Pub Date : 2016-10-01DOI: 10.5423/PPJ.OA.04.2016.0081
Hun Kim, Eun Ju Jo, Y. Choi, K. Jang, G. Choi
Clubroot disease caused by Plasmodiophora brassicae is one of the most serious diseases in Brassica crops worldwide. In this study, the pathotypes of 12 Korean P. brassicae field isolates were determined using various Chinese cabbage including 22 commercial cultivars from Korea, China, and Japan, and 15 inbred lines. All P. brassicae isolates exhibited the typical clubroot disease on non-clubroot resistant cultivar, indicating that the isolates were highly pathogenic. According to the reactions on the Williams’ hosts, the 12 field isolates were initially classified into five races. However, when these isolates were inoculated onto clubroot-resistant (CR) cultivars of Chinese cabbage, several isolates led to different disease responses even though the isolates have been assigned to the same race by the Williams’ host responses. Based on the pathogenicity results, the 12 field isolates were reclassified into four different groups: pathotype 1 (GN1, GN2, GS, JS, and HS), 2 (DJ and KS), 3 (HN1, PC, and YC), and 4 (HN2 and SS). In addition, the CR cultivars from Korea, China, and Japan exhibited distinguishable disease responses to the P. brassicae isolates, suggesting that the 22 cultivars used in this study, including the non-CR cultivars, are classified into four different host groups based on their disease resistance. Combining these findings, the four differential hosts of Chinese cabbage and four pathotype groups of P. brassicae might provide an efficient screening system for resistant cultivars and a new foundation of breeding strategies for CR Chinese cabbage.
{"title":"Pathotype Classification of Plasmodiophora brassicae Isolates Using Clubroot-Resistant Cultivars of Chinese Cabbage","authors":"Hun Kim, Eun Ju Jo, Y. Choi, K. Jang, G. Choi","doi":"10.5423/PPJ.OA.04.2016.0081","DOIUrl":"https://doi.org/10.5423/PPJ.OA.04.2016.0081","url":null,"abstract":"Clubroot disease caused by Plasmodiophora brassicae is one of the most serious diseases in Brassica crops worldwide. In this study, the pathotypes of 12 Korean P. brassicae field isolates were determined using various Chinese cabbage including 22 commercial cultivars from Korea, China, and Japan, and 15 inbred lines. All P. brassicae isolates exhibited the typical clubroot disease on non-clubroot resistant cultivar, indicating that the isolates were highly pathogenic. According to the reactions on the Williams’ hosts, the 12 field isolates were initially classified into five races. However, when these isolates were inoculated onto clubroot-resistant (CR) cultivars of Chinese cabbage, several isolates led to different disease responses even though the isolates have been assigned to the same race by the Williams’ host responses. Based on the pathogenicity results, the 12 field isolates were reclassified into four different groups: pathotype 1 (GN1, GN2, GS, JS, and HS), 2 (DJ and KS), 3 (HN1, PC, and YC), and 4 (HN2 and SS). In addition, the CR cultivars from Korea, China, and Japan exhibited distinguishable disease responses to the P. brassicae isolates, suggesting that the 22 cultivars used in this study, including the non-CR cultivars, are classified into four different host groups based on their disease resistance. Combining these findings, the four differential hosts of Chinese cabbage and four pathotype groups of P. brassicae might provide an efficient screening system for resistant cultivars and a new foundation of breeding strategies for CR Chinese cabbage.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129501658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.5423/PPJ.OA.03.2016.0063
Laura Gálvez, J. Gil-Serna, M. García, C. Iglesias, D. Palmero
The most serious aerial disease of garlic is leaf blight caused by Stemphylium spp. Geographical variation in the causal agent of this disease is indicated. Stemphylium vesicarium has been reported in Spain, whereas S. solani is the most prevalent species recorded in China. In this study, Stemphylium isolates were obtained from symptomatic garlic plants sampled from the main Spanish production areas. Sequence data for the ITS1–5.8S–ITS2 region enabled assignation of the isolates to the Pleospora herbarum complex and clearly distinguished the isolates from S. solani. Conidial morphology of the isolates corresponded to that of S. vesicarium and clearly discriminated them from S. alfalfae and S. herbarum on the basis of the size and septation pattern of mature conidia. Conidial morphology as well as conidial length, width and length:width ratio also allowed the Spanish isolates to be distinguished from S. botryosum and S. herbarum. Control of leaf blight of garlic is not well established. Few studies are available regarding the effectiveness of chemical treatments to reduce Stemphylium spp. incidence on garlic. The effectiveness of nine fungicides of different chemical groups to reduce Stemphylium mycelial growth in vitro was tested. Boscalid + pyraclostrobin (group name, succinate dehydrogenase inhibitors + quinone outside inhibitors), iprodione (dicar-boximide), and prochloraz (demethylation inhibitors) were highly effective at reducing mycelial growth in S. vesicarium with EC50 values less than 5 ppm. In general, the effectiveness of the fungicide was enhanced with increasing dosage.
{"title":"Stemphylium Leaf Blight of Garlic (Allium sativum ) in Spain: Taxonomy and In Vitro Fungicide Response","authors":"Laura Gálvez, J. Gil-Serna, M. García, C. Iglesias, D. Palmero","doi":"10.5423/PPJ.OA.03.2016.0063","DOIUrl":"https://doi.org/10.5423/PPJ.OA.03.2016.0063","url":null,"abstract":"The most serious aerial disease of garlic is leaf blight caused by Stemphylium spp. Geographical variation in the causal agent of this disease is indicated. Stemphylium vesicarium has been reported in Spain, whereas S. solani is the most prevalent species recorded in China. In this study, Stemphylium isolates were obtained from symptomatic garlic plants sampled from the main Spanish production areas. Sequence data for the ITS1–5.8S–ITS2 region enabled assignation of the isolates to the Pleospora herbarum complex and clearly distinguished the isolates from S. solani. Conidial morphology of the isolates corresponded to that of S. vesicarium and clearly discriminated them from S. alfalfae and S. herbarum on the basis of the size and septation pattern of mature conidia. Conidial morphology as well as conidial length, width and length:width ratio also allowed the Spanish isolates to be distinguished from S. botryosum and S. herbarum. Control of leaf blight of garlic is not well established. Few studies are available regarding the effectiveness of chemical treatments to reduce Stemphylium spp. incidence on garlic. The effectiveness of nine fungicides of different chemical groups to reduce Stemphylium mycelial growth in vitro was tested. Boscalid + pyraclostrobin (group name, succinate dehydrogenase inhibitors + quinone outside inhibitors), iprodione (dicar-boximide), and prochloraz (demethylation inhibitors) were highly effective at reducing mycelial growth in S. vesicarium with EC50 values less than 5 ppm. In general, the effectiveness of the fungicide was enhanced with increasing dosage.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131072673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.5423/PPJ.OA.03.2016.0062
W. Cheon, Young Soo Kim, K. Balaraju, Bong-Su Kim, Byeong-Ho Lee, Y. Jeon
To study the control of postharvest decay caused by Colletotrichum gloeosporioides and Penicillium expansum, gamma irradiation alone or in combination with fumigation was evaluated to extend the shelf life of apples in South Korea. An irradiation dose of 2.0 kGy resulted in the maximum inhibition of C. gloeosporioides and P. expansum spore germination. The gamma irradiation dose required to reduce the spore germination by 90% was 0.22 and 0.35 kGy for C. gloeosporioides and P. expansum, respectively. Microscopic observations revealed that when the fungal spores were treated with gamma irradiation (4.0 kGy), conidial germination was stopped completely resulting in no germ tube formation in C. gloeosporioides. Treatment with the eco-friendly fumigant ethanedinitrile had a greater antifungal activity against C. gloeosporioides and P. expansum in comparison with the non-treated control under in vitro conditions. The in vitro antifungal effects of the gamma irradiation and fumigation treatments allowed us to further study the effects of the combined treatments to control postharvest decay on stored apples. Interestingly, when apples were treated with gamma irradiation in combined with fumigation, disease inhibition increased more at lower (< 0.4 kGy) than at higher doses of irradiation, suggesting that combined treatments reduced the necessary irradiation dose in phytosanitary irradiation processing under storage conditions.
{"title":"Postharvest Disease Control of Colletotrichum gloeosporioides and Penicillium expansum on Stored Apples by Gamma Irradiation Combined with Fumigation","authors":"W. Cheon, Young Soo Kim, K. Balaraju, Bong-Su Kim, Byeong-Ho Lee, Y. Jeon","doi":"10.5423/PPJ.OA.03.2016.0062","DOIUrl":"https://doi.org/10.5423/PPJ.OA.03.2016.0062","url":null,"abstract":"To study the control of postharvest decay caused by Colletotrichum gloeosporioides and Penicillium expansum, gamma irradiation alone or in combination with fumigation was evaluated to extend the shelf life of apples in South Korea. An irradiation dose of 2.0 kGy resulted in the maximum inhibition of C. gloeosporioides and P. expansum spore germination. The gamma irradiation dose required to reduce the spore germination by 90% was 0.22 and 0.35 kGy for C. gloeosporioides and P. expansum, respectively. Microscopic observations revealed that when the fungal spores were treated with gamma irradiation (4.0 kGy), conidial germination was stopped completely resulting in no germ tube formation in C. gloeosporioides. Treatment with the eco-friendly fumigant ethanedinitrile had a greater antifungal activity against C. gloeosporioides and P. expansum in comparison with the non-treated control under in vitro conditions. The in vitro antifungal effects of the gamma irradiation and fumigation treatments allowed us to further study the effects of the combined treatments to control postharvest decay on stored apples. Interestingly, when apples were treated with gamma irradiation in combined with fumigation, disease inhibition increased more at lower (< 0.4 kGy) than at higher doses of irradiation, suggesting that combined treatments reduced the necessary irradiation dose in phytosanitary irradiation processing under storage conditions.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"118226122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dithiocarbamate fungicides such as maneb and mancozeb are widely used nonsystemic protectant fungicides to control various plant fungal diseases. Dithiocarbamate fungicides should be frequently applied to achieve optimal efficacy of disease control and avoid either decline in effectiveness or wash-off from leaf surface. Dithiocarbamates are of low resistance risk but have the potential to cause human neurological diseases. The objective of this study was to develop a strategy to effectively control plant disease with reduced use of dithiocarbamtes. Southern corn leaf blight was the model pathosystem for the investigation. When corn plants were drench-treated with Bacillus cereus C1L, a rhizobacterium able to induce systemic resistance in corn plants against southern leaf blight, frequency of spraying dithiocarbamate fungicides could be decreased. The treatment of B. cereus C1L was able to protect maize from southern leaf blight while residues of dithiocarbamates on leaf surface were too low to provide sufficient protection. On the other hand, frequent sprays of mancozeb slightly but significantly reduced growth of corn plants under natural conditions. In contrast, application of B. cereus C1L can significantly promote growth of corn plants whether sprayed with mancozeb or not. Our results provide the information that plant disease can be well controlled by rhizobacteria-mediated induced systemic resistance in combination with reduced but appropriate application of dithiocarbamate fungicides just before a heavy infection period. An appropriate use of rhizobacteria can enhance plant growth and help plants overcome negative effects caused by dithiocarbamates.
{"title":"Feasible Management of Southern Corn Leaf Blight via Induction of Systemic Resistance by Bacillus cereus C1L in Combination with Reduced Use of Dithiocarbamate Fungicides","authors":"Yingqi Lai, Peili Lin, Chao-Ying Chen, Chien-Jui Huang","doi":"10.5423/PPJ.OA.02.2016.0044","DOIUrl":"https://doi.org/10.5423/PPJ.OA.02.2016.0044","url":null,"abstract":"Dithiocarbamate fungicides such as maneb and mancozeb are widely used nonsystemic protectant fungicides to control various plant fungal diseases. Dithiocarbamate fungicides should be frequently applied to achieve optimal efficacy of disease control and avoid either decline in effectiveness or wash-off from leaf surface. Dithiocarbamates are of low resistance risk but have the potential to cause human neurological diseases. The objective of this study was to develop a strategy to effectively control plant disease with reduced use of dithiocarbamtes. Southern corn leaf blight was the model pathosystem for the investigation. When corn plants were drench-treated with Bacillus cereus C1L, a rhizobacterium able to induce systemic resistance in corn plants against southern leaf blight, frequency of spraying dithiocarbamate fungicides could be decreased. The treatment of B. cereus C1L was able to protect maize from southern leaf blight while residues of dithiocarbamates on leaf surface were too low to provide sufficient protection. On the other hand, frequent sprays of mancozeb slightly but significantly reduced growth of corn plants under natural conditions. In contrast, application of B. cereus C1L can significantly promote growth of corn plants whether sprayed with mancozeb or not. Our results provide the information that plant disease can be well controlled by rhizobacteria-mediated induced systemic resistance in combination with reduced but appropriate application of dithiocarbamate fungicides just before a heavy infection period. An appropriate use of rhizobacteria can enhance plant growth and help plants overcome negative effects caused by dithiocarbamates.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121019548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.5423/PPJ.OA.03.2016.0076
J. Hong, Hyeon Ji Kim, Heesoo Jung, H. Yang, Do Hoon Kim, C. Sung, Chang-Jin Park, Seog-Won Chang
Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea, respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (106 colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea. The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea. Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.
{"title":"Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants","authors":"J. Hong, Hyeon Ji Kim, Heesoo Jung, H. Yang, Do Hoon Kim, C. Sung, Chang-Jin Park, Seog-Won Chang","doi":"10.5423/PPJ.OA.03.2016.0076","DOIUrl":"https://doi.org/10.5423/PPJ.OA.03.2016.0076","url":null,"abstract":"Bacterial wilt and grey mould in tomato plants are economically destructive bacterial and fungal diseases caused by Ralstonia solanacearum and Botrytis cinerea, respectively. Various approaches including chemical and biological controls have been attempted to arrest the tomato diseases so far. In this study, in vitro growths of bacterial R. solanacearum and fungal B. cinerea were evaluated using four different vitamins including thiamine (vitamin B1), niacin (vitamin B3), pyridoxine (vitamin B6), and menadione (vitamin K3). In planta efficacies of the four vitamin treatments on tomato protection against both diseases were also demonstrated. All four vitamins showed different in vitro antibacterial activities against R. solanacearum in dose-dependent manners. However, treatment with 2 mM thiamine was only effective in reducing bacterial wilt of detached tomato leaves without phytotoxicity under lower disease pressure (106 colony-forming unit [cfu]/ml). Treatment with the vitamins also differentially reduced in vitro conidial germination and mycelial growth of B. cinerea. The four vitamins slightly reduced the conidial germination, and thiamine, pyridoxine and menadione inhibited the mycelial growth of B. cinerea. Menadione began to drastically suppress the conidial germination and mycelial growth by 5 and 0.5 mM, respectively. Grey mould symptoms on the inoculated tomato leaves were significantly reduced by pyridoxine and menadione pretreatments one day prior to the fungal challenge inoculation. These findings suggest that disease-specific vitamin treatment will be integrated for eco-friendly management of tomato bacterial wilt and grey mould.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122819715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.5423/PPJ.OA.03.2016.0052
M. Shahul, Hamid Rahamah Bivi, Adamu Saidu Paiko, A. Khairulmazmi, M. Akhtar, A. S. Idris
Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.
{"title":"Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid","authors":"M. Shahul, Hamid Rahamah Bivi, Adamu Saidu Paiko, A. Khairulmazmi, M. Akhtar, A. S. Idris","doi":"10.5423/PPJ.OA.03.2016.0052","DOIUrl":"https://doi.org/10.5423/PPJ.OA.03.2016.0052","url":null,"abstract":"Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127202996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.5423/PPJ.OA.05.2016.0123
Theresa Lee, Ji-Seon Paek, Kyung Ah Lee, Soohyung Lee, Jung-Hye Choi, Hyeonheui Ham, S. Hong, J. Ryu
Fusarium graminearum species complex (FGSC) causes Fusarium head blight in small grain cereals. To date, four species (F. graminearum, F. asiaticum, F. boothii, and F. meridionale ) belonging to FGSC frequently occur in Korean cereals. In addition, we first reported the occurrence of additional species (F. vorosii ) within FGSC, which was isolated from barley, corn, and rice in Korea. Phylogenetic analysis of the Fusarium isolates of this group using combined multi-gene sequences confirmed species identification. Moreover, the macroconidia produced by these isolates were morphologically similar to those of the F. vorosii holotype. Chemical analysis indicated that the F. vorosii isolates produced various trichothecenes such as nivalenol and deoxynivalenol with their acetyl derivatives along with zearalenone. Pathogenicity tests demonstrated that all of the F. vorosii isolates examined were pathogenic on barley, corn, and rice with variation in aggressiveness. This study is the first report of F. vorosii in Korean cereals, their pathogenicity towards barley and corn, and their ability to produce trichothecenes and zearalenone.
小麦赤霉病菌种复合体(FGSC)在小粒谷物中引起赤霉病。迄今为止,属于FGSC的四种(F. graminearum, F. asiatium, F. boothii和F. meridionale)经常出现在朝鲜谷物中。此外,我们首次报道了在韩国从大麦、玉米和水稻中分离到的FGSC中出现的其他物种(F. vorosii)。对该组镰刀菌分离株进行多基因序列联合系统发育分析,证实了该菌株的物种鉴定。此外,这些菌株产生的大分生孢子在形态上与vorosii全型菌株相似。化学分析表明,vorosii分离株可产生多种毛霉烯类化合物,如雪腐镰刀菌醇和脱氧雪腐镰刀菌醇及其乙酰衍生物以及玉米赤霉烯酮。致病性试验表明,所有分离的vorosii菌株都对大麦、玉米和水稻具有致病性,但侵袭性有所不同。本研究首次报道了韩国谷物中vorosii菌对大麦和玉米的致病性,以及它们产生毛霉烯和玉米赤霉烯酮的能力。
{"title":"Occurrence of Toxigenic Fusarium vorosii among Small Grain Cereals in Korea","authors":"Theresa Lee, Ji-Seon Paek, Kyung Ah Lee, Soohyung Lee, Jung-Hye Choi, Hyeonheui Ham, S. Hong, J. Ryu","doi":"10.5423/PPJ.OA.05.2016.0123","DOIUrl":"https://doi.org/10.5423/PPJ.OA.05.2016.0123","url":null,"abstract":"Fusarium graminearum species complex (FGSC) causes Fusarium head blight in small grain cereals. To date, four species (F. graminearum, F. asiaticum, F. boothii, and F. meridionale ) belonging to FGSC frequently occur in Korean cereals. In addition, we first reported the occurrence of additional species (F. vorosii ) within FGSC, which was isolated from barley, corn, and rice in Korea. Phylogenetic analysis of the Fusarium isolates of this group using combined multi-gene sequences confirmed species identification. Moreover, the macroconidia produced by these isolates were morphologically similar to those of the F. vorosii holotype. Chemical analysis indicated that the F. vorosii isolates produced various trichothecenes such as nivalenol and deoxynivalenol with their acetyl derivatives along with zearalenone. Pathogenicity tests demonstrated that all of the F. vorosii isolates examined were pathogenic on barley, corn, and rice with variation in aggressiveness. This study is the first report of F. vorosii in Korean cereals, their pathogenicity towards barley and corn, and their ability to produce trichothecenes and zearalenone.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"1 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125725934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.5423/PPJ.OA.03.2016.0065
T. Qiao, Jing Zhang, Shujiang Li, Shan Han, T. Zhu
Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.
{"title":"Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus","authors":"T. Qiao, Jing Zhang, Shujiang Li, Shan Han, T. Zhu","doi":"10.5423/PPJ.OA.03.2016.0065","DOIUrl":"https://doi.org/10.5423/PPJ.OA.03.2016.0065","url":null,"abstract":"Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"32 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131281126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-10-01DOI: 10.5423/PPJ.OA.04.2016.0104
I. Cho, D. Igori, Seungmo Lim, G. Choi, J. Hammond, Hyoun-Sub Lim, J. Moon
Deep sequencing has generated 52 contigs derived from five viruses; Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple green crinkle associated virus (AGCaV), and Apricot latent virus (ApLV) were identified from eight apple samples showing small leaves and/or growth retardation. Nucleotide (nt) sequence identity of the assembled contigs was from 68% to 99% compared to the reference sequences of the five respective viral genomes. Sequences of ASPV and ASGV were the most abundantly represented by the 52 contigs assembled. The presence of the five viruses in the samples was confirmed by RT-PCR using specific primers based on the sequences of each assembled contig. All five viruses were detected in three of the samples, whereas all samples had mixed infections with at least two viruses. The most frequently detected virus was ASPV, followed by ASGV, ApLV, ACLSV, and AGCaV which were withal found in mixed infections in the tested samples. AGCaV was identified in assembled contigs ID 1012480 and 93549, which showed 82% and 78% nt sequence identity with ORF1 of AGCaV isolate Aurora-1. ApLV was identified in three assembled contigs, ID 65587, 1802365, and 116777, which showed 77%, 78%, and 76% nt sequence identity respectively with ORF1 of ApLV isolate LA2. Deep sequencing assay was shown to be a valuable and powerful tool for detection and identification of known and unknown virome in infected apple trees, here identifying ApLV and AGCaV in commercial orchards in Korea for the first time.
{"title":"Deep Sequencing Analysis of Apple Infecting Viruses in Korea","authors":"I. Cho, D. Igori, Seungmo Lim, G. Choi, J. Hammond, Hyoun-Sub Lim, J. Moon","doi":"10.5423/PPJ.OA.04.2016.0104","DOIUrl":"https://doi.org/10.5423/PPJ.OA.04.2016.0104","url":null,"abstract":"Deep sequencing has generated 52 contigs derived from five viruses; Apple chlorotic leaf spot virus (ACLSV), Apple stem grooving virus (ASGV), Apple stem pitting virus (ASPV), Apple green crinkle associated virus (AGCaV), and Apricot latent virus (ApLV) were identified from eight apple samples showing small leaves and/or growth retardation. Nucleotide (nt) sequence identity of the assembled contigs was from 68% to 99% compared to the reference sequences of the five respective viral genomes. Sequences of ASPV and ASGV were the most abundantly represented by the 52 contigs assembled. The presence of the five viruses in the samples was confirmed by RT-PCR using specific primers based on the sequences of each assembled contig. All five viruses were detected in three of the samples, whereas all samples had mixed infections with at least two viruses. The most frequently detected virus was ASPV, followed by ASGV, ApLV, ACLSV, and AGCaV which were withal found in mixed infections in the tested samples. AGCaV was identified in assembled contigs ID 1012480 and 93549, which showed 82% and 78% nt sequence identity with ORF1 of AGCaV isolate Aurora-1. ApLV was identified in three assembled contigs, ID 65587, 1802365, and 116777, which showed 77%, 78%, and 76% nt sequence identity respectively with ORF1 of ApLV isolate LA2. Deep sequencing assay was shown to be a valuable and powerful tool for detection and identification of known and unknown virome in infected apple trees, here identifying ApLV and AGCaV in commercial orchards in Korea for the first time.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133131533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-02-01DOI: 10.5423/PPJ.NT.08.2015.0173
Mi-Hyung Kang, Jang-Kyun Seo, Hoseong Choi, Hongsoo Choi, Kook Hyung Kim
The infectious full-length cDNA clone of zucchini yellow mosaic virus (ZYMV) isolate PA (pZYMV-PA), which was isolated from pumpkin, was constructed by utilizing viral transcription and processing signals to produce infectious in vivo transcripts. Simple rub-inoculation of plasmid DNAs of pZYMV-PA was successful to cause infection of zucchini plants (Cucurbita pepo L.). We further engineered this infectious cDNA clone of ZYMV as a viral vector for systemic expression of heterologous proteins in cucurbits. We successfully expressed two reporter genes including gfp and bar in zucchini plants by simple rub-inoculation of plasmid DNAs of the ZYMV-based expression constructs. Our method of the ZYMV-based viral vector in association with the simple rub-inoculation provides an easy and rapid approach for introduction and evaluation of heterologous genes in cucurbits.
{"title":"Establishment of a Simple and Rapid Gene Delivery System for Cucurbits by Using Engineered of Zucchini yellow mosaic virus","authors":"Mi-Hyung Kang, Jang-Kyun Seo, Hoseong Choi, Hongsoo Choi, Kook Hyung Kim","doi":"10.5423/PPJ.NT.08.2015.0173","DOIUrl":"https://doi.org/10.5423/PPJ.NT.08.2015.0173","url":null,"abstract":"The infectious full-length cDNA clone of zucchini yellow mosaic virus (ZYMV) isolate PA (pZYMV-PA), which was isolated from pumpkin, was constructed by utilizing viral transcription and processing signals to produce infectious in vivo transcripts. Simple rub-inoculation of plasmid DNAs of pZYMV-PA was successful to cause infection of zucchini plants (Cucurbita pepo L.). We further engineered this infectious cDNA clone of ZYMV as a viral vector for systemic expression of heterologous proteins in cucurbits. We successfully expressed two reporter genes including gfp and bar in zucchini plants by simple rub-inoculation of plasmid DNAs of the ZYMV-based expression constructs. Our method of the ZYMV-based viral vector in association with the simple rub-inoculation provides an easy and rapid approach for introduction and evaluation of heterologous genes in cucurbits.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123394288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}