nikolaeva, Sergey A. Gaifulin, Leonid P. Bass, Denis V. Dmitriev, Alexandr A. Nikolaev","doi":"10.3897/nucet.9.102507","DOIUrl":"https://doi.org/10.3897/nucet.9.102507","url":null,"abstract":"The paper considers the influence of the spatial grid type on the result of solving the equation of neutron transport in the nuclear power plant (NPP) shielding. Neutron fields were calculated in a realistic model of a liquid metal cooled fast neutron tank reactor with an integral equipment layout. Structured cubic and unstructured hexahedral grids (pmsnsys and FRIGATE codes) and unstructured tetrahedral and prismatic grids (RADUGA T code) are used. Limiting values of the group fluxes averaged over the material zones for refined grids have been obtained. It has been shown that the calculation results depend on the type of approximation for the curvilinear inner boundaries between the material zones rather than on the grid cell type (cube, hexahedron, tetrahedron, prism). Using “toothed” approximations for curvilinear boundaries leads to an increase in the area of the boundaries, as well as to the neutron flux refraction condition arising on them. These effects lead to an upward bias in the transport equation solution, and for all energy groups. Conclusion. When solving an equation of neutron transport in the NPP shielding by a grid technique, it is necessary to use grids other than leading to “toothed” approximations of the inner boundaries. Tetrahedral or prismatic grids, or grids of arbitrary hexahedrons can be recommended, as well as composite grids in which cubic cells are located inside the material zone, and hexahedron cells are located near the zone boundary.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135188185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of DNBR with neutronics calculation in LWR systems 在低水堆系统中进行中子计算的DNBR的Evaluation
Pub Date : 2023-06-20 DOI: 10.3897/nucet.9.98452
S. Khan, Umasankari Kannan
The heat flux in a Light Water Reactor (LWR) system is used to estimate the Departure from Nucleate Boiling Ratio (DNBR) of the system which is an important thermal hydraulic parameter for nuclear reactors from heat removal point of view. The DNBR signifies an operational safety limit i.e. the nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The DNBR is evaluated using a thermal hydraulic analysis code using inputs from neutronics calculation. The present paper presents the evaluation approach of minimum DNBR (MDNBR) during standard neutronics calculation. The DNBR calculation is performed using a core physics analysis code and burnup variation of MDNBR is studied for the full cycle length. The results of calculation are presented using the equilibrium core of 2700 MWth/900 MWe Indian Pressurized Water Reactor (IPWR). The calculations are performed using VISWAM-TRIHEXFA code system. The few group lattice parametric library for IPWR is generated by lattice analysis code VISWAM. The core follow up calculation for the equilibrium core configuration has been performed using core analysis code TRIHEXFA. A first order thermal hydraulic feedback model has been introduced into the 3D finite difference core simulation tool TRIHEXFA. The critical heat flux calculation, required for estimation of DNBR, has been performed using W-3 Tong and OKB-Gidropress correlations implemented in TRIHEXFA.
从排热角度出发,利用轻水堆系统的热流密度来估计系统的离核沸腾比(DNBR),这是核反应堆重要的热工水力参数。DNBR表示一个操作安全限制即核电站必须从指定的操作有足够的保证金DNBR限制保证它的安全。DNBR的评估使用热工分析代码,并使用来自中子计算的输入。本文提出了标准中子计算中最小DNBR (MDNBR)的计算方法。利用核心物理分析程序进行了DNBR的计算,并研究了全循环长度下MDNBR的燃耗变化。计算的结果提出了使用2700 MWth / 900兆瓦的平衡核心印度压水反应堆(IPWR)。计算使用VISWAM-TRIHEXFA代码系统执行。利用点阵分析程序VISWAM生成了IPWR的小群点阵参数库。利用岩心分析代码TRIHEXFA对平衡岩心结构进行了岩心跟踪计算。在三维有限差分岩心仿真工具TRIHEXFA中引入了一阶热液反馈模型。利用TRIHEXFA中实现的W-3 Tong和OKB-Gidropress相关性进行了DNBR估计所需的临界热通量计算。
{"title":"Evaluation of DNBR with neutronics calculation in LWR systems","authors":"S. Khan, Umasankari Kannan","doi":"10.3897/nucet.9.98452","DOIUrl":"https://doi.org/10.3897/nucet.9.98452","url":null,"abstract":"The heat flux in a Light Water Reactor (LWR) system is used to estimate the Departure from Nucleate Boiling Ratio (DNBR) of the system which is an important thermal hydraulic parameter for nuclear reactors from heat removal point of view. The DNBR signifies an operational safety limit i.e. the nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The DNBR is evaluated using a thermal hydraulic analysis code using inputs from neutronics calculation. The present paper presents the evaluation approach of minimum DNBR (MDNBR) during standard neutronics calculation. The DNBR calculation is performed using a core physics analysis code and burnup variation of MDNBR is studied for the full cycle length. The results of calculation are presented using the equilibrium core of 2700 MWth/900 MWe Indian Pressurized Water Reactor (IPWR). The calculations are performed using VISWAM-TRIHEXFA code system. The few group lattice parametric library for IPWR is generated by lattice analysis code VISWAM. The core follow up calculation for the equilibrium core configuration has been performed using core analysis code TRIHEXFA. A first order thermal hydraulic feedback model has been introduced into the 3D finite difference core simulation tool TRIHEXFA. The critical heat flux calculation, required for estimation of DNBR, has been performed using W-3 Tong and OKB-Gidropress correlations implemented in TRIHEXFA.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"150 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76403491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of machine learning methods for filling and updating nuclear knowledge bases 用于填充和更新核知识库的机器学习方法Application
Pub Date : 2023-06-20 DOI: 10.3897/nucet.9.106759
V. Telnov, Y. Korovin
The paper deals with issues of designing and creating knowledge bases in the field of nuclear science and technology. The authors present the results of searching for and testing optimal classification and semantic annotation algorithms applied to the textual network content for the convenience of computer-aided filling and updating of scalable semantic repositories (knowledge bases) in the field of nuclear physics and nuclear power engineering and, in the future, for other subject areas, both in Russian and English. The proposed algorithms will provide a methodological and technological basis for creating problem-oriented knowledge bases as artificial intelligence systems, as well as prerequisites for the development of semantic technologies for acquiring new knowledge on the Internet without direct human participation. Testing of the studied machine learning algorithms is carried out by the cross-validation method using corpora of specialized texts. The novelty of the presented study lies in the application of the Pareto optimality principle for multi-criteria evaluation and ranking of the studied algorithms in the absence of a priori information about the comparative significance of the criteria. The project is implemented in accordance with the Semantic Web standards (RDF, OWL, SPARQL, etc.). There are no technological restrictions for integrating the created knowledge bases with third-party data repositories as well as metasearch, library, reference or information and question-answer systems. The proposed software solutions are based on cloud computing using DBaaS and PaaS service models to ensure the scalability of data warehouses and network services. The created software is in the public domain and can be freely replicated.
本文讨论了核科学与技术领域知识库的设计与创建问题。作者介绍了搜索和测试用于文本网络内容的最佳分类和语义注释算法的结果,以方便计算机辅助填充和更新核物理和核动力工程领域的可扩展语义库(知识库),并在未来用于其他学科领域,包括俄语和英语。所提出的算法将为创建面向问题的知识库作为人工智能系统提供方法和技术基础,并为在没有人类直接参与的情况下在互联网上获取新知识的语义技术的发展提供先决条件。所研究的机器学习算法通过使用专业文本语料库的交叉验证方法进行测试。本研究的新颖之处在于,在缺乏关于标准比较重要性的先验信息的情况下,应用帕累托最优原则对所研究的算法进行多准则评价和排序。该项目是按照语义Web标准(RDF、OWL、SPARQL等)实现的。将创建的知识库与第三方数据存储库以及元搜索、图书馆、参考或信息和问答系统集成在一起没有技术限制。提出的软件解决方案基于云计算,采用DBaaS和PaaS服务模型,确保数据仓库和网络服务的可扩展性。所创建的软件属于公共领域,可以自由复制。
{"title":"Application of machine learning methods for filling and updating nuclear knowledge bases","authors":"V. Telnov, Y. Korovin","doi":"10.3897/nucet.9.106759","DOIUrl":"https://doi.org/10.3897/nucet.9.106759","url":null,"abstract":"The paper deals with issues of designing and creating knowledge bases in the field of nuclear science and technology. The authors present the results of searching for and testing optimal classification and semantic annotation algorithms applied to the textual network content for the convenience of computer-aided filling and updating of scalable semantic repositories (knowledge bases) in the field of nuclear physics and nuclear power engineering and, in the future, for other subject areas, both in Russian and English. The proposed algorithms will provide a methodological and technological basis for creating problem-oriented knowledge bases as artificial intelligence systems, as well as prerequisites for the development of semantic technologies for acquiring new knowledge on the Internet without direct human participation. Testing of the studied machine learning algorithms is carried out by the cross-validation method using corpora of specialized texts. The novelty of the presented study lies in the application of the Pareto optimality principle for multi-criteria evaluation and ranking of the studied algorithms in the absence of a priori information about the comparative significance of the criteria. The project is implemented in accordance with the Semantic Web standards (RDF, OWL, SPARQL, etc.). There are no technological restrictions for integrating the created knowledge bases with third-party data repositories as well as metasearch, library, reference or information and question-answer systems. The proposed software solutions are based on cloud computing using DBaaS and PaaS service models to ensure the scalability of data warehouses and network services. The created software is in the public domain and can be freely replicated.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77240492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The role of nickel in forming a structure providing increased service properties of reactor structural materials The镍在形成结构中的作用,提高了反应堆结构材料的使用性能
Pub Date : 2023-06-20 DOI: 10.3897/nucet.9.102914
Evgenia A. Kuleshova, Ivan V. Fedotov, Dmitry A. Maltsev, Aleksey S. Frolov, Nikita V. Stepanov, Denis V. Safonov
Nickel is an essential alloying element in steels used as structural materials in the most common nuclear power reactors of the VVER type. The paper considers reviews the results of structural studies of traditional and advanced materials of the vessels and internals of VVER-type reactors with high nickel contents in their compositions. It is shown that an increased nickel content (up to 5 wt.%) in the steels of VVER pressure vessels contributes to the formation of a more dispersed structure with a smaller size of substructural elements and an increased density of dislocations, as well as a higher volume density of carbide phases. The revealed features of the structure of the reactor pressure vessel steel with high nickel content have the prerequisites for improving the strength and viscoplastic properties due to the increased number of barriers both for the dislocation motion and brittle crack propagation. Using the example of materials for VVER internals, it is shown that the nickel content increased in them up to 25 wt.% contributes to an increase in the volume density of radiation defects (dislocation loops of various types) and radiation-induced phase precipitates (G-phase). As nickel increases from 10 to 25 wt.%, there is a tendency to reduce swelling, which contributes to less shape change of the components of the reactor vessel internals. At the same time, in the steel with the highest nickel content, the highest nickel content was found in the near-boundary regions of the matrix, which contributes to greater austenite stability and a lower probability of the formation of an embrittling α-phase. The data obtained in the work on the effect of nickel alloying on the steel structural phase state and service characteristics were used in the development of new materials for the vessels and internals of advanced reactors.
镍是在最常见的VVER型核动力反应堆中用作结构材料的钢中必不可少的合金元素。本文综述了高含镍vver型反应器容器和内部的传统材料和先进材料的结构研究成果。结果表明,VVER压力容器钢中镍含量的增加(高达5 wt.%)有助于形成更分散的结构,其亚结构元素尺寸更小,位错密度更高,碳化物相体积密度更高。高镍反应器压力容器钢的结构特征为提高其强度和粘塑性性能提供了先决条件,这是由于位错运动和脆性裂纹扩展的屏障数量增加。以VVER内件材料为例,镍含量增加到25wt .%时,辐射缺陷(各种类型的位错环)和辐射诱导相沉淀(g相)的体积密度增加。当镍从10%增加到25wt .%时,有减少膨胀的趋势,这有助于减少反应堆容器内部部件的形状变化。同时,在镍含量最高的钢中,镍含量最高的是在基体的近边界区域,这有助于提高奥氏体的稳定性和形成脆化α-相的可能性较低。研究镍合金化对钢结构相态和使用特性影响的数据,用于先进反应堆容器和内部新材料的开发。
{"title":"The role of nickel in forming a structure providing increased service properties of reactor structural materials","authors":"Evgenia A. Kuleshova, Ivan V. Fedotov, Dmitry A. Maltsev, Aleksey S. Frolov, Nikita V. Stepanov, Denis V. Safonov","doi":"10.3897/nucet.9.102914","DOIUrl":"https://doi.org/10.3897/nucet.9.102914","url":null,"abstract":"Nickel is an essential alloying element in steels used as structural materials in the most common nuclear power reactors of the VVER type. The paper considers reviews the results of structural studies of traditional and advanced materials of the vessels and internals of VVER-type reactors with high nickel contents in their compositions. It is shown that an increased nickel content (up to 5 wt.%) in the steels of VVER pressure vessels contributes to the formation of a more dispersed structure with a smaller size of substructural elements and an increased density of dislocations, as well as a higher volume density of carbide phases. The revealed features of the structure of the reactor pressure vessel steel with high nickel content have the prerequisites for improving the strength and viscoplastic properties due to the increased number of barriers both for the dislocation motion and brittle crack propagation. Using the example of materials for VVER internals, it is shown that the nickel content increased in them up to 25 wt.% contributes to an increase in the volume density of radiation defects (dislocation loops of various types) and radiation-induced phase precipitates (G-phase). As nickel increases from 10 to 25 wt.%, there is a tendency to reduce swelling, which contributes to less shape change of the components of the reactor vessel internals. At the same time, in the steel with the highest nickel content, the highest nickel content was found in the near-boundary regions of the matrix, which contributes to greater austenite stability and a lower probability of the formation of an embrittling α-phase. The data obtained in the work on the effect of nickel alloying on the steel structural phase state and service characteristics were used in the development of new materials for the vessels and internals of advanced reactors.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135186994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nuclear Energy and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1