首页 > 最新文献

ChemPhotoChem最新文献

英文 中文
Isomer-Dependent Melting Behavior of Low Molar Mass Azobenzene Derivatives: Observation of a Higher Melting Z-Isomer 低摩尔质量偶氮苯衍生物的异构体熔融行为:观察到熔点较高的 Z 异构体
IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-04-26 DOI: 10.1002/cptc.202400084
S. Barrett, J. Nieves, E. Collins, V. Fieglein, M. Burns, J. Guerrero, L. Mouer, W. J. Brittain

Azobenzene compounds are putative solar thermal fuels (STF) due to the excellent photostability and structural control of isomerization rates. Azobenzenes, in which both Z- and E-isomers are liquid at room temperature, are promising candidates for STF flow technology. A literature survey of melting points led to the synthesis and isomer separation of ortho- and meta-monosubstituted azobenzenes with fluoro, methyl, ethyl, trifluoromethyl and methoxy substituents and several dimethyl substituted azobenzenes. Four of the compounds are liquid azobenzenes with higher specific energy than literature work with higher molar mass, liquid compounds. Eight of the compounds unexpectedly displayed a higher melting point for the Z-isomer which is rarely observed. Intermolecular close contacts in the crystal lattice of the Z-isomer are the main factor responsible for the higher melting temperatures.

偶氮苯化合物具有出色的光稳定性和异构化率的结构控制能力,因此有望成为太阳能热燃料(STF)。Z-和E-异构体在室温下均为液态的偶氮苯有望成为 STF 流动技术的候选化合物。通过对熔点的文献调查,我们合成并分离了具有氟、甲基、乙基、三氟甲基和甲氧基取代基的正代和偏代单官能偶氮苯。其中四种化合物为液态偶氮苯,其能量密度高于文献中摩尔质量较高的液态化合物。其中 8 个化合物的 Z 异构体意外地显示出较高的熔点,而这种情况很少见。Z-异构体填料晶格中分子间的密切接触在一定程度上解释了这种较高熔点的行为。
{"title":"Isomer-Dependent Melting Behavior of Low Molar Mass Azobenzene Derivatives: Observation of a Higher Melting Z-Isomer","authors":"S. Barrett,&nbsp;J. Nieves,&nbsp;E. Collins,&nbsp;V. Fieglein,&nbsp;M. Burns,&nbsp;J. Guerrero,&nbsp;L. Mouer,&nbsp;W. J. Brittain","doi":"10.1002/cptc.202400084","DOIUrl":"10.1002/cptc.202400084","url":null,"abstract":"<p>Azobenzene compounds are putative solar thermal fuels (STF) due to the excellent photostability and structural control of isomerization rates. Azobenzenes, in which both <i>Z</i>- and <i>E</i>-isomers are liquid at room temperature, are promising candidates for STF flow technology. A literature survey of melting points led to the synthesis and isomer separation of <i>ortho</i>- and <i>meta</i>-monosubstituted azobenzenes with fluoro, methyl, ethyl, trifluoromethyl and methoxy substituents and several dimethyl substituted azobenzenes. Four of the compounds are liquid azobenzenes with higher specific energy than literature work with higher molar mass, liquid compounds. Eight of the compounds unexpectedly displayed a higher melting point for the <i>Z</i>-isomer which is rarely observed. Intermolecular close contacts in the crystal lattice of the <i>Z</i>-isomer are the main factor responsible for the higher melting temperatures.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 9","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling the Competition between Internal Conversion and Intersystem Crossing in Twisted molecule 9-Phenylacridine by Femtosecond Time-resolved Spectroscopy 通过飞秒时间分辨光谱学揭示 9-苯基吖啶双分子中内部转换和系统间交叉的竞争关系
IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-04-26 DOI: 10.1002/cptc.202400108
Ke Hu, Xiaoxiao He, PeiPei Jin, Xueli Wang, Prof. Haifeng Pan, Prof. Jinquan Chen

9-Phenylacridine (9-PA) is an important acridine-based medicine that has been proven to possess significant anticancer activity and can be used as a photodynamic therapy (PDT) agent. Meanwhile, the possible twisting of the C−C single bond at the C9 position after photo-excitation makes it a potential probe responsive to changes in the viscosity of living cells. However, the photophysical properties of 9-PA is poorly understood. In this study, we utilized femtosecond time-resolved spectroscopy combined with quantum chemical calculation methods to investigate the excited state dynamics of 9-PA in solutions with different viscosities. Notably, we demonstrated that the viscosity could strongly influence the deactivation pathway of the initially populated S1 (ππ*) state of 9-PA. In low-viscosity solutions, the single bond at the C9 could twist after photo-excitation, leading to a conformation that shows efficient intersystem crossing. However, such process is suppressed in high-viscosity solutions, resulting a ~2.5 times higher internal conversion (IC) yield. A full picture of the excited state deactivation mechanism of 9-PA is proposed.

9-苯基吖啶(9-PA)是一种重要的吖啶类药物,已被证实具有显著的抗癌活性,可用作光动力疗法(PDT)药物。同时,C9 位置的 C-C 单键在光激发后可能发生扭转,这使其成为对活细胞粘度变化做出反应的潜在探针。然而,人们对 9-PA 的光物理性质知之甚少。在这项研究中,我们利用飞秒时间分辨光谱法结合量子化学计算方法研究了 9-PA 在不同粘度溶液中的激发态动力学。值得注意的是,我们证明粘度会强烈影响 9-PA 初始填充的 S1(ππ*)态的失活路径。在低粘度溶液中,C9 的单键可能会在光激发后发生扭曲,从而形成一种有效的系统间交叉构象。然而,这种过程在高粘度溶液中受到抑制,导致内部转换(IC)产率提高了约 2.5 倍。本文提出了 9-PA 激发态失活机制的全貌。
{"title":"Unravelling the Competition between Internal Conversion and Intersystem Crossing in Twisted molecule 9-Phenylacridine by Femtosecond Time-resolved Spectroscopy","authors":"Ke Hu,&nbsp;Xiaoxiao He,&nbsp;PeiPei Jin,&nbsp;Xueli Wang,&nbsp;Prof. Haifeng Pan,&nbsp;Prof. Jinquan Chen","doi":"10.1002/cptc.202400108","DOIUrl":"10.1002/cptc.202400108","url":null,"abstract":"<p>9-Phenylacridine (9-PA) is an important acridine-based medicine that has been proven to possess significant anticancer activity and can be used as a photodynamic therapy (PDT) agent. Meanwhile, the possible twisting of the C−C single bond at the C9 position after photo-excitation makes it a potential probe responsive to changes in the viscosity of living cells. However, the photophysical properties of 9-PA is poorly understood. In this study, we utilized femtosecond time-resolved spectroscopy combined with quantum chemical calculation methods to investigate the excited state dynamics of 9-PA in solutions with different viscosities. Notably, we demonstrated that the viscosity could strongly influence the deactivation pathway of the initially populated S<sub>1</sub> (ππ*) state of 9-PA. In low-viscosity solutions, the single bond at the C9 could twist after photo-excitation, leading to a conformation that shows efficient intersystem crossing. However, such process is suppressed in high-viscosity solutions, resulting a ~2.5 times higher internal conversion (IC) yield. A full picture of the excited state deactivation mechanism of 9-PA is proposed.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 9","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140801225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective Conversion of Furfural to Furfuryl Alcohol by Heterogeneous TiO2 Photocatalysis 利用异相二氧化钛光催化技术将糠醛选择性转化为糠醇
IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-04-25 DOI: 10.1002/cptc.202400062
Joana C. Lopes, Dr. Maria J. Sampaio, Prof. Cláudia G. Silva, Prof. Joaquim L. Faria

Selective synthesis of furfuryl alcohol from furfural conversion via semiconductor photocatalytic route has appeared as a promising solution for transforming biomass into high-value-added products under mild temperature and pressure conditions. Titanium dioxide (TiO2) photocatalysts were prepared by a simple sol-gel method followed by a calcination treatment ranging from 500–1000 °C, resulting in materials with distinct physicochemical properties. The photocatalytic efficiency of the TiO2 samples was examined in the selective production of furfuryl alcohol from furfural under UV-LED irradiation. The influence of various organic solvents, including ethanol, methanol, 2-propanol, and acetonitrile, was evaluated to optimise the selectivity towards furfuryl alcohol production. Photocatalysts with larger anatase to rutile ratio and increased density of oxygen vacancies (defects) exhibited superior performance for furfuryl alcohol production. The presence of these defects on the catalyst surface leads to a significant enhancement in the photocatalytic efficiency by acting as crucial active sites. Among the TiO2 samples, the highest conversion of furfural into furfuryl alcohol was observed with the TiO2 sample calcined under an air atmosphere at 600 °C (TiO2-600), achieving 85 % yield and 100 % selectivity for furfural after 30 min reaction using ethanol as solvent.

在温和的温度和压力条件下,通过半导体光催化途径从糠醛转化中选择性合成糠醇是将生物质转化为高附加值产品的一种有前途的解决方案。二氧化钛(TiO2)光催化剂的制备采用了简单的溶胶-凝胶法,然后在 500 - 1000 ºC 的温度下进行煅烧处理,从而得到了具有独特物理化学特性的材料。在紫外-LED 的照射下,考察了 TiO2 样品从糠醛中选择性生产糠醇的光催化效率。评估了乙醇、甲醇、2-丙醇和乙腈等各种有机溶剂的影响,以优化糠醇生产的选择性。在 600 ºC 的空气环境下煅烧的 TiO2 样品(TiO2-600)将糠醛转化为糠醇的转化率最高,以乙醇为溶剂反应 30 分钟后,糠醛的产率达到 85%,选择性达到 100%。
{"title":"Selective Conversion of Furfural to Furfuryl Alcohol by Heterogeneous TiO2 Photocatalysis","authors":"Joana C. Lopes,&nbsp;Dr. Maria J. Sampaio,&nbsp;Prof. Cláudia G. Silva,&nbsp;Prof. Joaquim L. Faria","doi":"10.1002/cptc.202400062","DOIUrl":"10.1002/cptc.202400062","url":null,"abstract":"<p>Selective synthesis of furfuryl alcohol from furfural conversion via semiconductor photocatalytic route has appeared as a promising solution for transforming biomass into high-value-added products under mild temperature and pressure conditions. Titanium dioxide (TiO<sub>2</sub>) photocatalysts were prepared by a simple sol-gel method followed by a calcination treatment ranging from 500–1000 °C, resulting in materials with distinct physicochemical properties. The photocatalytic efficiency of the TiO<sub>2</sub> samples was examined in the selective production of furfuryl alcohol from furfural under UV-LED irradiation. The influence of various organic solvents, including ethanol, methanol, 2-propanol, and acetonitrile, was evaluated to optimise the selectivity towards furfuryl alcohol production. Photocatalysts with larger anatase to rutile ratio and increased density of oxygen vacancies (defects) exhibited superior performance for furfuryl alcohol production. The presence of these defects on the catalyst surface leads to a significant enhancement in the photocatalytic efficiency by acting as crucial active sites. Among the TiO<sub>2</sub> samples, the highest conversion of furfural into furfuryl alcohol was observed with the TiO<sub>2</sub> sample calcined under an air atmosphere at 600 °C (TiO<sub>2</sub>-600), achieving 85 % yield and 100 % selectivity for furfural after 30 min reaction using ethanol as solvent.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 9","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methoxylated bis(pentafluorophenyl)boron-β-diketonates: Synthesis, Optical Properties and Hydrolytic Stability 甲氧基化双(五氟苯基)硼-β-二酮:合成、光学特性和水解稳定性
IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-04-23 DOI: 10.1002/cptc.202300317
Maxim V. Filippov, Yuriy N. Kononevich, Dmitry S. Ionov, Andrey A. Safonov, Anastasia I. Karnaeva, Viacheslav A. Sazhnikov, Mikhail V. Alfimov, Aziz M. Muzafarov

A series of methoxylated bis(pentafluorophenyl)boron-β-diketonates (dkB(C6F5)2) with intense emission has been synthesized and characterized by a variety of physicochemical methods. The photophysical properties of the synthesized compounds were thoroughly investigated by electronic absorption, steady-state, and time-resolved fluorescence spectroscopy in both solution and solid state. The studied compounds exhibit solvatochromic behavior attributed to the intramolecular charge transfer (ICT) nature of the first excited state. The formation of exciplexes between DBMB(C6F5)2 and benzene derivatives was also studied. Notably, the studied compounds display a complex luminescence profile in the solid state, featuring fluorescence, delayed fluorescence and phosphorescence emission. Furthermore, the hydrolytical stability of the complexes was assessed, demonstrating excellent resistance to hydrolysis. Estimated rate constants, determined at 60 °C, are significantly lower (90-2000 times) than those observed for the well-studied dibenzoylmethanatoboron difluoride (DBMBF2). The incorporation of pentafluorophenyl substituents at the boron atom enables the synthesis of highly fluorescent and hydrolytically stable boron chelate complexes, suitable for sensing and bioimaging applications in water-containing environments.

通过多种物理化学方法合成并表征了一系列具有强烈发射的甲氧基化双(五氟苯基)硼-β-二酮酸盐(dkB(C6F5)2)。通过电子吸收、稳态和时间分辨荧光光谱,对合成化合物在溶液和固体状态下的光物理特性进行了深入研究。所研究的化合物表现出溶解变色行为,这归因于第一激发态的分子内电荷转移(ICT)性质。此外,还研究了 DBMB(C6F5)2 与苯衍生物之间形成的共混物。值得注意的是,所研究的化合物在固态下显示出复杂的发光特征,包括荧光、延迟荧光和磷光发射。此外,还对复合物的水解稳定性进行了评估,结果表明其具有出色的抗水解性。在 60 °C 温度下测定的估计速率常数(90-2000 倍)明显低于已被广泛研究的二苯甲酰基甲硼二氟化物(DBMBF2)。在硼原子上加入五氟苯基取代基能够合成高荧光和水解稳定的硼螯合物,适用于含水环境中的传感和生物成像应用。
{"title":"Methoxylated bis(pentafluorophenyl)boron-β-diketonates: Synthesis, Optical Properties and Hydrolytic Stability","authors":"Maxim V. Filippov,&nbsp;Yuriy N. Kononevich,&nbsp;Dmitry S. Ionov,&nbsp;Andrey A. Safonov,&nbsp;Anastasia I. Karnaeva,&nbsp;Viacheslav A. Sazhnikov,&nbsp;Mikhail V. Alfimov,&nbsp;Aziz M. Muzafarov","doi":"10.1002/cptc.202300317","DOIUrl":"10.1002/cptc.202300317","url":null,"abstract":"<p>A series of methoxylated bis(pentafluorophenyl)boron-<i>β</i>-diketonates (dkB(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>) with intense emission has been synthesized and characterized by a variety of physicochemical methods. The photophysical properties of the synthesized compounds were thoroughly investigated by electronic absorption, steady-state, and time-resolved fluorescence spectroscopy in both solution and solid state. The studied compounds exhibit solvatochromic behavior attributed to the intramolecular charge transfer (ICT) nature of the first excited state. The formation of exciplexes between DBMB(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub> and benzene derivatives was also studied. Notably, the studied compounds display a complex luminescence profile in the solid state, featuring fluorescence, delayed fluorescence and phosphorescence emission. Furthermore, the hydrolytical stability of the complexes was assessed, demonstrating excellent resistance to hydrolysis. Estimated rate constants, determined at 60 °C, are significantly lower (90-2000 times) than those observed for the well-studied dibenzoylmethanatoboron difluoride (DBMBF<sub>2</sub>). The incorporation of pentafluorophenyl substituents at the boron atom enables the synthesis of highly fluorescent and hydrolytically stable boron chelate complexes, suitable for sensing and bioimaging applications in water-containing environments.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 9","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140666300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of Light-responsive Unnatural RNA Bases via a Chromogenic Morita-Baylis-Hillman Adduct Path 通过变色莫里塔-贝利斯-希尔曼加成途径制备光反应非天然 RNA 碱基
IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-04-23 DOI: 10.1002/cptc.202400093
Dr. Matteo Lami, Dr. Leonardo Barneschi, Dr. Mario Saletti, Prof. Dr. Massimo Olivucci, Prof. Dr. Andrea Cappelli, Prof. Dr. Marco Paolino

RNA-based tools for biological and pharmacological research are raising an increasing interest. Among these, RNA aptamers whose biological activity can be controlled via illumination with specific wavelengths represent an important target. Here, we report on a proof-of-principle study supporting the viability of a systematic use of Morita-Baylis-Hillman adducts (MBHAs) for the synthesis of light-responsive RNA building blocks. Accordingly, a specific acetylated MBHA derivative was employed in the functionalization of the four natural RNA bases as well as two unnatural bases (5-aminomethyl uracil and 5-methylaminomethyl uracil). The results reveal a highly selective functionalization for both unnatural bases. The conjugation products were then investigated spectroscopically, photochemically and computationally. It is shown that when a single light-responsive unit is present (i. e. when using 5-methylaminomethyl uracil), the generated unnatural uracil behaves like a cinnamic-framework-based photochemical switch that isomerizes upon illumination through a biomimetic light-induced intramolecular charge transfer mechanism driving a barrierless and, therefore, ultrafast reaction path.

基于 RNA 的生物学和药理学研究工具正引起越来越多的关注。其中,可通过特定波长的光照控制生物活性的 RNA 合体是一个重要目标。在此,我们报告了一项原理验证研究,该研究支持系统地利用莫里塔-贝利斯-希尔曼加合物(MBHAs)合成光响应 RNA 构建模块的可行性。因此,在对四种天然 RNA 碱基以及两种非天然碱基(5-氨基甲基尿嘧啶和 5-甲基氨基甲基尿嘧啶)进行功能化时,使用了一种特定的乙酰化 MBHA 衍生物。结果表明,这两种非天然碱基的官能化具有高度选择性。随后对共轭产物进行了光谱、光化学和计算研究。结果表明,当存在单个光响应单元时(即使用 5-甲基氨基甲基尿嘧啶),生成的非天然尿嘧啶就像一个基于肉桂酸框架的光化学开关,在光照下通过生物模拟光诱导的分子内电荷转移机制驱动无障碍的超快反应路径发生异构化。
{"title":"Preparation of Light-responsive Unnatural RNA Bases via a Chromogenic Morita-Baylis-Hillman Adduct Path","authors":"Dr. Matteo Lami,&nbsp;Dr. Leonardo Barneschi,&nbsp;Dr. Mario Saletti,&nbsp;Prof. Dr. Massimo Olivucci,&nbsp;Prof. Dr. Andrea Cappelli,&nbsp;Prof. Dr. Marco Paolino","doi":"10.1002/cptc.202400093","DOIUrl":"10.1002/cptc.202400093","url":null,"abstract":"<p>RNA-based tools for biological and pharmacological research are raising an increasing interest. Among these, RNA aptamers whose biological activity can be controlled via illumination with specific wavelengths represent an important target. Here, we report on a proof-of-principle study supporting the viability of a systematic use of Morita-Baylis-Hillman adducts (MBHAs) for the synthesis of light-responsive RNA building blocks. Accordingly, a specific acetylated MBHA derivative was employed in the functionalization of the four natural RNA bases as well as two unnatural bases (5-aminomethyl uracil and 5-methylaminomethyl uracil). The results reveal a highly selective functionalization for both unnatural bases. The conjugation products were then investigated spectroscopically, photochemically and computationally. It is shown that when a single light-responsive unit is present (i. e. when using 5-methylaminomethyl uracil), the generated unnatural uracil behaves like a cinnamic-framework-based photochemical switch that isomerizes upon illumination through a biomimetic light-induced intramolecular charge transfer mechanism driving a barrierless and, therefore, ultrafast reaction path.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 9","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140666352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Inert is Single-Stranded DNA Towards DNA-Stabilized Silver Nanoclusters? A Case Study 单链 DNA 对 DNA 稳定的纳米银团簇的惰性如何?案例研究。
IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-04-22 DOI: 10.1002/cptc.202400014
Vanessa Rück, Cecilia Cerretani, Tom Vosch

A case study, detailing the effect of different DNA oligomers on a NIR-emitting DNA-stabilized silver nanocluster (DNA-AgNC), is reported. The presence of single-stranded DNA oligomers was found to adversely affect the chemical stability of (DNA)2[Ag16Cl2]8+ with distinct degrees of destruction depending on the DNA sequence. To increase the chemical stability of the DNA-AgNC, we implemented two protection strategies. First, hybridization of the bare DNA strands with the corresponding complementary sequences dramatically reduced the destruction of (DNA)2[Ag16Cl2]8+, as demonstrated by the decreased drops in both the absorption and emission spectra. Secondly, saturation of the free DNA oligomers with silver cations left (DNA)2[Ag16Cl2]8+ intact. Our investigation can thus provide an easy-to-implement approach to discover DNA sequences that are intrinsically less reactive towards preformed DNA-AgNCs, and give an idea on how to protect DNA-AgNCs from bare DNA strands.

本文报告了一项案例研究,详细阐述了不同 DNA 链对近红外发光 DNA 稳定银纳米簇(DNA-AgNC)的影响。研究发现,单链 DNA 寡聚体的存在会对 (DNA)2[Ag16Cl2]8+ 的化学稳定性产生不利影响,根据 DNA 序列的不同,破坏程度也不同。为了提高 DNA-AgNC 的化学稳定性,我们采用了两种保护策略。首先,将裸 DNA 链与相应的互补序列杂交,大大降低了 (DNA)2[Ag16Cl2]8+ 的破坏程度,吸收光谱和发射光谱中的降幅都有所减小就证明了这一点。其次,用银阳离子钝化裸 DNA 寡聚体后,(DNA)2[Ag16Cl2]8+ 依然完好无损。因此,我们的研究提供了一种简便易行的方法来发现对预制 DNA-AgNCs 反应性较低的 DNA 序列,并为如何保护 DNA-AgNCs 免受裸 DNA 链的影响提供了思路。
{"title":"How Inert is Single-Stranded DNA Towards DNA-Stabilized Silver Nanoclusters? A Case Study","authors":"Vanessa Rück,&nbsp;Cecilia Cerretani,&nbsp;Tom Vosch","doi":"10.1002/cptc.202400014","DOIUrl":"10.1002/cptc.202400014","url":null,"abstract":"<p>A case study, detailing the effect of different DNA oligomers on a NIR-emitting DNA-stabilized silver nanocluster (DNA-AgNC), is reported. The presence of single-stranded DNA oligomers was found to adversely affect the chemical stability of (DNA)<sub>2</sub>[Ag<sub>16</sub>Cl<sub>2</sub>]<sup>8+</sup> with distinct degrees of destruction depending on the DNA sequence. To increase the chemical stability of the DNA-AgNC, we implemented two protection strategies. First, hybridization of the bare DNA strands with the corresponding complementary sequences dramatically reduced the destruction of (DNA)<sub>2</sub>[Ag<sub>16</sub>Cl<sub>2</sub>]<sup>8+</sup>, as demonstrated by the decreased drops in both the absorption and emission spectra. Secondly, saturation of the free DNA oligomers with silver cations left (DNA)<sub>2</sub>[Ag<sub>16</sub>Cl<sub>2</sub>]<sup>8+</sup> intact. Our investigation can thus provide an easy-to-implement approach to discover DNA sequences that are intrinsically less reactive towards preformed DNA-AgNCs, and give an idea on how to protect DNA-AgNCs from bare DNA strands.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 9","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140677541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Surrounding Environment on Hot-Exciton Based Organic Emitters for TADF Applications 周围环境对基于热激子的 TADF 应用有机发射器的影响
IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-04-18 DOI: 10.1002/cptc.202400073
Jesni M. Jacob, Dr. Mahesh Kumar Ravva

Understanding thermally activated delayed fluorescence (TADF) in solid-state environments is crucial for practical applications. However, limited research focuses on how the medium affects TADF properties of hot-exciton-based emitters. In our study, we calculated and compared reverse intersystem crossing, radiative, and non-radiative decay rates of TADF emitters in gas, solvent, and solid phases. The designed emitters have a donor-acceptor-donor (D-A-D) structure, with donors such as triphenylamine (TPA) and diphenylamine thiophene (ThPA), combined with acceptors such as benzothiadiazole (BT), pyridine thiadiazole (PT) and thiadiazolobenzopyridine (NPT). We model the solvent and solid phases with the polarizable continuum model (PCM) and quantum mechanical/molecular mechanics (QM/MM) methods, respectively. Using density functional theory (DFT) and time-dependent DFT, we analyze how TADF emitters′ geometrical, electronic, and excited-state properties vary in these phases. Our results show that the solid-state environment significantly influences the geometry and TADF properties of emitters. In the presence of solid medium, our study indicates that non-radiative decay rates tend to be slower. On the other hand, radiative emission rates were found to be less influenced by the properties of the surrounding medium. Overall, our study connects emitter chemical structure and the surrounding environment‘s impact on excited-state characteristics and photochemical properties.

了解固态环境中的热激活延迟荧光(TADF)对于实际应用至关重要。然而,关于介质如何影响热电子发射器的热激活延迟荧光特性的研究却非常有限。在我们的研究中,我们计算并比较了气相、溶剂相和固相中 TADF 发射器的反向系统间交叉、辐射和非辐射衰减率。所设计的发射器具有供体-受体-供体(D-A-D)结构,供体包括三苯胺(TPA)和二苯胺噻吩(ThPA),受体包括苯并噻二唑(BT)、吡啶噻二唑(PT)和噻二唑基苯并吡啶(NPT)。我们分别采用可极化连续体模型(PCM)和量子力学/分子力学(QM/MM)方法对溶剂相和固相进行建模。利用密度泛函理论(DFT)和时变 DFT,我们分析了 TADF 发射器的几何、电子和激发态特性在这些相中的变化情况。我们的研究结果表明,固态环境对发射器的几何形状和 TADF 特性有重大影响。我们的研究表明,在存在固体介质的情况下,非辐射衰变速率往往较慢。另一方面,辐射发射率受周围介质特性的影响较小。总之,我们的研究将发射体化学结构和周围环境对激发态特性和光化学特性的影响联系起来。
{"title":"Impact of Surrounding Environment on Hot-Exciton Based Organic Emitters for TADF Applications","authors":"Jesni M. Jacob,&nbsp;Dr. Mahesh Kumar Ravva","doi":"10.1002/cptc.202400073","DOIUrl":"10.1002/cptc.202400073","url":null,"abstract":"<p>Understanding thermally activated delayed fluorescence (TADF) in solid-state environments is crucial for practical applications. However, limited research focuses on how the medium affects TADF properties of hot-exciton-based emitters. In our study, we calculated and compared reverse intersystem crossing, radiative, and non-radiative decay rates of TADF emitters in gas, solvent, and solid phases. The designed emitters have a donor-acceptor-donor (D-A-D) structure, with donors such as triphenylamine (TPA) and diphenylamine thiophene (ThPA), combined with acceptors such as benzothiadiazole (BT), pyridine thiadiazole (PT) and thiadiazolobenzopyridine (NPT). We model the solvent and solid phases with the polarizable continuum model (PCM) and quantum mechanical/molecular mechanics (QM/MM) methods, respectively. Using density functional theory (DFT) and time-dependent DFT, we analyze how TADF emitters′ geometrical, electronic, and excited-state properties vary in these phases. Our results show that the solid-state environment significantly influences the geometry and TADF properties of emitters. In the presence of solid medium, our study indicates that non-radiative decay rates tend to be slower. On the other hand, radiative emission rates were found to be less influenced by the properties of the surrounding medium. Overall, our study connects emitter chemical structure and the surrounding environment‘s impact on excited-state characteristics and photochemical properties.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 9","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and Photoreforming Reaction of CdS Prepared from MOF Precursor 用 MOF 前驱体制备 CdS 的合成与光形成反应
IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-04-18 DOI: 10.1002/cptc.202400018
Sora Kamata, Dr. Haruki Nagakawa, Ayako Inaguma, Dr. Morio Nagata

The photoreforming reaction, which can produce hydrogen simultaneously with the decomposition of organic waste, is a promising method for resolving longstanding global issues such as the depletion of energy resources and climate change. However, ZnS photocatalysts, one of the most optimal catalysts for such reactions, has an inadequate visible-light response; thus, the extensibility of the reaction is limited. In this study, CdS photocatalysts are prepared from metal–organic framework (MOF) precursors, that is, Cd-MOFs. The prepared CdS exhibits high hydrogen production activity in the photoreforming of lignocellulosic biomass under quasi-sunlight conditions. This activity is approximately 13.4 times that of the CdS prepared via the conventional hydrothermal method. Further, CdS can utilize light energy in the visible region of sunlight, providing a high quantum yield and demonstrating the potential for the extensibility of the reaction. The results of this study will facilitate the fabrication of novel materials for sustainable and efficient hydrogen production.

光转化反应可以在分解有机废物的同时产生氢气,是解决能源枯竭和气候变化等长期存在的全球性问题的一种可行方法。然而,作为此类反应的最佳催化剂之一,ZnS 光催化剂对可见光的反应不充分,因此反应的扩展性受到限制。本研究利用金属有机框架(MOF)前体(即 Cd-MOF)制备了 CdS 光催化剂。在准日光条件下,制备的 CdS 在木质纤维素生物质的光转化过程中表现出很高的制氢活性。这种活性大约是通过传统水热合成(HT)制备的 CdS 的 13.4 倍。此外,CdS 还能利用太阳光可见光区的光能,提供了较高的量子产率,并证明了反应的可扩展性潜力。这项研究的结果将有助于制备新型材料,实现可持续高效制氢。
{"title":"Synthesis and Photoreforming Reaction of CdS Prepared from MOF Precursor","authors":"Sora Kamata,&nbsp;Dr. Haruki Nagakawa,&nbsp;Ayako Inaguma,&nbsp;Dr. Morio Nagata","doi":"10.1002/cptc.202400018","DOIUrl":"10.1002/cptc.202400018","url":null,"abstract":"<p>The photoreforming reaction, which can produce hydrogen simultaneously with the decomposition of organic waste, is a promising method for resolving longstanding global issues such as the depletion of energy resources and climate change. However, ZnS photocatalysts, one of the most optimal catalysts for such reactions, has an inadequate visible-light response; thus, the extensibility of the reaction is limited. In this study, CdS photocatalysts are prepared from metal–organic framework (MOF) precursors, that is, Cd-MOFs. The prepared CdS exhibits high hydrogen production activity in the photoreforming of lignocellulosic biomass under quasi-sunlight conditions. This activity is approximately 13.4 times that of the CdS prepared via the conventional hydrothermal method. Further, CdS can utilize light energy in the visible region of sunlight, providing a high quantum yield and demonstrating the potential for the extensibility of the reaction. The results of this study will facilitate the fabrication of novel materials for sustainable and efficient hydrogen production.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 9","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast Spectroelectrochemistry of the Catechol/o-Quinone Redox Couple in Aqueous Buffer Solution 水性缓冲溶液中儿茶酚/邻醌氧化还原偶的超快光谱电化学研究
IF 3 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-04-18 DOI: 10.1002/cptc.202300325
Sofia Goia, Gareth W. Richings, Matthew A. P. Turner, Jack M. Woolley, Joshua J. Tully, Samuel J. Cobb, Adam Burriss, Ben R. Robinson, Julie V. Macpherson, Vasilios G. Stavros

Eumelanin is a natural pigment found in many organisms that provides photoprotection from harmful UV radiation. As a redox-active biopolymer, the structure of eumelanin is thought to contain different redox states of quinone, including catechol subunits. To further explore the excited state properties of eumelanin, we have investigated the catechol/o-quinone redox couple by spectroelectrochemical means, in a pH 7.4 aqueous buffered solution, and using a boron doped diamond mesh electrode. At pH 7.4, the two proton, two electron oxidation of catechol is promoted, which facilitates continuous formation of the unstable o-quinone product in solution. Ultrafast transient absorption (femtosecond to nanosecond) measurements of o-quinone species involve initial formation of an excited singlet state followed by triplet state formation within 24 ps. In contrast, catechol in aqueous buffer leads to formation of the semiquinone radical Δt>500 ps. Our results demonstrate the rich photochemistry of the catechol/o-quinone redox couple and provides further insight into the excited state processes of these key building blocks of eumelanin.

乌黑色素是一种存在于许多生物体内的天然色素,它能抵御有害的紫外线辐射。作为一种具有氧化还原活性的生物聚合物,乌黑色素的结构被认为包含不同氧化还原态的醌,包括儿茶酚亚基。为了进一步探究乌梅素的激发态特性,我们在 pH 值为 7.4 的缓冲水溶液中使用掺硼金刚石网状电极,通过光谱电化学方法研究了儿茶酚/邻醌氧化还原对。在 pH 值为 7.4 时,促进了儿茶酚的双质子、双电子氧化作用,从而促进了溶液中不稳定的邻醌产物的持续形成。邻醌物种的超快瞬态吸收(飞秒到纳秒)测量涉及激发单线态的初始形成,随后在 24 ps 内形成三线态。相反,儿茶酚在水缓冲液中会形成半醌自由基 Δt > 500 ps。我们的研究结果证明了儿茶酚/邻醌氧化还原偶联物丰富的光化学性质,并进一步揭示了这些乌梅素关键结构单元的激发态过程。
{"title":"Ultrafast Spectroelectrochemistry of the Catechol/o-Quinone Redox Couple in Aqueous Buffer Solution","authors":"Sofia Goia,&nbsp;Gareth W. Richings,&nbsp;Matthew A. P. Turner,&nbsp;Jack M. Woolley,&nbsp;Joshua J. Tully,&nbsp;Samuel J. Cobb,&nbsp;Adam Burriss,&nbsp;Ben R. Robinson,&nbsp;Julie V. Macpherson,&nbsp;Vasilios G. Stavros","doi":"10.1002/cptc.202300325","DOIUrl":"10.1002/cptc.202300325","url":null,"abstract":"<p>Eumelanin is a natural pigment found in many organisms that provides photoprotection from harmful UV radiation. As a redox-active biopolymer, the structure of eumelanin is thought to contain different redox states of quinone, including catechol subunits. To further explore the excited state properties of eumelanin, we have investigated the catechol/o-quinone redox couple by spectroelectrochemical means, in a pH 7.4 aqueous buffered solution, and using a boron doped diamond mesh electrode. At pH 7.4, the two proton, two electron oxidation of catechol is promoted, which facilitates continuous formation of the unstable o-quinone product in solution. Ultrafast transient absorption (femtosecond to nanosecond) measurements of o-quinone species involve initial formation of an excited singlet state followed by triplet state formation within 24 ps. In contrast, catechol in aqueous buffer leads to formation of the semiquinone radical Δ<i>t</i>&gt;500 ps. Our results demonstrate the rich photochemistry of the catechol/o-quinone redox couple and provides further insight into the excited state processes of these key building blocks of eumelanin.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 9","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202300325","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: A Guide to Chemical Reactions Design in Carbon Nitride Photocatalysis (ChemPhotoChem 4/2024) 封面:氮化碳光催化化学反应设计指南》(ChemPhotoChem 4/2024)
IF 3.7 4区 化学 Q3 CHEMISTRY, PHYSICAL Pub Date : 2024-04-17 DOI: 10.1002/cptc.202400095
Prof. Oleksandr Savateev, Jingru Zhuang

The Front Cover shows “blueprints” of the photocatalytic reaction design that is mediated by graphitic carbon nitride. A combination of physical chemistry and organic chemistry in carbon nitride photocatalysis allows for rational design of photocatalytic reactions. Cover design by Prof. Oleksandr Savateev. More information can be found in the Review by Oleksandr Savateev and Jingru Zhuang.

封面展示了以氮化石墨碳为介质的光催化反应设计 "蓝图"。氮化碳光催化中的物理化学和有机化学相结合,可以合理设计光催化反应。封面设计:Oleksandr Savateev 教授。更多信息,请参阅 Oleksandr Savateev 和庄静茹的评论。
{"title":"Front Cover: A Guide to Chemical Reactions Design in Carbon Nitride Photocatalysis (ChemPhotoChem 4/2024)","authors":"Prof. Oleksandr Savateev,&nbsp;Jingru Zhuang","doi":"10.1002/cptc.202400095","DOIUrl":"https://doi.org/10.1002/cptc.202400095","url":null,"abstract":"<p><b>The Front Cover</b> shows “blueprints” of the photocatalytic reaction design that is mediated by graphitic carbon nitride. A combination of physical chemistry and organic chemistry in carbon nitride photocatalysis allows for rational design of photocatalytic reactions. Cover design by Prof. Oleksandr Savateev. More information can be found in the Review by Oleksandr Savateev and Jingru Zhuang.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"8 4","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cptc.202400095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140606333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ChemPhotoChem
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1