首页 > 最新文献

RSC Mechanochemistry最新文献

英文 中文
Polymorphism control of polyethylene terephthalate (PET) degradation product via mechanochemistry leads to accelerated microbial degradation† 通过机械化学控制聚对苯二甲酸乙二酯(PET)降解产物的多态性,加速微生物降解†。
Pub Date : 2024-08-30 DOI: 10.1039/D4MR00060A
Deepika Shingwekar, Nicholas Lutz, Delbert S. Botes, Elani J. Cabrera-Vega, Gonzalo Campillo-Alvarado, Jay L. Mellies and Jesus Daniel Loya

Widespread usage of single-use plastics such as polyethylene terephthalate (PET) has heavily contributed to a global plastic pollution crisis, necessitating the improvement and development of recycling methods. We previously established a chemo-microbial degradation process for post-consumer PET plastic, consisting of PET depolymerization to form bis(2-hydroxyethyl) terephthalate (BHET) followed by the complete degradation of BHET by a bacterial consortium found to synergistically degrade PET and BHET. The BHET produced during PET depolymerization consists of two polymorphic forms, the α and δ forms. This work investigates the effect of BHET polymorphism on microbial degradation to further optimize the chemo-microbial process. Reversible interconversion methods for BHET polymorphs were effectively developed using mechanochemistry, achieving pure α and δ forms by modulating milling conditions. When inoculated with the bacterial consortium, the α form was degraded faster than the δ form, indicating solid polymorphism is a significant factor for the biodegradation level. This work paves the way to optimize the chemo-microbial process for an increased degradation rate of post-consumer PET and furthers the effort for sustainable plastic recycling methods.

聚对苯二甲酸乙二醇酯(PET)等一次性塑料的广泛使用严重加剧了全球塑料污染危机,因此有必要改进和开发回收方法。此前,我们建立了一种用于消费后 PET 塑料的化学微生物降解工艺,包括 PET 解聚形成对苯二甲酸二(2-羟乙基)酯(BHET),然后由一种能协同降解 PET 和 BHET 的细菌群完全降解 BHET。PET 解聚过程中产生的 BHET 包括两种多态形式,即 α 和 δ 形式。这项工作研究了 BHET 多态性对微生物降解的影响,以进一步优化化学-微生物过程。利用机械化学方法有效地开发了 BHET 多形态的可逆相互转化方法,通过调节研磨条件实现了纯α和δ形态。接种细菌群后,α形态的降解速度快于δ形态,这表明固体多态性是影响生物降解水平的重要因素。这项工作为优化化学微生物过程以提高消费后 PET 的降解率铺平了道路,并进一步推动了可持续塑料回收方法的发展。
{"title":"Polymorphism control of polyethylene terephthalate (PET) degradation product via mechanochemistry leads to accelerated microbial degradation†","authors":"Deepika Shingwekar, Nicholas Lutz, Delbert S. Botes, Elani J. Cabrera-Vega, Gonzalo Campillo-Alvarado, Jay L. Mellies and Jesus Daniel Loya","doi":"10.1039/D4MR00060A","DOIUrl":"https://doi.org/10.1039/D4MR00060A","url":null,"abstract":"<p >Widespread usage of single-use plastics such as polyethylene terephthalate (<strong>PET</strong>) has heavily contributed to a global plastic pollution crisis, necessitating the improvement and development of recycling methods. We previously established a chemo-microbial degradation process for post-consumer <strong>PET</strong> plastic, consisting of <strong>PET</strong> depolymerization to form bis(2-hydroxyethyl) terephthalate (<strong>BHET</strong>) followed by the complete degradation of <strong>BHET</strong> by a bacterial consortium found to synergistically degrade <strong>PET</strong> and <strong>BHET</strong>. The <strong>BHET</strong> produced during <strong>PET</strong> depolymerization consists of two polymorphic forms, the α and δ forms. This work investigates the effect of <strong>BHET</strong> polymorphism on microbial degradation to further optimize the chemo-microbial process. Reversible interconversion methods for <strong>BHET</strong> polymorphs were effectively developed using mechanochemistry, achieving pure α and δ forms by modulating milling conditions. When inoculated with the bacterial consortium, the α form was degraded faster than the δ form, indicating solid polymorphism is a significant factor for the biodegradation level. This work paves the way to optimize the chemo-microbial process for an increased degradation rate of post-consumer <strong>PET</strong> and furthers the effort for sustainable plastic recycling methods.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 514-519"},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00060a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanochemical synthesis of fluorinated perovskites KCuF3 and KNiF3† 氟化包晶 KCuF3 和 KNiF3† 的机械化学合成
Pub Date : 2024-08-28 DOI: 10.1039/D4MR00037D
Davide Ceriotti, Piergiorgio Marziani, Federico Maria Scesa, Arianna Collorà, Claudia L. Bianchi, Luca Magagnin and Maurizio Sansotera

A solvent-free mechanochemical synthesis of two fluorinated perovskites, KCuF3 and KNiF3, including the optimization of milling time at constant rotational speed, was studied as a practical and green alternative to the classical solvothermal synthesis. The presence of KCuF3 and KNiF3 in the desired crystalline phase as the main product was observed after 6 h of milling. At higher milling times K2CuF4 and K2NiF4 were detected as additional crystalline phases for the Cu- and Ni- based perovskites, respectively. The fluorinated perovskites were characterized by using X-Ray Powder Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM), confirming the selective formation of the fluorinated perovskites. The mechanochemical route was also compared to a new mild solvothermal method. An evaluation of the environmental impact and the energy efficiency was performed; moreover, the effectiveness of the mechanochemical process was compared to that of the solvothermal method. The promising results obtained from this innovative method opened the door to the use of solvent-free mechanochemical syntheses as a suitable approach in the field of crystal engineering also.

研究人员采用无溶剂机械化学合成法合成了 KCuF3 和 KNiF3 这两种含氟过氧化物,包括优化恒定转速下的研磨时间,以此作为传统溶剂热合成法的一种实用绿色替代方法。经过 6 小时的研磨,观察到 KCuF3 和 KNiF3 以理想的结晶相作为主要产物。在更长的研磨时间内,分别检测到 K2CuF4 和 K2NiF4 作为铜基和镍基包晶石的额外结晶相。通过使用 X 射线粉末衍射 (XRD)、X 射线光电子能谱 (XPS) 和扫描电子显微镜 (SEM) 对含氟过氧化物进行表征,证实了含氟过氧化物的选择性形成。此外,还将机械化学方法与新的温和溶热方法进行了比较。对环境影响和能源效率进行了评估;此外,还比较了机械化学工艺与溶热法的有效性。这一创新方法所取得的可喜成果为无溶剂机械化学合成法在晶体工程领域的应用打开了一扇大门。
{"title":"Mechanochemical synthesis of fluorinated perovskites KCuF3 and KNiF3†","authors":"Davide Ceriotti, Piergiorgio Marziani, Federico Maria Scesa, Arianna Collorà, Claudia L. Bianchi, Luca Magagnin and Maurizio Sansotera","doi":"10.1039/D4MR00037D","DOIUrl":"https://doi.org/10.1039/D4MR00037D","url":null,"abstract":"<p >A solvent-free mechanochemical synthesis of two fluorinated perovskites, KCuF<small><sub>3</sub></small> and KNiF<small><sub>3</sub></small>, including the optimization of milling time at constant rotational speed, was studied as a practical and green alternative to the classical solvothermal synthesis. The presence of KCuF<small><sub>3</sub></small> and KNiF<small><sub>3</sub></small> in the desired crystalline phase as the main product was observed after 6 h of milling. At higher milling times K<small><sub>2</sub></small>CuF<small><sub>4</sub></small> and K<small><sub>2</sub></small>NiF<small><sub>4</sub></small> were detected as additional crystalline phases for the Cu- and Ni- based perovskites, respectively. The fluorinated perovskites were characterized by using X-Ray Powder Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM), confirming the selective formation of the fluorinated perovskites. The mechanochemical route was also compared to a new mild solvothermal method. An evaluation of the environmental impact and the energy efficiency was performed; moreover, the effectiveness of the mechanochemical process was compared to that of the solvothermal method. The promising results obtained from this innovative method opened the door to the use of solvent-free mechanochemical syntheses as a suitable approach in the field of crystal engineering also.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 520-530"},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00037d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyanation of aryl halides using potassium hexacyanoferrate(ii) via direct mechanocatalysis† 通过直接机械催化使用六氰合铁酸钾(ii)对芳基卤化物进行氰化反应†。
Pub Date : 2024-08-27 DOI: 10.1039/D4MR00054D
Suhmi Hwang, Phil M. Preuß, Wilm Pickhardt, Sven Grätz and Lars Borchardt

A cyanation reaction was performed inside a ball mill system utilizing catalytically active milling balls, while avoiding the use of solvents and ligands. Additionally, replacing the highly toxic cyanide source with potassium hexacyanoferrate(II) leads to a safer reaction environment. Yields of up to 90% were achieved in as little as 4 hours at room temperature. The oxidative addition and transmetalation step could be observed via X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (PXRD) analysis, respectively, giving a first indication of the mechanism of this mechanochemical reaction.

利用催化活性研磨球,在球磨系统内进行了氰化反应,同时避免了溶剂和配体的使用。此外,用六氰合铁酸钾(II)取代剧毒的氰化源,可提供更安全的反应环境。在室温下,只需 4 小时就能获得高达 90% 的产率。通过 X 射线光电子能谱(XPS)和粉末 X 射线衍射(PXRD)分析,可分别观察到氧化加成和金属转化步骤,从而首次揭示了这一机械化学反应的机理。
{"title":"Cyanation of aryl halides using potassium hexacyanoferrate(ii) via direct mechanocatalysis†","authors":"Suhmi Hwang, Phil M. Preuß, Wilm Pickhardt, Sven Grätz and Lars Borchardt","doi":"10.1039/D4MR00054D","DOIUrl":"https://doi.org/10.1039/D4MR00054D","url":null,"abstract":"<p >A cyanation reaction was performed inside a ball mill system utilizing catalytically active milling balls, while avoiding the use of solvents and ligands. Additionally, replacing the highly toxic cyanide source with potassium hexacyanoferrate(<small>II</small>) leads to a safer reaction environment. Yields of up to 90% were achieved in as little as 4 hours at room temperature. The oxidative addition and transmetalation step could be observed <em>via</em> X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (PXRD) analysis, respectively, giving a first indication of the mechanism of this mechanochemical reaction.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 531-535"},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00054d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic limits of the depolymerization of poly(olefin)s using mechanochemistry† 利用机械化学法解聚聚(烯烃)的热力学极限。
Pub Date : 2024-08-26 DOI: 10.1039/D4MR00079J
Yuchen Chang, Van Son Nguyen, Adrian H. Hergesell, Claire L. Seitzinger, Jan Meisner, Ina Vollmer, F. Joseph Schork and Carsten Sievers

Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor via a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted.

机械化学是一种很有前景的商品塑料化学回收方法,在某些情况下,已经有将其解聚为单体的报道。然而,虽然聚(烯烃)在全球商品塑料中所占的份额最大,但在标准实验室规模的球磨反应器中,这些聚合物的机械化学解聚速度很慢。在这项工作中,根据自由基中间体解聚的热力学限制,对观察到的聚苯乙烯、聚乙烯和聚丙烯的反应活性进行了合理解释。此外,还讨论了这些聚合物通过清洗气流从反应器中去除单体的后续相分配平衡。对于聚(苯乙烯)来说,典型的振动球磨机提供的能量足以使其在热热点或冲击部位的绝热压缩作用下解聚,但对于聚(丙烯)和聚(乙烯)来说,同样的能量供应远远不够。同时,由于苯乙烯的挥发性较低,从反应器中清除苯乙烯会受到热力学限制,但这对丙烯或乙烯来说都不是问题。这些热力学限制对机械化学反应器设计和机械催化工艺潜力的影响得到了强调。
{"title":"Thermodynamic limits of the depolymerization of poly(olefin)s using mechanochemistry†","authors":"Yuchen Chang, Van Son Nguyen, Adrian H. Hergesell, Claire L. Seitzinger, Jan Meisner, Ina Vollmer, F. Joseph Schork and Carsten Sievers","doi":"10.1039/D4MR00079J","DOIUrl":"10.1039/D4MR00079J","url":null,"abstract":"<p >Mechanochemistry is a promising approach for chemical recycling of commodity plastics, and in some cases depolymerization to the monomer(s) has been reported. However, while poly(olefin)s comprise the largest share of global commodity plastics, mechanochemical depolymerization of these polymers in standard laboratory-scale ball mill reactors suffers from slow rates. In this work, the observed reactivities of poly(styrene), poly(ethylene) and poly(propylene) are rationalized on the basis of thermodynamic limitations of their depolymerization by depropagation of free radical intermediates. In addition, subsequent phase partitioning equilibria for the removal of monomers from the reactor <em>via</em> a purge gas stream are discussed for these polymers. For poly(styrene), a typical vibratory ball mill supplies just enough energy for its depolymerization to be driven by either thermal hotspots or adiabatic compression of the impact site, but the same energy supply is far from sufficient for poly(propylene) and poly(ethylene). Meanwhile, removal of styrene from the reactor is thermodynamically hindered by its lower volatility, but this is not an issue for either propylene or ethylene. The implications of these thermodynamic limitations for mechanochemical reactor design and potential for mechanocatalytic processes are highlighted.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 504-513"},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142305505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-molecule force spectroscopy shows that side chain interactions govern the mechanochemical response of polypeptide α-helices and prevent the formation of β-sheets† 单分子力谱分析表明,侧链相互作用控制了多肽α-螺旋的机械化学反应,并阻止了β-片†的形成
Pub Date : 2024-08-26 DOI: 10.1039/D4MR00068D
Marie Asano, Damien Sluysmans, Nicolas Willet, Colin Bonduelle, Sébastien Lecommandoux and Anne-Sophie Duwez

Secondary α-helix and β-sheet structures are key scaffolds around which the rest of the residues condense during protein folding. Despite their key role in numerous processes to maintain life, little is known about their properties under force. Their stability under mechanical stress, as constantly experienced in the turbulent environment of cells, is however essential. Here, we designed and synthesized two pH-responsive polypeptides, poly(L-glutamic acid) and poly(L-lysine), for single-molecule mechanochemistry experiments using AFM to probe the mechanical unfolding of α-helix and β-sheet secondary motifs. The force experiments, supported by simulations, reveal a superior mechanical stability of the poly(L-lysine) α-helix, which we attribute to hydrophobic interactions of the alkyl side chains. Most importantly, our results show that these interactions play a key role in inhibiting the formation of a metastable β-sheet-like structure when the polypeptide is subjected to mechanical deformations, which might have important implications in the mechanism behind polyQ diseases.

二级α-螺旋结构和β-片结构是蛋白质折叠过程中剩余残基凝聚的关键支架。尽管它们在维持生命的许多过程中起着关键作用,但人们对它们在外力作用下的特性知之甚少。然而,它们在机械应力下的稳定性,就像在细胞的动荡环境中不断经历的那样,是必不可少的。在此,我们设计并合成了两个ph响应多肽,聚l -谷氨酸和聚l -赖氨酸,用于单分子机械化学实验,利用原子力显微镜(AFM)探测α-螺旋和β-片二级基序的机械展开。力实验和模拟结果表明,聚l -赖氨酸α-螺旋结构具有优异的机械稳定性,这归因于烷基侧链的疏水相互作用。最重要的是,我们的研究结果表明,当多肽遭受机械变形时,这些相互作用在抑制亚稳态β-片状结构的形成中起关键作用,这可能对多肽疾病背后的机制具有重要意义。
{"title":"Single-molecule force spectroscopy shows that side chain interactions govern the mechanochemical response of polypeptide α-helices and prevent the formation of β-sheets†","authors":"Marie Asano, Damien Sluysmans, Nicolas Willet, Colin Bonduelle, Sébastien Lecommandoux and Anne-Sophie Duwez","doi":"10.1039/D4MR00068D","DOIUrl":"https://doi.org/10.1039/D4MR00068D","url":null,"abstract":"<p >Secondary α-helix and β-sheet structures are key scaffolds around which the rest of the residues condense during protein folding. Despite their key role in numerous processes to maintain life, little is known about their properties under force. Their stability under mechanical stress, as constantly experienced in the turbulent environment of cells, is however essential. Here, we designed and synthesized two pH-responsive polypeptides, poly(<small>L</small>-glutamic acid) and poly(<small>L</small>-lysine), for single-molecule mechanochemistry experiments using AFM to probe the mechanical unfolding of α-helix and β-sheet secondary motifs. The force experiments, supported by simulations, reveal a superior mechanical stability of the poly(<small>L</small>-lysine) α-helix, which we attribute to hydrophobic interactions of the alkyl side chains. Most importantly, our results show that these interactions play a key role in inhibiting the formation of a metastable β-sheet-like structure when the polypeptide is subjected to mechanical deformations, which might have important implications in the mechanism behind polyQ diseases.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 1","pages":" 37-44"},"PeriodicalIF":0.0,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/mr/d4mr00068d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient mechanochemistry of beta blockers: neutralization, salification, and effect of liquid additives† β-受体阻滞剂的高效机械化学:中和、盐化和液体添加剂的影响†。
Pub Date : 2024-08-19 DOI: 10.1039/D4MR00078A
Delbert S. Botes, Jesus Daniel Loya, Mahboubeh Ghahremani, Bailee B. Newham, Mikaela I. Aleman, Gary C. George, Daniel K. Unruh and Kristin M. Hutchins

Beta blockers are a class of ubiquitous cardiovascular drugs that have collectively received little attention from a crystal engineering standpoint. Here, we describe the use of mechanochemistry in the salification of five beta blockers (propranolol, metoprolol, acebutolol, atenolol, and labetalol) with nicotinic and isonicotinic acid. Firstly, liquid assisted grinding (LAG) was used to neutralize the commercial beta blocker salts, enabling the efficient gram-scale formation of the free bases, which are essential for cocrystallization. Thereafter, 1 : 1 mechanochemical cocrystallizations were successful in all but one case and nine salts were characterized, eight of which are novel. Furthermore, the racemic free base crystal structure of acebutolol is reported for the first time, as well as the first multicomponent crystal of labetalol that is not a simple salt. Salification was enabled by the large pKa differences between the components, which facilitated the protonation of the basic amine on the beta blockers' alkanolamine skeleton. Thereafter, charge-assisted hydrogen bonding promoted cocrystallization. We envisage salification to be applicable to any beta blocker, considering the current study encompasses approximately one quarter of this drug class. Lastly, the role of different liquid additives in the LAG process was assessed, and the solvent identity was found to play a substantial role in the mechanochemical outcome, although it did not strictly correlate with polarity. This study demonstrates that LAG screening with a wide selection of solvents provides a path to achieve full conversion to products, explore the crystal landscape of multicomponent crystals, and assist in identifying additional phases and/or late stage polymorphs in solid form development.

β受体阻滞剂是一类无处不在的心血管药物,但从晶体工程学的角度来看,它们却很少受到关注。在此,我们介绍了利用机械化学将五种β受体阻滞剂(普萘洛尔、美托洛尔、醋丁洛尔、阿替洛尔和拉贝洛尔)与烟酸和异烟酸盐化的过程。首先,采用液体辅助研磨法(LAG)中和商用β受体阻滞剂盐,从而有效地形成克级规模的游离碱,游离碱对共晶体化至关重要。此后,1 :1 机械化学合成结晶除一种情况外均获得成功,共鉴定出九种盐类,其中八种为新型盐类。此外,还首次报道了醋丁洛尔的外消旋游离碱晶体结构,以及拉贝洛尔的首个非简单盐的多组分晶体。由于各组分之间的 pKa 差异较大,这有利于β受体阻滞剂烷醇胺骨架上的碱性胺发生质子化,从而实现盐化。此后,电荷辅助氢键促进了共晶体化。考虑到目前的研究涵盖了大约四分之一的β受体阻滞剂,我们认为盐析法适用于任何β受体阻滞剂。最后,我们评估了不同液体添加剂在 LAG 过程中的作用,发现溶剂特性在机械化学结果中起着重要作用,尽管它与极性并无严格关联。这项研究表明,使用多种溶剂进行 LAG 筛选为实现产品的完全转化、探索多组分晶体的晶体结构以及协助确定固体形式开发中的附加相和/或后期多晶型提供了一条途径。
{"title":"Efficient mechanochemistry of beta blockers: neutralization, salification, and effect of liquid additives†","authors":"Delbert S. Botes, Jesus Daniel Loya, Mahboubeh Ghahremani, Bailee B. Newham, Mikaela I. Aleman, Gary C. George, Daniel K. Unruh and Kristin M. Hutchins","doi":"10.1039/D4MR00078A","DOIUrl":"https://doi.org/10.1039/D4MR00078A","url":null,"abstract":"<p >Beta blockers are a class of ubiquitous cardiovascular drugs that have collectively received little attention from a crystal engineering standpoint. Here, we describe the use of mechanochemistry in the salification of five beta blockers (propranolol, metoprolol, acebutolol, atenolol, and labetalol) with nicotinic and isonicotinic acid. Firstly, liquid assisted grinding (LAG) was used to neutralize the commercial beta blocker salts, enabling the efficient gram-scale formation of the free bases, which are essential for cocrystallization. Thereafter, 1 : 1 mechanochemical cocrystallizations were successful in all but one case and nine salts were characterized, eight of which are novel. Furthermore, the racemic free base crystal structure of acebutolol is reported for the first time, as well as the first multicomponent crystal of labetalol that is not a simple salt. Salification was enabled by the large p<em>K</em><small><sub>a</sub></small> differences between the components, which facilitated the protonation of the basic amine on the beta blockers' alkanolamine skeleton. Thereafter, charge-assisted hydrogen bonding promoted cocrystallization. We envisage salification to be applicable to any beta blocker, considering the current study encompasses approximately one quarter of this drug class. Lastly, the role of different liquid additives in the LAG process was assessed, and the solvent identity was found to play a substantial role in the mechanochemical outcome, although it did not strictly correlate with polarity. This study demonstrates that LAG screening with a wide selection of solvents provides a path to achieve full conversion to products, explore the crystal landscape of multicomponent crystals, and assist in identifying additional phases and/or late stage polymorphs in solid form development.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 492-503"},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00078a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct arylation of alkyl fluorides using in situ mechanochemically generated calcium-based heavy Grignard reagents† 使用原位机械化学生成的钙基重格氏试剂对烷基氟化物进行直接芳基化处理†。
Pub Date : 2024-08-13 DOI: 10.1039/D4MR00067F
Pan Gao, Julong Jiang, Yamato Fukuzawa, Satoshi Maeda, Koji Kubota and Hajime Ito

Here, we report the reaction of calcium-based heavy Grignard reagents, which are easily generated by a mechanochemical method, with unactivated alkyl fluorides in the absence of transition metal catalysts to produce the corresponding arylated products in moderate to good yields. This is the first example of the nucleophilic substitution of an inert C(sp3)–F bond by an organocalcium species. Preliminary mechanistic studies based on theoretical calculations indicate that tetrameric aryl calcium species facilitate the unprecedented C(sp3)–F bond arylation.

在此,我们报告了钙基重格氏试剂在没有过渡金属催化剂的情况下与未活化的烷基氟化物反应生成相应的芳基化产物的情况。这是有机钙物种亲核取代惰性 C(sp3)-F 键的第一个实例。基于理论计算的初步机理研究表明,四聚芳基钙物种促进了前所未有的 C(sp3)-F 键芳基化反应。
{"title":"Direct arylation of alkyl fluorides using in situ mechanochemically generated calcium-based heavy Grignard reagents†","authors":"Pan Gao, Julong Jiang, Yamato Fukuzawa, Satoshi Maeda, Koji Kubota and Hajime Ito","doi":"10.1039/D4MR00067F","DOIUrl":"https://doi.org/10.1039/D4MR00067F","url":null,"abstract":"<p >Here, we report the reaction of calcium-based heavy Grignard reagents, which are easily generated by a mechanochemical method, with unactivated alkyl fluorides in the absence of transition metal catalysts to produce the corresponding arylated products in moderate to good yields. This is the first example of the nucleophilic substitution of an inert C(sp<small><sup>3</sup></small>)–F bond by an organocalcium species. Preliminary mechanistic studies based on theoretical calculations indicate that tetrameric aryl calcium species facilitate the unprecedented C(sp<small><sup>3</sup></small>)–F bond arylation.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 486-491"},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00067f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid and efficient mechanosynthesis of alkali and alkaline earth molybdates† 碱和碱土钼酸盐的快速高效机械合成†。
Pub Date : 2024-08-12 DOI: 10.1039/D4MR00042K
Andres Lara-Contreras, Patrick Julien, Jennifer Scott and Emily C. Corcoran

Complex molybdates are traditionally prepared via solid-state synthesis and aqueous chemistry methods, which generally require long reaction times and large solvent volumes or high sintering temperatures. However, these techniques often result in undesired secondary species, incomplete reactions, and relatively low yields. Mechanochemistry has proven effective for the synthesis of complex molybdates. This work expands on the development of the mechanochemical synthesis of various heptamolybdates (i.e., sodium, rubidium, and cesium), and trimolybdates (i.e., sodium, rubidium, cesium, strontium, and barium). The obtained materials were characterized via powder X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, thermo-gravimetric analysis, and scanning electron microscopy to assess the purity, morphology, and quality of the sample. High purity samples of the various trimolybdates and heptamolybdates were obtained in less than three hours of reaction time, with minimal energy input and by-products. Mechanochemistry provides a fast, more sustainable, and simple procedure for the synthesis of a wide variety of both trimolybdates and heptamolybdates including the monohydrate form of sodium trimolybdate instead of the trihydrate variant commonly obtained from aqueous reactions.

复杂钼酸盐的传统制备方法是固态合成法和水化学法,这些方法通常需要较长的反应时间和较大的溶剂用量或较高的烧结温度。然而,这些技术通常会产生不想要的次生物质、不完全反应和相对较低的产率。事实证明,机械化学法对合成复杂的钼酸盐非常有效。这项工作进一步发展了各种七钼酸盐(即钠、铷和铯)和三钼酸盐(即钠、铷、铯、锶和钡)的机械化学合成。获得的材料通过粉末 X 射线衍射、傅立叶变换红外光谱、拉曼光谱、热重分析和扫描电子显微镜进行表征,以评估样品的纯度、形态和质量。在不到三小时的反应时间内,就获得了各种三钼酸盐和七钼酸盐的高纯度样品,且能量输入和副产品极少。机械化学为合成各种三钼酸盐和七钼酸盐(包括三钼酸钠的一水合物形式,而不是通常从水溶液反应中获得的三水合物变体)提供了一种快速、更可持续且简单的程序。
{"title":"Rapid and efficient mechanosynthesis of alkali and alkaline earth molybdates†","authors":"Andres Lara-Contreras, Patrick Julien, Jennifer Scott and Emily C. Corcoran","doi":"10.1039/D4MR00042K","DOIUrl":"https://doi.org/10.1039/D4MR00042K","url":null,"abstract":"<p >Complex molybdates are traditionally prepared <em>via</em> solid-state synthesis and aqueous chemistry methods, which generally require long reaction times and large solvent volumes or high sintering temperatures. However, these techniques often result in undesired secondary species, incomplete reactions, and relatively low yields. Mechanochemistry has proven effective for the synthesis of complex molybdates. This work expands on the development of the mechanochemical synthesis of various heptamolybdates (<em>i.e.</em>, sodium, rubidium, and cesium), and trimolybdates (<em>i.e.</em>, sodium, rubidium, cesium, strontium, and barium). The obtained materials were characterized <em>via</em> powder X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, thermo-gravimetric analysis, and scanning electron microscopy to assess the purity, morphology, and quality of the sample. High purity samples of the various trimolybdates and heptamolybdates were obtained in less than three hours of reaction time, with minimal energy input and by-products. Mechanochemistry provides a fast, more sustainable, and simple procedure for the synthesis of a wide variety of both trimolybdates and heptamolybdates including the monohydrate form of sodium trimolybdate instead of the trihydrate variant commonly obtained from aqueous reactions.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 477-485"},"PeriodicalIF":0.0,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00042k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvent-free mechanochemical synthesis of azo dyes† 偶氮染料的无溶剂机械化学合成技术†。
Pub Date : 2024-08-09 DOI: 10.1039/D4MR00053F
Lin Zhang, Qinglang Song, Yanxian Wang, Rui Chen, Yu Xia, Bin Wang, Weiwei Jin, Shaofeng Wu, Ziren Chen, Azhar Iqbal, Chenjiang Liu and Yonghong Zhang

An efficient diazotization of phenolic compounds with aryltriazenes is herein demonstrated by employing ball milling under catalyst-, promoter- and solvent-free conditions. The present protocol offers several advantages including mild conditions, good selectivity and high yields, simple operation and practical gram-scale synthesis. Overall, this novel strategy significantly improves the reaction efficiency, simplifies purification procedures of the diazotization reaction and provides potential for the industrial preparation of azo dyes.

本文通过在无催化剂、无促进剂和无溶剂条件下采用球磨法,展示了酚类化合物与芳基三嗪的高效重氮化反应。本方案具有多个优点,包括条件温和、选择性好、产率高、操作简单和实用的克级合成。总之,这种新颖的策略大大提高了反应效率,简化了重氮化反应的纯化程序,为偶氮染料的工业制备提供了潜力。
{"title":"Solvent-free mechanochemical synthesis of azo dyes†","authors":"Lin Zhang, Qinglang Song, Yanxian Wang, Rui Chen, Yu Xia, Bin Wang, Weiwei Jin, Shaofeng Wu, Ziren Chen, Azhar Iqbal, Chenjiang Liu and Yonghong Zhang","doi":"10.1039/D4MR00053F","DOIUrl":"https://doi.org/10.1039/D4MR00053F","url":null,"abstract":"<p >An efficient diazotization of phenolic compounds with aryltriazenes is herein demonstrated by employing ball milling under catalyst-, promoter- and solvent-free conditions. The present protocol offers several advantages including mild conditions, good selectivity and high yields, simple operation and practical gram-scale synthesis. Overall, this novel strategy significantly improves the reaction efficiency, simplifies purification procedures of the diazotization reaction and provides potential for the industrial preparation of azo dyes.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 447-451"},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00053f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ball milling assisted mechano-catalytic dye degradation using SrTiO3 nanoparticles† 使用 SrTiO3 纳米粒子进行球磨辅助机械催化染料降解†。
Pub Date : 2024-08-09 DOI: 10.1039/D4MR00047A
Aman Shukla, Akshay Gaur, Shivam Dubey and Rahul Vaish

Ball milling stands as a versatile and widely used technique that involves the mechanical grinding of solid materials via ball mills. Conventionally employed for synthesizing nanomaterials and complex compounds, this method has now been harnessed directly for catalysis due to its capability for surface charge separation. Herein, in the present study, we have explored the potential of ball milling to activate material with low piezoelectric coefficient for catalysis by demonstrating the ball-milling-induced mechano-catalytic activity of SrTiO3 (STO) nanoparticles for the degradation of toxic methylene blue (MB) dye. With the assistance of ball milling, STO nanoparticles (of 0.3 g dosage) were found capable of degrading 70% of 10 ppm MB dye at 400 rpm speed with 10 Zr balls in just 1 hour. A series of parametric studies were performed to analyze the effect of various process conditions, like catalyst dosage, initial concentration of dye, ball milling speed, and number of milling balls. Further, scavenging tests were carried out to detect the responsible reactive species for dye degradation. Moreover, the present ball milling process was compared with the trivial ultrasonication method where STO showed just 12% degradation in 1 hour. The results manifest the superiority of ball milling catalysis which not only offers precise control over reaction parameters but also encompasses scalability, simplicity, and better potential to conduct catalysis under environmentally benign conditions.

球磨是一种用途广泛的技术,通过球磨机对固体材料进行机械研磨。这种方法通常用于合成纳米材料和复杂化合物,由于其表面电荷分离的能力,现在已被直接用于催化。在本研究中,我们通过展示球磨诱导的 SrTiO3(STO)纳米粒子在降解有毒亚甲基蓝(MB)染料中的机械催化活性,探索了球磨激活低压电系数材料用于催化的潜力。在球磨的辅助下,STO 纳米粒子(用量为 0.3 克)能够在 400 转/分的转速下,用 10 个 Zr 球在 1 小时内降解 70% 的 10 ppm 甲基溴染料。为了分析催化剂用量、染料初始浓度、球磨速度和研磨球数量等各种工艺条件的影响,进行了一系列参数研究。此外,还进行了清除测试,以检测染料降解的主要反应物。此外,还将目前的球磨法与微不足道的超声波法进行了比较,后者在 1 小时内仅降解了 12% 的 STO。这些结果表明了球磨催化法的优越性,它不仅能精确控制反应参数,还具有可扩展性、简便性以及在无害环境条件下进行催化的更大潜力。
{"title":"Ball milling assisted mechano-catalytic dye degradation using SrTiO3 nanoparticles†","authors":"Aman Shukla, Akshay Gaur, Shivam Dubey and Rahul Vaish","doi":"10.1039/D4MR00047A","DOIUrl":"https://doi.org/10.1039/D4MR00047A","url":null,"abstract":"<p >Ball milling stands as a versatile and widely used technique that involves the mechanical grinding of solid materials <em>via</em> ball mills. Conventionally employed for synthesizing nanomaterials and complex compounds, this method has now been harnessed directly for catalysis due to its capability for surface charge separation. Herein, in the present study, we have explored the potential of ball milling to activate material with low piezoelectric coefficient for catalysis by demonstrating the ball-milling-induced mechano-catalytic activity of SrTiO<small><sub>3</sub></small> (STO) nanoparticles for the degradation of toxic methylene blue (MB) dye. With the assistance of ball milling, STO nanoparticles (of 0.3 g dosage) were found capable of degrading 70% of 10 ppm MB dye at 400 rpm speed with 10 Zr balls in just 1 hour. A series of parametric studies were performed to analyze the effect of various process conditions, like catalyst dosage, initial concentration of dye, ball milling speed, and number of milling balls. Further, scavenging tests were carried out to detect the responsible reactive species for dye degradation. Moreover, the present ball milling process was compared with the trivial ultrasonication method where STO showed just 12% degradation in 1 hour. The results manifest the superiority of ball milling catalysis which not only offers precise control over reaction parameters but also encompasses scalability, simplicity, and better potential to conduct catalysis under environmentally benign conditions.</p>","PeriodicalId":101140,"journal":{"name":"RSC Mechanochemistry","volume":" 5","pages":" 465-476"},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mr/d4mr00047a?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
RSC Mechanochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1