Pub Date : 2017-02-01DOI: 10.5423/PPJ.OA.07.2016.0158
M. Glasa, L. Predajňa, K. Šoltys, N. Sihelská, A. Nagyová, T. Wetzel, S. Sabanadzovic
Grapevine rupestris stem pitting-associated virus (GRSPaV) is a worldwide-distributed pathogen in grapevines with a high genetic variability. Our study revealed differences in the complexity of GRSPaV population in a single host. A single-variant GRSPaV infection was detected from the SK30 grapevine plant. On the contrary, SK704 grapevine was infected by three different GRSPaV variants. Variant-specific RT-PCR detection protocols have been developed in this work to study distribution of the three different variants in the same plant during the season. This study showed their randomized distribution in the infected SK704 grapevine plant. Comparative analysis of fulllength genome sequences of four Slovak GRSPaV isolates determined in this work and 14 database sequences showed that population of the virus cluster into four major phylogenetic lineages. Moreover, our analyses suggest that genetic recombination along with point mutations could play a significant role in shaping evolutionary history of GRSPaV and contributed to its extant genetic diversification.
{"title":"Analysis of Grapevine rupestris stem pitting-associated virus in Slovakia Reveals Differences in Intra-Host Population Diversity and Naturally Occurring Recombination Events","authors":"M. Glasa, L. Predajňa, K. Šoltys, N. Sihelská, A. Nagyová, T. Wetzel, S. Sabanadzovic","doi":"10.5423/PPJ.OA.07.2016.0158","DOIUrl":"https://doi.org/10.5423/PPJ.OA.07.2016.0158","url":null,"abstract":"Grapevine rupestris stem pitting-associated virus (GRSPaV) is a worldwide-distributed pathogen in grapevines with a high genetic variability. Our study revealed differences in the complexity of GRSPaV population in a single host. A single-variant GRSPaV infection was detected from the SK30 grapevine plant. On the contrary, SK704 grapevine was infected by three different GRSPaV variants. Variant-specific RT-PCR detection protocols have been developed in this work to study distribution of the three different variants in the same plant during the season. This study showed their randomized distribution in the infected SK704 grapevine plant. Comparative analysis of fulllength genome sequences of four Slovak GRSPaV isolates determined in this work and 14 database sequences showed that population of the virus cluster into four major phylogenetic lineages. Moreover, our analyses suggest that genetic recombination along with point mutations could play a significant role in shaping evolutionary history of GRSPaV and contributed to its extant genetic diversification.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"286 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131847301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.5423/PPJ.NT.07.2016.0159
E. Choi, Gyoung-Hee Kim, Young Sun Lee, J. Jung, Janghoon Song, Y. Koh
The causal fungus of pear scab, Venturia nashicola, grows slowly and rarely produces conidia on artificial media in the laboratory, but it produced conidia on the Cheongah medium containing Cheongah powder. V. nashicola grew too slow to produce conidia until 15 days after cultivation but produced conidia with 4 × 104 conidia/plate 30 days after cultivation on the Cheongah medium containing 1% Cheongah powder. V. nashicola showed a peak production of conidia with 4.5 × 105 conidia/plate 60 days after cultivation on the carrot medium containing 2% carrot powder, one of the constituents of Cheongah powder. The carrot medium is considered to be the best medium to obtain conidia of V. nashicola in the laboratory until now. This is the first report on the development of a suitable medium for conidia production of V. nashicola, as far as we know.
{"title":"Development of Carrot Medium Suitable for Conidia Production of Venturia nashicola","authors":"E. Choi, Gyoung-Hee Kim, Young Sun Lee, J. Jung, Janghoon Song, Y. Koh","doi":"10.5423/PPJ.NT.07.2016.0159","DOIUrl":"https://doi.org/10.5423/PPJ.NT.07.2016.0159","url":null,"abstract":"The causal fungus of pear scab, Venturia nashicola, grows slowly and rarely produces conidia on artificial media in the laboratory, but it produced conidia on the Cheongah medium containing Cheongah powder. V. nashicola grew too slow to produce conidia until 15 days after cultivation but produced conidia with 4 × 104 conidia/plate 30 days after cultivation on the Cheongah medium containing 1% Cheongah powder. V. nashicola showed a peak production of conidia with 4.5 × 105 conidia/plate 60 days after cultivation on the carrot medium containing 2% carrot powder, one of the constituents of Cheongah powder. The carrot medium is considered to be the best medium to obtain conidia of V. nashicola in the laboratory until now. This is the first report on the development of a suitable medium for conidia production of V. nashicola, as far as we know.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"196 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115809826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.5423/PPJ.OA.06.2016.0146
Min-Jeong Kim, C. Shim, Yong-ki Kim, Sung-Jun Hong, Jong-ho Park, Eun-Jung Han, Seok-Cheol Kim
Seed dehiscence of ginseng (Panax ginseng C. A. Mayer) is affected by moisture, temperature, storage conditions and microbes. Several microbes were isolated from completely dehisced seed coat of ginseng cultivars, Chunpoong and Younpoong at Gumsan, Korea. We investigated the potential of five Talaromyces flavus isolates from the dehiscence of ginseng seed in four traditional stratification facilities. The isolates showed antagonistic activities against fungal plant pathogens, such as Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia nivalis, Botrytis cinerea, and Phytophthora capsici. The dehiscence ratios of ginseng seed increased more than 33% by treatment of T. flavus GG01, GG02, GG04, GG12, and GG23 in comparison to control (28%). Among the treatments, the reformulating treatment of T. flavus isolates GG01 and GG04 showed the highest of stratification ratio of ginseng seed. After 16 weeks, the reformulating treatment of T. flavus isolates GG01 and GG04 significantly enhanced dehiscence of ginseng seed by about 81% compared to the untreated control. The candidate’s treatment of T. flavus GG01 and GG04 showed the highest decreasing rate of 93% in seed coat hardness for 112 days in dehiscence period. The results suggested that the pre-inoculation of T. flavus GG01 and GG04 found to be very effective applications in improving dehiscence and germination of ginseng seed.
人参(Panax ginseng C. A. Mayer)的种子开裂受水分、温度、储存条件和微生物的影响。从韩国锦山春丰和永丰两个人参品种完全开裂的种皮中分离出几种微生物。研究了在四种传统分层设施中从人参种子开裂中分离得到的5株黄Talaromyces flavus菌株的潜力。分离物对植物真菌病原菌有拮抗作用,如破坏圆柱碳菌、尖孢镰刀菌、番茄根丝核菌、nival菌核菌、灰霉病菌和辣椒疫霉。与对照(28%)相比,黄曲霉GG01、GG02、GG04、GG12和GG23处理人参种子的开裂率提高了33%以上。其中,黄曲霉分离株GG01和GG04重新配方处理的人参种子分层率最高。16周后,黄曲霉分离株GG01和GG04与未处理的对照相比,显著提高了人参种子的开裂率约81%。黄曲霉候选处理GG01和GG04在开裂期112 d内种皮硬度下降率最高,达93%。结果表明,预接种黄曲霉GG01和GG04对改善人参种子的开裂和萌发具有很好的效果。
{"title":"Enhancement of Seed Dehiscence by Seed Treatment with Talaromyces flavus GG01 and GG04 in Ginseng (Panax ginseng)","authors":"Min-Jeong Kim, C. Shim, Yong-ki Kim, Sung-Jun Hong, Jong-ho Park, Eun-Jung Han, Seok-Cheol Kim","doi":"10.5423/PPJ.OA.06.2016.0146","DOIUrl":"https://doi.org/10.5423/PPJ.OA.06.2016.0146","url":null,"abstract":"Seed dehiscence of ginseng (Panax ginseng C. A. Mayer) is affected by moisture, temperature, storage conditions and microbes. Several microbes were isolated from completely dehisced seed coat of ginseng cultivars, Chunpoong and Younpoong at Gumsan, Korea. We investigated the potential of five Talaromyces flavus isolates from the dehiscence of ginseng seed in four traditional stratification facilities. The isolates showed antagonistic activities against fungal plant pathogens, such as Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia nivalis, Botrytis cinerea, and Phytophthora capsici. The dehiscence ratios of ginseng seed increased more than 33% by treatment of T. flavus GG01, GG02, GG04, GG12, and GG23 in comparison to control (28%). Among the treatments, the reformulating treatment of T. flavus isolates GG01 and GG04 showed the highest of stratification ratio of ginseng seed. After 16 weeks, the reformulating treatment of T. flavus isolates GG01 and GG04 significantly enhanced dehiscence of ginseng seed by about 81% compared to the untreated control. The candidate’s treatment of T. flavus GG01 and GG04 showed the highest decreasing rate of 93% in seed coat hardness for 112 days in dehiscence period. The results suggested that the pre-inoculation of T. flavus GG01 and GG04 found to be very effective applications in improving dehiscence and germination of ginseng seed.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126509146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.5423/PPJ.OA.06.2016.0143
A. Raza, I. Al-Shahwan, O. Abdalla, M. Al-Saleh, M. Amer
A survey was conducted to determine the status of Lucerne transient streak virus (LTSV) in three high-yielding alfalfa regions in central Saudi Arabia (Riyadh, Qassim, and Hail) during 2014. Three hundred and eight symptomatic alfalfa, and seven Sonchus oleraceus samples were collected. DAS-ELISA indicated that 59 of these samples were positive to LTSV. Two isolates of LTSV from each region were selected for molecular studies. RT-PCR confirmed the presence of LTSV in the selected samples using a specific primer pair. Percentage identity and homology tree comparisons revealed that all Saudi isolates were more closely related to each other but also closely related to the Canadian isolate-JQ782213 (97.1–97.6%) and the New Zealand isolate-U31286 (95.8–97.1%). Comparing Saudi isolates of LTSV with ten other sobemoviruses based on the coat protein gene sequences confirmed the distant relationship between them. Eleven out of fourteen plant species used in host range study were positive to LTSV. This is the first time to document that Trifolium alexandrinum, Nicotiana occidentalis, Chenopodium glaucum, and Lathyrus sativus are new host plant species for LTSV and that N. occidentalis being a good propagative host for it.
{"title":"Lucerne transient streak virus; a Recently Detected Virus Infecting Alfafa (Medicago sativa) in Central Saudi Arabia","authors":"A. Raza, I. Al-Shahwan, O. Abdalla, M. Al-Saleh, M. Amer","doi":"10.5423/PPJ.OA.06.2016.0143","DOIUrl":"https://doi.org/10.5423/PPJ.OA.06.2016.0143","url":null,"abstract":"A survey was conducted to determine the status of Lucerne transient streak virus (LTSV) in three high-yielding alfalfa regions in central Saudi Arabia (Riyadh, Qassim, and Hail) during 2014. Three hundred and eight symptomatic alfalfa, and seven Sonchus oleraceus samples were collected. DAS-ELISA indicated that 59 of these samples were positive to LTSV. Two isolates of LTSV from each region were selected for molecular studies. RT-PCR confirmed the presence of LTSV in the selected samples using a specific primer pair. Percentage identity and homology tree comparisons revealed that all Saudi isolates were more closely related to each other but also closely related to the Canadian isolate-JQ782213 (97.1–97.6%) and the New Zealand isolate-U31286 (95.8–97.1%). Comparing Saudi isolates of LTSV with ten other sobemoviruses based on the coat protein gene sequences confirmed the distant relationship between them. Eleven out of fourteen plant species used in host range study were positive to LTSV. This is the first time to document that Trifolium alexandrinum, Nicotiana occidentalis, Chenopodium glaucum, and Lathyrus sativus are new host plant species for LTSV and that N. occidentalis being a good propagative host for it.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120946534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.5423/PPJ.ER.12.2015.0259
B. Chung, T. Canto, F. Tenllado, K. Choi, J. Joa, J. Ahn, C. Kim, Ki Seck Do
[This corrects the article on p. 321 in vol. 32, PMID: 27493607.].
[这更正了第32卷第321页的文章,PMID: 27493607]。
{"title":"Erratum: The Effects of High Temperature on Infection by Potato virus Y, Potato virus A, and Potato leafroll virus","authors":"B. Chung, T. Canto, F. Tenllado, K. Choi, J. Joa, J. Ahn, C. Kim, Ki Seck Do","doi":"10.5423/PPJ.ER.12.2015.0259","DOIUrl":"https://doi.org/10.5423/PPJ.ER.12.2015.0259","url":null,"abstract":"[This corrects the article on p. 321 in vol. 32, PMID: 27493607.].","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114803515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.5423/PPJ.NT.09.2015.0188
Jeahyuk Choi, E. Park, Seweon Lee, J. Hyun, K. Baek
Citrus canker disease decreases the fruit quality and yield significantly, furthermore, emerging of streptomycin-resistant pathogens threatens the citrus industry seriously because of a lack of proper control agents. Small synthetic antimicrobial peptides (AMPs) could be a promising alternative. Fourteen hexapeptides were selected by using positional scanning of synthetic peptide combinatorial libraries. Each hexapeptide showed different antimicrobial spectrum against Bacillus, Pseudomonas, Xanthomonas, and Candida species. Intriguingly, BHC10 showed bactericidal activity exclusively on Xanthomonas citri subsp. citri (Xcc), while BHC7 was none-active exclusively against two Pseudomonas spp. at concentration of 100 μg/ml suggesting potential selectivity constrained in hexapeptide frame. Three hexapeptides, BHC02, 06 and 11, showed bactericidal activities against various Xcc strains at concentration of 10 μg/ml. When they were co-infiltrated with pathogens into citrus leaves the disease progress was suppressed significantly. Further study would be needed to confirm the actual disease control capacity of the selected hexapeptides.
{"title":"Selection of Small Synthetic Antimicrobial Peptides Inhibiting Xanthomonas citri subsp. citri Causing Citrus Canker","authors":"Jeahyuk Choi, E. Park, Seweon Lee, J. Hyun, K. Baek","doi":"10.5423/PPJ.NT.09.2015.0188","DOIUrl":"https://doi.org/10.5423/PPJ.NT.09.2015.0188","url":null,"abstract":"Citrus canker disease decreases the fruit quality and yield significantly, furthermore, emerging of streptomycin-resistant pathogens threatens the citrus industry seriously because of a lack of proper control agents. Small synthetic antimicrobial peptides (AMPs) could be a promising alternative. Fourteen hexapeptides were selected by using positional scanning of synthetic peptide combinatorial libraries. Each hexapeptide showed different antimicrobial spectrum against Bacillus, Pseudomonas, Xanthomonas, and Candida species. Intriguingly, BHC10 showed bactericidal activity exclusively on Xanthomonas citri subsp. citri (Xcc), while BHC7 was none-active exclusively against two Pseudomonas spp. at concentration of 100 μg/ml suggesting potential selectivity constrained in hexapeptide frame. Three hexapeptides, BHC02, 06 and 11, showed bactericidal activities against various Xcc strains at concentration of 10 μg/ml. When they were co-infiltrated with pathogens into citrus leaves the disease progress was suppressed significantly. Further study would be needed to confirm the actual disease control capacity of the selected hexapeptides.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125597696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.5423/PPJ.NT.06.2016.0145
Eunji Kim, H. Lee, Young Ho Kim
Fungicide-resistant Alternaria alternata impede the practical control of the Alternaria diseases in crop fields. This study aimed to investigate cytological fungicide resistance mechanisms of A. alternata against dicarboximide fungicide iprodione. A. alternata isolated from cactus brown spot was cultured on potato-dextrose agar (PDA) with or without iprodione, and the fungal cultures with different growth characteristics from no, initial and full growth were observed by light and electron microscopy. Mycelia began to grow from one day after incubation (DAI) and continued to be in full growth (control-growth, Con-G) on PDA without fungicide, while on PDA with iprodione, no fungal growth (iprodione-no growth, Ipr-N) occurred for the first 3 DAI, but once the initial growth (iprodione-initial growth, Ipr-I) began at 4–5 DAI, the colonies grew and expanded continuously to be in full growth (iprodione-growth, Ipr-G), suggesting Ipr-I may be a turning moment of the morphogenetic changes resisting fungicidal toxicity. Con-G formed multicellular conidia with cell walls and septa and intact dense cytoplasm. In Ipr-N, fungal sporulation was inhibited by forming mostly undeveloped unicellular conidia with degraded and necrotic cytoplasm. However, in Ipr-I, conspicuous cellular changes occurred during sporulation by forming multicellular conidia with double layered (thickened) cell walls and accumulation of proliferated lipid bodies in the conidial cytoplasm, which may inhibit the penetration of the fungicide into conidial cells, reducing fungicide-associated toxicity, and may be utilized as energy and nutritional sources, respectively, for the further fungal growth to form mature colonies as in Ipr-G that formed multicellular conidia with cell walls and intact cytoplasm with lipid bodies as in Con-G.
{"title":"Morphogenetic Alterations of Alternaria alternata Exposed to Dicarboximide Fungicide, Iprodione","authors":"Eunji Kim, H. Lee, Young Ho Kim","doi":"10.5423/PPJ.NT.06.2016.0145","DOIUrl":"https://doi.org/10.5423/PPJ.NT.06.2016.0145","url":null,"abstract":"Fungicide-resistant Alternaria alternata impede the practical control of the Alternaria diseases in crop fields. This study aimed to investigate cytological fungicide resistance mechanisms of A. alternata against dicarboximide fungicide iprodione. A. alternata isolated from cactus brown spot was cultured on potato-dextrose agar (PDA) with or without iprodione, and the fungal cultures with different growth characteristics from no, initial and full growth were observed by light and electron microscopy. Mycelia began to grow from one day after incubation (DAI) and continued to be in full growth (control-growth, Con-G) on PDA without fungicide, while on PDA with iprodione, no fungal growth (iprodione-no growth, Ipr-N) occurred for the first 3 DAI, but once the initial growth (iprodione-initial growth, Ipr-I) began at 4–5 DAI, the colonies grew and expanded continuously to be in full growth (iprodione-growth, Ipr-G), suggesting Ipr-I may be a turning moment of the morphogenetic changes resisting fungicidal toxicity. Con-G formed multicellular conidia with cell walls and septa and intact dense cytoplasm. In Ipr-N, fungal sporulation was inhibited by forming mostly undeveloped unicellular conidia with degraded and necrotic cytoplasm. However, in Ipr-I, conspicuous cellular changes occurred during sporulation by forming multicellular conidia with double layered (thickened) cell walls and accumulation of proliferated lipid bodies in the conidial cytoplasm, which may inhibit the penetration of the fungicide into conidial cells, reducing fungicide-associated toxicity, and may be utilized as energy and nutritional sources, respectively, for the further fungal growth to form mature colonies as in Ipr-G that formed multicellular conidia with cell walls and intact cytoplasm with lipid bodies as in Con-G.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"225 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130754362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.5423/PPJ.NT.05.2016.0132
K. Furuta, S. Nagashima, T. Inukai, C. Masuta
One of the major problems in strawberry production is difficulty in diagnosis of anthracnose caused by Colletotrichum acutatum or Glomerella cingulata in latent infection stage. We here developed a diagnostic tool for the latent infection consisting of initial culturing of fungi, DNA extraction, synthesis of PCR-amplified probes and microtube hybridization (MTH) using a macroarray. The initial culturing step is convenient to lure the fungi out of the plant tissues, and to extract PCR-inhibitor-free DNA directly from fungal hyphae. For specific detection of the fungi, PCR primers were designed to amplify the fungal MAT1-2 gene. The subsequent MTH step using the PCR products as probes can replace the laborious electrophoresis step providing us sequence information and high-throughput screening. Using this method, we have conducted a survey for a few thousands nursery plants every year for three consecutive years, and finally succeeded in eliminating latent infection in the third year of challenge.
{"title":"Construction of a System for the Strawberry Nursery Production towards Elimination of Latent Infection of Anthracnose Fungi by a Combination of PCR and Microtube Hybridization","authors":"K. Furuta, S. Nagashima, T. Inukai, C. Masuta","doi":"10.5423/PPJ.NT.05.2016.0132","DOIUrl":"https://doi.org/10.5423/PPJ.NT.05.2016.0132","url":null,"abstract":"One of the major problems in strawberry production is difficulty in diagnosis of anthracnose caused by Colletotrichum acutatum or Glomerella cingulata in latent infection stage. We here developed a diagnostic tool for the latent infection consisting of initial culturing of fungi, DNA extraction, synthesis of PCR-amplified probes and microtube hybridization (MTH) using a macroarray. The initial culturing step is convenient to lure the fungi out of the plant tissues, and to extract PCR-inhibitor-free DNA directly from fungal hyphae. For specific detection of the fungi, PCR primers were designed to amplify the fungal MAT1-2 gene. The subsequent MTH step using the PCR products as probes can replace the laborious electrophoresis step providing us sequence information and high-throughput screening. Using this method, we have conducted a survey for a few thousands nursery plants every year for three consecutive years, and finally succeeded in eliminating latent infection in the third year of challenge.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128170197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2017-02-01DOI: 10.5423/PPJ.OA.07.2016.0155
Eunji Kim, Y. Seo, Yong Su Kim, Yong-Keun Park, Young Ho Kim
This study was conducted to examine infectivity (penetration and gall and egg-mass formations) of the root-knot nematodes, Meloidogyne incognita and M. hapla, on carrots grown in soil conditions of 5 different soil textures consisting of bed-soil (b) and sand (s) mixtures (b-s mixtures) at the ratios of 10:0, 7:3, 5:5, 3:7, and 0:10. For M. incognita, the nematode penetration rates in b-s of 0:10 (100% sand) were significantly higher than in the other b-s mixtures, more greatly at 2 and 5 days after inoculation than at 10 DAI, while no significant differences in the penetration rates were mostly shown for M. hapla at the above DAI. However, for both nematodes, gall and egg-mass formations were remarkably increased in the b-s mixture of 0:10, compared to the other b-s mixtures, which is coincided with the general aspects of severe nematode infestations in sandy soils. This suggests the increased gall and egg-mass formations of M. incognita should be derived from the increased penetration rates in the sandy soil conditions, which provide a sufficient aeration due to coarse soil nature for the nematodes, leading to their mobility increased for the enhanced root penetration. For M. hapla, it is suggested that the sandy soil conditions affect positively on the healthy plant growth with little accumulation of the inhibitory materials and sufficient aeration, enhancing the nematode growth and feeding activities. All of these aspects provide information reliable for the development screening techniques efficient for the evaluation of the nematode resistance in the breeding programs.
{"title":"Effects of Soil Textures on Infectivity of Root-Knot Nematodes on Carrot","authors":"Eunji Kim, Y. Seo, Yong Su Kim, Yong-Keun Park, Young Ho Kim","doi":"10.5423/PPJ.OA.07.2016.0155","DOIUrl":"https://doi.org/10.5423/PPJ.OA.07.2016.0155","url":null,"abstract":"This study was conducted to examine infectivity (penetration and gall and egg-mass formations) of the root-knot nematodes, Meloidogyne incognita and M. hapla, on carrots grown in soil conditions of 5 different soil textures consisting of bed-soil (b) and sand (s) mixtures (b-s mixtures) at the ratios of 10:0, 7:3, 5:5, 3:7, and 0:10. For M. incognita, the nematode penetration rates in b-s of 0:10 (100% sand) were significantly higher than in the other b-s mixtures, more greatly at 2 and 5 days after inoculation than at 10 DAI, while no significant differences in the penetration rates were mostly shown for M. hapla at the above DAI. However, for both nematodes, gall and egg-mass formations were remarkably increased in the b-s mixture of 0:10, compared to the other b-s mixtures, which is coincided with the general aspects of severe nematode infestations in sandy soils. This suggests the increased gall and egg-mass formations of M. incognita should be derived from the increased penetration rates in the sandy soil conditions, which provide a sufficient aeration due to coarse soil nature for the nematodes, leading to their mobility increased for the enhanced root penetration. For M. hapla, it is suggested that the sandy soil conditions affect positively on the healthy plant growth with little accumulation of the inhibitory materials and sufficient aeration, enhancing the nematode growth and feeding activities. All of these aspects provide information reliable for the development screening techniques efficient for the evaluation of the nematode resistance in the breeding programs.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127140885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2016-12-01DOI: 10.5423/PPJ.NT.05.2016.0118
I. Kang, Mi-Hyung Kang, T. Noh, H. Shim, D. Shin, Su-Jin Heu
Burkholderia glumae (bacterial grain rot), Xanthomonas oryzae pv. oryzae (bacterial leaf blight), and Acidovorax avenae subsp. avenae (bacterial brown stripe) are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae, and transposase A gene sequence for X. oryzae pv. oryzae, three sets of primers had been designed to produce 402 bp for B. glumae, 490 bp for X. oryzae, and 290 bp for A. avenae subsp. avenae with the 63°C as an optimum annealing temperature. Samples collected from naturally infected fields were detected with two bacteria, B. glumae and A. avenae subsp. avenae but X. oryzae pv. oryzae was not detected. This assay can be used to identify pathogens directly from infected seeds, and will be an effective tool for the identification of the three pathogens in rice plants.
{"title":"Simultaneous Detection of Three Bacterial Seed-Borne Diseases in Rice Using Multiplex Polymerase Chain Reaction","authors":"I. Kang, Mi-Hyung Kang, T. Noh, H. Shim, D. Shin, Su-Jin Heu","doi":"10.5423/PPJ.NT.05.2016.0118","DOIUrl":"https://doi.org/10.5423/PPJ.NT.05.2016.0118","url":null,"abstract":"Burkholderia glumae (bacterial grain rot), Xanthomonas oryzae pv. oryzae (bacterial leaf blight), and Acidovorax avenae subsp. avenae (bacterial brown stripe) are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae, and transposase A gene sequence for X. oryzae pv. oryzae, three sets of primers had been designed to produce 402 bp for B. glumae, 490 bp for X. oryzae, and 290 bp for A. avenae subsp. avenae with the 63°C as an optimum annealing temperature. Samples collected from naturally infected fields were detected with two bacteria, B. glumae and A. avenae subsp. avenae but X. oryzae pv. oryzae was not detected. This assay can be used to identify pathogens directly from infected seeds, and will be an effective tool for the identification of the three pathogens in rice plants.","PeriodicalId":101515,"journal":{"name":"The Plant Pathology Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126657158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}