Arun Mondal, S. K. Sujauddin, Dhiman Mondal, Soumya Kolay, Shuvajyoti Sarkar, Mijanur Rahaman Molla
Here, we demonstrated a new methodology for the templated synthesis of cross-linked poly(disulfide)s based dynamic covalent nanonetwork as highly stable potential delivery vehicle in the field of chemotherapeutic applications. The synthesis is carried out by the treatment of nanoaggregate of biomass-derived lipoic acid based amphiphilic monomer with reducing agent at room temperature in open air condition and aqueous medium. The hydrodynamic diameter of the naoaggregate is found to be ~130 nm as probed by dynamic light scattering experiment. The control over cross-linking density is achieved by varying the ratio of monomer to reducing agent. The crosslinking percentage varied from ~13% to ~100%. This gives the opportunity of fine-tuning the stability of the nanocarrier itself, noncovalent encapsulation stabilities and kinetics of cargo release, which are highly relevant in the field of drug delivery applications. For highly crosslinked nanonetwork, in simulated redox condition of cancer cell, ~80% guest release was noted from the nanonetwork in a sustained manner. The controlled depolymerization of the polymer is accomplished by the use of specific mol% of the same reducing agent. Finally, the reversibility and recyclability of the poly(disulfide)s to the monomeric form is achieved by the treatment of the polymer with the external thiol in presence of an organic base.
{"title":"Reducing Agent Triggered Templated Synthesis of Dynamic Covalent Poly(disulfide)s Nanonetwork: Remarkable Tuning in Noncovalent Encapsulation Stabilities and Cargo Release","authors":"Arun Mondal, S. K. Sujauddin, Dhiman Mondal, Soumya Kolay, Shuvajyoti Sarkar, Mijanur Rahaman Molla","doi":"10.1039/d4py01109k","DOIUrl":"https://doi.org/10.1039/d4py01109k","url":null,"abstract":"Here, we demonstrated a new methodology for the templated synthesis of cross-linked poly(disulfide)s based dynamic covalent nanonetwork as highly stable potential delivery vehicle in the field of chemotherapeutic applications. The synthesis is carried out by the treatment of nanoaggregate of biomass-derived lipoic acid based amphiphilic monomer with reducing agent at room temperature in open air condition and aqueous medium. The hydrodynamic diameter of the naoaggregate is found to be ~130 nm as probed by dynamic light scattering experiment. The control over cross-linking density is achieved by varying the ratio of monomer to reducing agent. The crosslinking percentage varied from ~13% to ~100%. This gives the opportunity of fine-tuning the stability of the nanocarrier itself, noncovalent encapsulation stabilities and kinetics of cargo release, which are highly relevant in the field of drug delivery applications. For highly crosslinked nanonetwork, in simulated redox condition of cancer cell, ~80% guest release was noted from the nanonetwork in a sustained manner. The controlled depolymerization of the polymer is accomplished by the use of specific mol% of the same reducing agent. Finally, the reversibility and recyclability of the poly(disulfide)s to the monomeric form is achieved by the treatment of the polymer with the external thiol in presence of an organic base.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"245 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Here, α-styryl boronic acid pinacol ester (StBpin) has been found to undergo alternating radical copolymerization with electron-deficient olefin comonomers, including n-butyl acrylate, N,N-dimethylacrylamide, acrylonitrile, and N-ethylmaleimide. Compared with styrene, which also copolymerizes with these electron-deficient olefins in alternative manner, StBpin resulted in the formation of copolymers with higher alternating selectivity, but lower yields and low molecular weights due to its diminished reactivity.
{"title":"Alternating Radical Copolymerization of α-Styrylboronic Acid Pinacol Ester with Electron-Deficient Olefins","authors":"Yiyang Xiao, Zepeng Zhang, Yan Xu, Jianbo Wang","doi":"10.1039/d4py00976b","DOIUrl":"https://doi.org/10.1039/d4py00976b","url":null,"abstract":"Here, α-styryl boronic acid pinacol ester (StBpin) has been found to undergo alternating radical copolymerization with electron-deficient olefin comonomers, including n-butyl acrylate, N,N-dimethylacrylamide, acrylonitrile, and N-ethylmaleimide. Compared with styrene, which also copolymerizes with these electron-deficient olefins in alternative manner, StBpin resulted in the formation of copolymers with higher alternating selectivity, but lower yields and low molecular weights due to its diminished reactivity.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"13 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juan Luo, Juan Wang, Junde Zhang, Huizi Cao, Xiaofang Chen
In this work, side-chain luminescent liquid crystalline polymers (SCLLCPs) that contain di-substituted cyanostilbene (CS) groups with the different substituted number of terminal alkyl chain, which are PNB-Z-4, PNB-Z-34, and PNB-Z-345, were synthesized. Their mesomorphic structure, luminescent propereties and photochromic luminescent behaviour were investigated. PNB-Z-4 containing one alkyl chain in each mesogen possesses supramolecular oblique columnar (Colob) phase with large lattice parameters, which could transform to lamellar structure at high temperature. PNB-Z-34 and PNB-Z-345 with two and three alkyl tails exhibit hexagonal columnar phase (Colh) structure. Their fluorescent quantum yields (ΦF) in solid state are improved by increasing the number of alkyl tails as well. PNB-Z-34 and PNB-Z-345 exhibit aggregation induced emission (AIE) properties, while PNB-Z-4 show weak fluorescence. Furthermore, their photochromic fluorescence responses are quite different. PNB-Z-4 exhibits obvious “turn-on” photo-responsive behaviour with ΦF increasing from 0.70% to 7.73% after UV irradiation with the existence of [2+2] cycloaddition, while PNB-Z-34 and PNB-Z-345 show Z/E isomerization induced blueshift fluorescent response .
{"title":"Mesomorphic and photochromic luminescent behaviour of side-chain liquid crystalline polymers containing di-substituted cyanostilbene groups with the different number of alkyl tail chain","authors":"Juan Luo, Juan Wang, Junde Zhang, Huizi Cao, Xiaofang Chen","doi":"10.1039/d4py00889h","DOIUrl":"https://doi.org/10.1039/d4py00889h","url":null,"abstract":"In this work, side-chain luminescent liquid crystalline polymers (SCLLCPs) that contain di-substituted cyanostilbene (CS) groups with the different substituted number of terminal alkyl chain, which are PNB-Z-4, PNB-Z-34, and PNB-Z-345, were synthesized. Their mesomorphic structure, luminescent propereties and photochromic luminescent behaviour were investigated. PNB-Z-4 containing one alkyl chain in each mesogen possesses supramolecular oblique columnar (Colob) phase with large lattice parameters, which could transform to lamellar structure at high temperature. PNB-Z-34 and PNB-Z-345 with two and three alkyl tails exhibit hexagonal columnar phase (Colh) structure. Their fluorescent quantum yields (ΦF) in solid state are improved by increasing the number of alkyl tails as well. PNB-Z-34 and PNB-Z-345 exhibit aggregation induced emission (AIE) properties, while PNB-Z-4 show weak fluorescence. Furthermore, their photochromic fluorescence responses are quite different. PNB-Z-4 exhibits obvious “turn-on” photo-responsive behaviour with ΦF increasing from 0.70% to 7.73% after UV irradiation with the existence of [2+2] cycloaddition, while PNB-Z-34 and PNB-Z-345 show Z/E isomerization induced blueshift fluorescent response .","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"28 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yangyang Xu, Wenlong Tang, Hui Deng, Jianjun Zhang, Zhongquan Zhu, Changjiang Yu, Haiguang Zhu, Ke Sun, Jiazhu Li, Jacques Lalevée
Abstract: Polymerization reactions induced by lights occupy an increasing share in the area of polymer synthesis; however, the effective photopolymerization under visible light emitting diodes (LEDs) rather than UV still remains limited and deserves intensive research and development. In this contribution, a family of bisbenzothieno[b]-fused boron dipyrromethene (BODIPY) derivatives never tested for photopolymerization before were designed to contain seven fused aromatic rings with a broad absorption property and introduced with amine and iodonium salt to form three-component photoinitiating systems (PISs) for the first time. Remarkably, under the irradiation of visible lights, e.g. LED@405 nm and LED@660 nm, these PISs could initiate the free radical polymerization of acrylate monomers and cationic polymerization of epoxy monomers at room temperature with differed photopolymerization kinetics. This excellent initiation ability at both ends of the visible spectrum (i.e. with the highest and lowest photon energy) indicated a remarkable panchromatic initiation ability. The exceptional photochemical reactivity of these BODIPY dyes and the underlying photoinitiating mechanisms of the PISs were thoroughly investigated through steady-state photolysis, fluorescence quenching experiments, and theoretical calculations. Finally, three-dimensional patterns with excellent spatial resolution were successfully printed using the BODIPY dye with the highest photoinitiation efficiency via direct laser writing, highlighting its significant potential for 3D printing applications.
{"title":"Bisbenzothieno[b]-fused BODIPYs in panchromatic photoinitiating for the free radical and cationic photopolymerization and application in 3D printing","authors":"Yangyang Xu, Wenlong Tang, Hui Deng, Jianjun Zhang, Zhongquan Zhu, Changjiang Yu, Haiguang Zhu, Ke Sun, Jiazhu Li, Jacques Lalevée","doi":"10.1039/d4py00926f","DOIUrl":"https://doi.org/10.1039/d4py00926f","url":null,"abstract":"Abstract: Polymerization reactions induced by lights occupy an increasing share in the area of polymer synthesis; however, the effective photopolymerization under visible light emitting diodes (LEDs) rather than UV still remains limited and deserves intensive research and development. In this contribution, a family of bisbenzothieno[b]-fused boron dipyrromethene (BODIPY) derivatives never tested for photopolymerization before were designed to contain seven fused aromatic rings with a broad absorption property and introduced with amine and iodonium salt to form three-component photoinitiating systems (PISs) for the first time. Remarkably, under the irradiation of visible lights, e.g. LED@405 nm and LED@660 nm, these PISs could initiate the free radical polymerization of acrylate monomers and cationic polymerization of epoxy monomers at room temperature with differed photopolymerization kinetics. This excellent initiation ability at both ends of the visible spectrum (i.e. with the highest and lowest photon energy) indicated a remarkable panchromatic initiation ability. The exceptional photochemical reactivity of these BODIPY dyes and the underlying photoinitiating mechanisms of the PISs were thoroughly investigated through steady-state photolysis, fluorescence quenching experiments, and theoretical calculations. Finally, three-dimensional patterns with excellent spatial resolution were successfully printed using the BODIPY dye with the highest photoinitiation efficiency via direct laser writing, highlighting its significant potential for 3D printing applications.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"5 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zidie Song, Li Liu, Pengbo Zhang, Kangle Xue, Zibo Hua, Tao You, Yiqi Wu, Hong Cui, Zhen Hu, Yudong Huang
Degradable epoxy resins are designed to address the environmental pollution caused by traditional epoxy resins. However, incorporating the degradability of dynamic covalent bonds in the design of degradable resins often compromises the rigidity and heat resistance of the material, rendering it less suitable for high-temperature applications, such as those used in deep space exploration. This paper presents the creation of an innovative, entirely bio-based epoxy monomer. Its cyclic rigid dynamic bonds confer high tensile modulus (4.06 GPa), glass transition temperature (Tg=240 °C), notable creep resistance with full shape recovery at 180 °C, and remarkable degradability, dissolving entirely in a 0.1 M HCl solution in just 60 minutes at 50 °C. The preparation of the diacetal was achieved by reacting vanillin with xylitol under acidic conditions. This was followed by a reaction with bio-derived epichlorohydrin to produce bio-based, multifunctional epoxy monomers featuring hydroxyl groups and bicyclic acetal structures, marking a new strategy for eco-friendly polymer synthesis. This monomer was then cured with a hardener to create an epoxy crosslinked network. The eco-friendly raw materials are easily obtainable, and the synthesized cross-linked network structure is exceptionally high-performing. This makes it a potential material for use in deep space exploration and other tough environments, and it provides a benchmark for synthesizing chemical degradable epoxy resins suitable for extreme conditions.
可降解环氧树脂旨在解决传统环氧树脂造成的环境污染问题。然而,将动态共价键的可降解性纳入可降解树脂的设计中,往往会影响材料的刚性和耐热性,使其不太适合高温应用,如深空探测中使用的材料。本文介绍了一种完全基于生物的创新型环氧单体。它的循环刚性动态键使其具有较高的拉伸模量(4.06 GPa)、玻璃化转变温度(Tg=240 °C)、显著的抗蠕变性(180 °C时可完全恢复形状)和出色的降解性,在50 °C时只需60分钟即可完全溶解于0.1 M HCl溶液中。二缩醛是通过香兰素与木糖醇在酸性条件下反应制备的。然后与生物衍生的环氧氯丙烷反应,制备出具有羟基和双环缩醛结构的生物基多功能环氧单体,这标志着一种生态友好型聚合物合成的新策略。然后用固化剂固化这种单体,形成环氧交联网络。这种环保型原材料很容易获得,而合成的交联网络结构具有极高的性能。这使其成为一种可用于深空探测和其他恶劣环境的潜在材料,并为合成适用于极端条件的化学可降解环氧树脂提供了一个基准。
{"title":"Fully Bio-Based Acetal Diepoxy Monomers: High Modulus, Good Thermal Stability and Readily Degradability","authors":"Zidie Song, Li Liu, Pengbo Zhang, Kangle Xue, Zibo Hua, Tao You, Yiqi Wu, Hong Cui, Zhen Hu, Yudong Huang","doi":"10.1039/d4py01038h","DOIUrl":"https://doi.org/10.1039/d4py01038h","url":null,"abstract":"Degradable epoxy resins are designed to address the environmental pollution caused by traditional epoxy resins. However, incorporating the degradability of dynamic covalent bonds in the design of degradable resins often compromises the rigidity and heat resistance of the material, rendering it less suitable for high-temperature applications, such as those used in deep space exploration. This paper presents the creation of an innovative, entirely bio-based epoxy monomer. Its cyclic rigid dynamic bonds confer high tensile modulus (4.06 GPa), glass transition temperature (Tg=240 °C), notable creep resistance with full shape recovery at 180 °C, and remarkable degradability, dissolving entirely in a 0.1 M HCl solution in just 60 minutes at 50 °C. The preparation of the diacetal was achieved by reacting vanillin with xylitol under acidic conditions. This was followed by a reaction with bio-derived epichlorohydrin to produce bio-based, multifunctional epoxy monomers featuring hydroxyl groups and bicyclic acetal structures, marking a new strategy for eco-friendly polymer synthesis. This monomer was then cured with a hardener to create an epoxy crosslinked network. The eco-friendly raw materials are easily obtainable, and the synthesized cross-linked network structure is exceptionally high-performing. This makes it a potential material for use in deep space exploration and other tough environments, and it provides a benchmark for synthesizing chemical degradable epoxy resins suitable for extreme conditions.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"1 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The nanocarrier protects the payload from degradation and enables specific targeting of diseased tissue, thus reducing systemic toxicity. So, it is crucial to design a nanocarrier with specific nano-architectures that possess those essential characteristics, which is very much desired. Considering those here, we report the one-pot synthesis and self-assembly of oligoglycerol-based amphiphilic dendronized polythiourethanes consisting of an aliphatic or aromatic linker. During the ring opening of cyclodithiocarbonate, generated thiols were utilized to conjugate first or zeroth-generation oligoglycerol dendrons (containing four or two hydroxyl groups) in one pot. Among them, the aromatic linker containing ARM-PTU-G1-OH had higher encapsulation ability for hydrophobic dyes (pyrene and Nile red) than the other aliphatic linker containing polymer ALP-PTU-G1-OH. Both the polymers had hydrodynamic diameters of 167 nm with PDI 0.314-0.326. In addition, AFM results showed ALP-PTU-G1-OH and ARM-PTU-G1-OH formed spherical aggregates with diameters of 136 ± 28 nm and 161 ± 35 nm, respectively. The formation of polymersome was probed by encapsulating hydrophilic dye calcein. Both the polymers were able to encapsulate calcein. Among them, aromatic linker-containing polymer had 31 % encapsulation efficiency, whereas aliphatic linker polymer had 14 %. To understand the stability of polymersomes formed, the FRET study was performed by encapsulating DiO and DiI dyes individually in both the polymersomes, then mixing and studying the evolution of FRET with time. The results showed that the mechanism of dye exchange was different for both polymers, and the aromatic linker containing polymersome had better stability during dye exchange. A few parameters were calculated by fitting the change in donor emission intensity with time, and it showed ARM-PTU-G1-OH had dye exchange via a slow merging and splitting mechanism. In contrast, in ALP-PTU-G1-OH, the fast expulsion and insertion mechanism was mainly operative.
{"title":"Aromatic vs. Aliphatic Linkers: Impact on Dye Loading and Stability in Oligoglycerol-Derived Dendronized Polymersomes","authors":"Raj Kumar Roy, Trisha Samanta, Supriyo Saha, Aparna Ramesh, Naznin Ara Begum, Goutam Ghosh, Pradip Dey","doi":"10.1039/d4py01028k","DOIUrl":"https://doi.org/10.1039/d4py01028k","url":null,"abstract":"The nanocarrier protects the payload from degradation and enables specific targeting of diseased tissue, thus reducing systemic toxicity. So, it is crucial to design a nanocarrier with specific nano-architectures that possess those essential characteristics, which is very much desired. Considering those here, we report the one-pot synthesis and self-assembly of oligoglycerol-based amphiphilic dendronized polythiourethanes consisting of an aliphatic or aromatic linker. During the ring opening of cyclodithiocarbonate, generated thiols were utilized to conjugate first or zeroth-generation oligoglycerol dendrons (containing four or two hydroxyl groups) in one pot. Among them, the aromatic linker containing ARM-PTU-G1-OH had higher encapsulation ability for hydrophobic dyes (pyrene and Nile red) than the other aliphatic linker containing polymer ALP-PTU-G1-OH. Both the polymers had hydrodynamic diameters of 167 nm with PDI 0.314-0.326. In addition, AFM results showed ALP-PTU-G1-OH and ARM-PTU-G1-OH formed spherical aggregates with diameters of 136 ± 28 nm and 161 ± 35 nm, respectively. The formation of polymersome was probed by encapsulating hydrophilic dye calcein. Both the polymers were able to encapsulate calcein. Among them, aromatic linker-containing polymer had 31 % encapsulation efficiency, whereas aliphatic linker polymer had 14 %. To understand the stability of polymersomes formed, the FRET study was performed by encapsulating DiO and DiI dyes individually in both the polymersomes, then mixing and studying the evolution of FRET with time. The results showed that the mechanism of dye exchange was different for both polymers, and the aromatic linker containing polymersome had better stability during dye exchange. A few parameters were calculated by fitting the change in donor emission intensity with time, and it showed ARM-PTU-G1-OH had dye exchange via a slow merging and splitting mechanism. In contrast, in ALP-PTU-G1-OH, the fast expulsion and insertion mechanism was mainly operative.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"79 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emile Goldbach, Xavier Allonas, Christian Ley, Lucile Halbardier, Céline Croutxe-Barghorn
In this paper, the 3D DLP printing of an epoxy-based material controlled by pyridine derivatives was investigated. The impact of the pyridine structure and concentration on the cationic polymerization kinetic was explored. An increase of the inhibition time and a decrease of the heat flow were observed and attributed to the trapping of the initiating species and the stabilization of the growing chains. This allows for the confinement of the polymerization process and limits the presence of lateral defects around the printed objects. Furthermore, the validity of the Jacobs law was discussed. Due to the photoinitiator photolysis, an increase in the penetration depth was observed in relation with the solidification delay. A model was developped to relate the change of printed layer thickness with the applied light dose, taking this phenomenon into account. This led to a more precise determination of the critical energy.
{"title":"Increase of Spatiotemporal Resolution and Reproducible Layer Thicknesses in Cationic Vat Photopolymerization","authors":"Emile Goldbach, Xavier Allonas, Christian Ley, Lucile Halbardier, Céline Croutxe-Barghorn","doi":"10.1039/d4py01046a","DOIUrl":"https://doi.org/10.1039/d4py01046a","url":null,"abstract":"In this paper, the 3D DLP printing of an epoxy-based material controlled by pyridine derivatives was investigated. The impact of the pyridine structure and concentration on the cationic polymerization kinetic was explored. An increase of the inhibition time and a decrease of the heat flow were observed and attributed to the trapping of the initiating species and the stabilization of the growing chains. This allows for the confinement of the polymerization process and limits the presence of lateral defects around the printed objects. Furthermore, the validity of the Jacobs law was discussed. Due to the photoinitiator photolysis, an increase in the penetration depth was observed in relation with the solidification delay. A model was developped to relate the change of printed layer thickness with the applied light dose, taking this phenomenon into account. This led to a more precise determination of the critical energy.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"59 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the demand for increasingly smaller feature sizes, extreme ultraviolet (EUV) lithography has become the cutting-edge technology for fabricating highly miniaturized integrated circuits. However, the limited brightness of the EUV light source, the distinct exposure mechanism, and the high resolution required for patterns pose significant challenges for resist materials—particularly for conventional polymeric resists, which often suffer from low EUV absorption, high molecular weight, and nonhomogeneous composition. In this review, we focus on polymer resists for EUV lithography and offer our perspectives on recent exciting advances in the polymer chemistry of these resists. For example, in recent years, there has been significant progress in incorporating high EUV-absorbing moieties and photosensitizers into resists to enhance EUV absorbance and quantum efficiency. In addition, advancements have been made in developing single-component chemically amplified resists (CARs) with covalently attached photoacid generators (PAGs), as well as main-chain scission-type resists. Furthermore, the creation of precision oligomeric resists with precisely defined primary sequences and discrete molecular weights has opened new possibilities for EUV resist design. Lastly, we provide a critical outlook on the future opportunities and challenges in the development of EUV resists.
{"title":"Emerging trends in the chemistry of polymeric resists for extreme ultraviolet lithography","authors":"Jie Cen , Zhengyu Deng , Shiyong Liu","doi":"10.1039/d4py00957f","DOIUrl":"10.1039/d4py00957f","url":null,"abstract":"<div><div>With the demand for increasingly smaller feature sizes, extreme ultraviolet (EUV) lithography has become the cutting-edge technology for fabricating highly miniaturized integrated circuits. However, the limited brightness of the EUV light source, the distinct exposure mechanism, and the high resolution required for patterns pose significant challenges for resist materials—particularly for conventional polymeric resists, which often suffer from low EUV absorption, high molecular weight, and nonhomogeneous composition. In this review, we focus on polymer resists for EUV lithography and offer our perspectives on recent exciting advances in the polymer chemistry of these resists. For example, in recent years, there has been significant progress in incorporating high EUV-absorbing moieties and photosensitizers into resists to enhance EUV absorbance and quantum efficiency. In addition, advancements have been made in developing single-component chemically amplified resists (CARs) with covalently attached photoacid generators (PAGs), as well as main-chain scission-type resists. Furthermore, the creation of precision oligomeric resists with precisely defined primary sequences and discrete molecular weights has opened new possibilities for EUV resist design. Lastly, we provide a critical outlook on the future opportunities and challenges in the development of EUV resists.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"15 45","pages":"Pages 4599-4614"},"PeriodicalIF":4.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142436336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dana M. Pinson, Francesca D. Eckstrom, Gregory S. Ostrom, K. Randall McClain, Lawrence Baldwin, Benjamin Grant Harvey
Eugenol, an abundant, naturally occurring phenolic compound, was converted into a thermoplastic polycarbonate by olefin metathesis followed by interfacial polymerization with triphosghene. This resulted in polymers with Mn ranging from 5300 – 12700 g mol-1 and an average glass transition temperature (Tg) of 82 °C. The polycarbonates were depolymerized via ethenolysis reactions under modest ethylene pressures (150 – 240 psi) in the presence of [Ru]-metathesis catalysts to yield a discrete monomer [bis(4-allyl-2-methoxyphenol) carbonate, compound 2]. 2 was then polymerized with a second generation Grubbs catalyst (M204) to produce a recycled polymer with Mn = 7500 g mol-1 and a Tg of 114 °C. The 32 °C increase in Tg was due to the isomerization of the allyl group to internal positions, which then allowed for the formation of stilbene and 3-carbon unsaturated linkages between aromatic groups. To expand the ethenolysis recycling approach to cross-linked networks, eugenol was converted into a cyanate ester (3), which was then thermally cyclotrimerized to generate 2,4,6-tris(4-allyl-2-methoxyphenoxy)-1,3,5-triazine (4), a monomer with a triazine core and three pendent aromatic rings with methoxy and allyl substituents. 4 was cross-linked via olefin metathesis (M204 catalyst) to generate a network with Mn = 8600 g mol-1 and a Tg of 180 °C. Similar to the polycarbonate, the polycyanurate was efficiently depolymerized in the presence of ethylene to regenerate 4. Compound 4 was then polymerized and depolymerized two additional times, demonstrating full circularity for the triazine monomer/network. The recycled networks exhibited similar Tgs (167–184 °C) and thermal stability compared to the virgin polymer. Overall, this work demonstrates that both thermoplastic and cross-linked networks can be readily prepared from eugenol and catalytically recycled under standard ethenolysis conditions. Unlike many conventional approaches, the recycled polymers described in this work exhibited no significant degradation in thermomechanical properties. This type of approach supports a circular bioeconomy and may help to reduce plastic waste and the accumulation of micro/nanoplastic particles in the environment.
{"title":"[Ru]-Catalyzed Olefin Metathesis and Ethenolysis for the Synthesis and Recycling of Bio-Based Polycarbonates and Polycyanurates","authors":"Dana M. Pinson, Francesca D. Eckstrom, Gregory S. Ostrom, K. Randall McClain, Lawrence Baldwin, Benjamin Grant Harvey","doi":"10.1039/d4py00940a","DOIUrl":"https://doi.org/10.1039/d4py00940a","url":null,"abstract":"Eugenol, an abundant, naturally occurring phenolic compound, was converted into a thermoplastic polycarbonate by olefin metathesis followed by interfacial polymerization with triphosghene. This resulted in polymers with Mn ranging from 5300 – 12700 g mol-1 and an average glass transition temperature (Tg) of 82 °C. The polycarbonates were depolymerized via ethenolysis reactions under modest ethylene pressures (150 – 240 psi) in the presence of [Ru]-metathesis catalysts to yield a discrete monomer [bis(4-allyl-2-methoxyphenol) carbonate, compound 2]. 2 was then polymerized with a second generation Grubbs catalyst (M204) to produce a recycled polymer with Mn = 7500 g mol-1 and a Tg of 114 °C. The 32 °C increase in Tg was due to the isomerization of the allyl group to internal positions, which then allowed for the formation of stilbene and 3-carbon unsaturated linkages between aromatic groups. To expand the ethenolysis recycling approach to cross-linked networks, eugenol was converted into a cyanate ester (3), which was then thermally cyclotrimerized to generate 2,4,6-tris(4-allyl-2-methoxyphenoxy)-1,3,5-triazine (4), a monomer with a triazine core and three pendent aromatic rings with methoxy and allyl substituents. 4 was cross-linked via olefin metathesis (M204 catalyst) to generate a network with Mn = 8600 g mol-1 and a Tg of 180 °C. Similar to the polycarbonate, the polycyanurate was efficiently depolymerized in the presence of ethylene to regenerate 4. Compound 4 was then polymerized and depolymerized two additional times, demonstrating full circularity for the triazine monomer/network. The recycled networks exhibited similar Tgs (167–184 °C) and thermal stability compared to the virgin polymer. Overall, this work demonstrates that both thermoplastic and cross-linked networks can be readily prepared from eugenol and catalytically recycled under standard ethenolysis conditions. Unlike many conventional approaches, the recycled polymers described in this work exhibited no significant degradation in thermomechanical properties. This type of approach supports a circular bioeconomy and may help to reduce plastic waste and the accumulation of micro/nanoplastic particles in the environment.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"65 1","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
From a practical perspective, it is important to maintain or increase the mechanical properties of functional ethylene copolymers to those of nonpolar polyethylene (PE). In this contribution, we report the enhanced mechanical properties of acrylate- and 5-vinyl-2-norbornene (VNB)-based ethylene terpolymers. Originally, phosphine-sulfonate and with methyl and phenyl installed para to the sulfonic group were synthesized and characterized. Subsequently, long-chain (but more challenging) polar monomers in which the polar groups combined linearly with double bonds (butyl acrylate (BA) and ethylene glycol monomethyl ether acrylate (EGMA)) were chosen to obtain more flexible chain structures. Crosslinkable and cyclic VNB were used, targeting at rapid crosslinking and enhanced material properties. Ethylene copolymerization and terpolymerization could be efficiently achieved using this strategy, and polymers exhibited improved surface and similar or enhanced mechanical properties compared with those of PE. High activity (2.9 × 107 g (mol h)−1) and high molecular weight (3.8 × 105) were simultaneously observed in ethylene homopolymerization. E-BA(0.64) and E-EGMA(0.87) had a strain-at-break as high as 1016% and 974%, respectively, and stress-at-break up to 45 MPa compared with those of ethylene homopolymer. VNB-based terpolymers E-BA(0.68)–VNB(0.94) and E-EGMA(0.73)–VNB(1) displayed better tensile elongations (723% and 714%) than those of ENB- and DCPD-based terpolymers. Furthermore, though similar thermoplastic properties to PE (strain recovery (SR) = 10%) were observed, enhanced mechanical properties of teropolymers were obtained after sulfur vulcanization, with SR = 19–23% and Δσ (stress differences) = 3.3–10.3 MPa.
{"title":"Enhanced mechanical properties of acrylate and 5-vinyl-2-norbornene-based ethylene terpolymers: rational design and synthesis using remotely modulated phosphine–sulfonate palladium complexes†","authors":"Yong-Qing Li , Gui-Ping Cao , Yu-Cai Cao","doi":"10.1039/d4py00722k","DOIUrl":"10.1039/d4py00722k","url":null,"abstract":"<div><div>From a practical perspective, it is important to maintain or increase the mechanical properties of functional ethylene copolymers to those of nonpolar polyethylene (PE). In this contribution, we report the enhanced mechanical properties of acrylate- and 5-vinyl-2-norbornene (VNB)-based ethylene terpolymers. Originally, phosphine-sulfonate and with methyl and phenyl installed <em>para</em> to the sulfonic group were synthesized and characterized. Subsequently, long-chain (but more challenging) polar monomers in which the polar groups combined linearly with double bonds (butyl acrylate (BA) and ethylene glycol monomethyl ether acrylate (EGMA)) were chosen to obtain more flexible chain structures. Crosslinkable and cyclic VNB were used, targeting at rapid crosslinking and enhanced material properties. Ethylene copolymerization and terpolymerization could be efficiently achieved using this strategy, and polymers exhibited improved surface and similar or enhanced mechanical properties compared with those of PE. High activity (2.9 × 10<sup>7</sup> g (mol h)<sup>−1</sup>) and high molecular weight (3.8 × 10<sup>5</sup>) were simultaneously observed in ethylene homopolymerization. E-BA(0.64) and E-EGMA(0.87) had a strain-at-break as high as 1016% and 974%, respectively, and stress-at-break up to 45 MPa compared with those of ethylene homopolymer. VNB-based terpolymers E-BA(0.68)–VNB(0.94) and E-EGMA(0.73)–VNB(1) displayed better tensile elongations (723% and 714%) than those of ENB- and DCPD-based terpolymers. Furthermore, though similar thermoplastic properties to PE (strain recovery (SR) = 10%) were observed, enhanced mechanical properties of teropolymers were obtained after sulfur vulcanization, with SR = 19–23% and Δ<em>σ</em> (stress differences) = 3.3–10.3 MPa.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"15 45","pages":"Pages 4662-4672"},"PeriodicalIF":4.1,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}