A novel bis-triazolyl bridged β-cyclodextrin was first synthesized by the Click reaction between azido-β-cyclodextrin and 1,6-heptadiyne. Then it was bonded onto silica gel to obtain a bis-triazolyl bridged β-cyclodextrin-based chiral stationary phase (BCDP). After structure characterization, the HPLC performance of BCDP was systematically evaluated by using different types of compounds as probes. The results showed that BCDP could well separate 18 kinds of achiral aromatic compounds (homologues, positional isomers, etc.) and 35 kinds of chiral drugs or pesticides, such as triazoles (Rs = 1.33–3.15), flavanones (Rs = 1.49–2.62), dansyl amino acids (Rs = 0.96–1.99), and β-blocker drugs (Rs = 0.68–2.78). BCDP could separate a wider range of compounds (53 kinds); especially, some chiral substance pairs that were difficult to be resolved on the ordinary cyclodextrin CSPs, including triazoles containing two chiral carbons (triadimenol, bitertanol, metconazole, and triticonazole), strongly ionized amino acids (acidic Asp, alkalic Arg, and polar Thr) and β-blockers with bulky groups (carvedilol, propranolol, and pindolol). Obviously, the unique synergistic inclusion effect of bridged cyclodextrin with double cavities and the bis-triazole bridging group could provide multiple action sites, such as hydrogen bonding, π-π stacking and acid–base action sites, thus improving its chiral chromatographic performance.
{"title":"Preparation of a bis-triazolyl bridged β-cyclodextrin stationary phase and its application for enantioseparation of chiral compounds by HPLC","authors":"Qingli Zeng, Zhiqin Huang, Dan Li, Laisheng Li","doi":"10.1002/chir.23644","DOIUrl":"10.1002/chir.23644","url":null,"abstract":"<p>A novel <i>bis</i>-triazolyl bridged β-cyclodextrin was first synthesized by the Click reaction between azido-β-cyclodextrin and 1,6-heptadiyne. Then it was bonded onto silica gel to obtain a <i>bis</i>-triazolyl bridged β-cyclodextrin-based chiral stationary phase (BCDP). After structure characterization, the HPLC performance of BCDP was systematically evaluated by using different types of compounds as probes. The results showed that BCDP could well separate 18 kinds of achiral aromatic compounds (homologues, positional isomers, etc.) and 35 kinds of chiral drugs or pesticides, such as triazoles (<i>R</i>s = 1.33–3.15), flavanones (<i>R</i>s = 1.49–2.62), dansyl amino acids (<i>R</i>s = 0.96–1.99), and β-blocker drugs (<i>R</i>s = 0.68–2.78). BCDP could separate a wider range of compounds (53 kinds); especially, some chiral substance pairs that were difficult to be resolved on the ordinary cyclodextrin CSPs, including triazoles containing two chiral carbons (triadimenol, bitertanol, metconazole, and triticonazole), strongly ionized amino acids (acidic Asp, alkalic Arg, and polar Thr) and β-blockers with bulky groups (carvedilol, propranolol, and pindolol). Obviously, the unique synergistic inclusion effect of bridged cyclodextrin with double cavities and the <i>bis</i>-triazole bridging group could provide multiple action sites, such as hydrogen bonding, π-π stacking and acid–base action sites, thus improving its chiral chromatographic performance.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martin Paškan, Kristýna Dobšíková, Martin Kuchař, Vladimír Setnička, Michal Kohout
The emergence of new synthetic cathinones continues to be a matter of public health concern. In fact, already known products (drugs) are being rapidly replaced by new structurally related alternatives, whereby modifications in the basic cathinone structure are used by manufacturers to circumvent the legislation. On the other hand, some derivatives of synthetic cathinones represent important pharmaceuticals with antidepressant properties. In the search for pharmaceutically relevant analogs, the main goal of the present study was to design and characterize novel cyclic α-tetralone-based derivatives of synthetic cathinones. We synthesized a series of derivatives and verified their chemical structure. Subsequently, chiral separation has been accomplished by high-performance liquid chromatography (HPLC) equipped with a circular dichroism (CD) detector, which directly provided CD spectra of the enantiomers of the analyzed substances at 252 nm. Using density functional theory calculations, we have obtained stable conformers of selected enantiomers in solution and their relative abundances, which we used to simulate their spectra. The experimental and calculated data have been used to assign the absolute configuration of six as-yet unknown synthetic cathinones.
新合成卡西酮的出现仍然是一个令人关切的公共卫生问题。事实上,已有的已知产品(药物)正迅速被结构相关的新替代品所取代,生产商通过改变卡西酮的基本结构来规避立法。另一方面,合成卡西酮的某些衍生物是具有抗抑郁特性的重要药物。为了寻找具有药用价值的类似物,本研究的主要目标是设计和表征合成卡西酮的新型环状α-四氢萘酮衍生物。我们合成了一系列衍生物,并验证了它们的化学结构。随后,我们利用配备了圆二色性(CD)检测器的高效液相色谱法(HPLC)完成了手性分离,在 252 纳米波长处直接获得了被分析物质对映体的 CD 光谱。通过密度泛函理论计算,我们获得了所选对映体在溶液中的稳定构象及其相对丰度,并以此模拟了它们的光谱。实验数据和计算数据被用来确定六种尚未知晓的合成卡西酮的绝对构型。
{"title":"Synthesis and absolute configuration of cyclic synthetic cathinones derived from α-tetralone","authors":"Martin Paškan, Kristýna Dobšíková, Martin Kuchař, Vladimír Setnička, Michal Kohout","doi":"10.1002/chir.23646","DOIUrl":"10.1002/chir.23646","url":null,"abstract":"<p>The emergence of new synthetic cathinones continues to be a matter of public health concern. In fact, already known products (drugs) are being rapidly replaced by new structurally related alternatives, whereby modifications in the basic cathinone structure are used by manufacturers to circumvent the legislation. On the other hand, some derivatives of synthetic cathinones represent important pharmaceuticals with antidepressant properties. In the search for pharmaceutically relevant analogs, the main goal of the present study was to design and characterize novel cyclic α-tetralone-based derivatives of synthetic cathinones. We synthesized a series of derivatives and verified their chemical structure. Subsequently, chiral separation has been accomplished by high-performance liquid chromatography (HPLC) equipped with a circular dichroism (CD) detector, which directly provided CD spectra of the enantiomers of the analyzed substances at 252 nm. Using density functional theory calculations, we have obtained stable conformers of selected enantiomers in solution and their relative abundances, which we used to simulate their spectra. The experimental and calculated data have been used to assign the absolute configuration of six as-yet unknown synthetic cathinones.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/chir.23646","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We are looking into how well a copolymeric material made of poly (maleic acid–co-4-vinylpyridine) cross-linked with divinylbenzene can separate L-norepinephrine (L-NEP) from (±)-NEP. The initial step in this direction was the synthesis and subsequent analysis of L-NEP-maleimide chiral derivative. A 4-vinylpyridine/divinylbenzene combination was copolymerized with the resultant chiral maleimide. After heating the polymer materials in a high-alkaline environment to breakdown the connecting imide bonds, they were acidified in an HCl solution to eliminate the incorporated L-NEP species. Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope were used to examine the imprinted L-NEP-imprinted materials. The manufactured L-NEP-imprinted materials exhibited selectivity characteristics that were over 11 times greater for L-NEP than D-norepinephrine. The highest capacity observed in Langmuir adsorption studies was 170 mg/g at a pH of 7. After optical separation using a column technique, it was determined that the enantiomeric excess levels of D-norepinephrine and L-NEP in the first feeding and subsequent recovery solutions were 95% and 81%, respectively.
{"title":"Chiral acidic molecularly imprinted polymer for enantio-separation of norepinephrine racemate","authors":"May Abdullah Abomuti","doi":"10.1002/chir.23645","DOIUrl":"https://doi.org/10.1002/chir.23645","url":null,"abstract":"<p>We are looking into how well a copolymeric material made of poly (maleic acid–co-4-vinylpyridine) cross-linked with divinylbenzene can separate L-norepinephrine (L-NEP) from (±)-NEP. The initial step in this direction was the synthesis and subsequent analysis of L-NEP-maleimide chiral derivative. A 4-vinylpyridine/divinylbenzene combination was copolymerized with the resultant chiral maleimide. After heating the polymer materials in a high-alkaline environment to breakdown the connecting imide bonds, they were acidified in an HCl solution to eliminate the incorporated L-NEP species. Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope were used to examine the imprinted L-NEP-imprinted materials. The manufactured L-NEP-imprinted materials exhibited selectivity characteristics that were over 11 times greater for L-NEP than D-norepinephrine. The highest capacity observed in Langmuir adsorption studies was 170 mg/g at a pH of 7. After optical separation using a column technique, it was determined that the enantiomeric excess levels of D-norepinephrine and L-NEP in the first feeding and subsequent recovery solutions were 95% and 81%, respectively.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139700647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnetic circular dichroism (MCD) spectroscopy is a powerful method for evaluating the electronic structure and magnetic and optical properties of molecules. In particular, MCD measurements have been performed on phthalocyanines and porphyrins with various central metal ions, axial ligands, and substituents to elucidate their properties. It is essential to develop a robust high-throughput technique to perform these measurements comprehensively and efficiently. However, MCD spectroscopy requires very high optical quality for each component of the instrument, and even slight cell distortions can impair the baseline flatness. Consequently, when versatility and data quality are important, an optical system designed for a microplate reader is not suitable for the MCD spectrometer. Therefore, in this study, we develop a new magnetic flow-through cell and combine it with an existing CD spectrometer and autosampler to construct a high-throughput system. The effectiveness and performance of this new system are then evaluated. In addition, based on the MCD and absorption spectra of various phthalocyanine complexes, the effects of substituents and solvents on their magnetic and optical properties and the causes of these effects are discussed. The results demonstrate that this system is effective for the evaluation of the physicochemical properties of various phthalocyanine complexes.
磁性圆二色性光谱(MCD)是一种评估分子电子结构、磁性和光学特性的强大方法。特别是对具有各种中心金属离子、轴向配体和取代基的酞菁和卟啉进行了磁圆二色性测量,以阐明它们的性质。开发一种强大的高通量技术来全面有效地进行这些测量至关重要。然而,MCD 光谱法对仪器每个组件的光学质量要求都非常高,即使是轻微的细胞变形也会影响基线平整度。因此,当多功能性和数据质量非常重要时,为微孔板阅读器设计的光学系统并不适用于 MCD 光谱仪。因此,在本研究中,我们开发了一种新型磁流通池,并将其与现有的 CD 光谱仪和自动进样器相结合,构建了一个高通量系统。然后对这一新系统的有效性和性能进行了评估。此外,还根据各种酞菁配合物的 MCD 和吸收光谱,讨论了取代基和溶剂对其磁性和光学性质的影响以及造成这些影响的原因。结果表明,该系统能有效评估各种酞菁配合物的理化性质。
{"title":"Construction of high-throughput magnetic circular dichroism measurement system and its application to research on magnetic and optical properties of phthalocyanine complexes","authors":"Satoko Suzuki, Akio Kaneta, Anas Santria, Kengo Yoshida, Taiji Oyama, Yoshitane Imai, Ken-ichi Akao, Naoto Ishikawa","doi":"10.1002/chir.23648","DOIUrl":"https://doi.org/10.1002/chir.23648","url":null,"abstract":"<p>Magnetic circular dichroism (MCD) spectroscopy is a powerful method for evaluating the electronic structure and magnetic and optical properties of molecules. In particular, MCD measurements have been performed on phthalocyanines and porphyrins with various central metal ions, axial ligands, and substituents to elucidate their properties. It is essential to develop a robust high-throughput technique to perform these measurements comprehensively and efficiently. However, MCD spectroscopy requires very high optical quality for each component of the instrument, and even slight cell distortions can impair the baseline flatness. Consequently, when versatility and data quality are important, an optical system designed for a microplate reader is not suitable for the MCD spectrometer. Therefore, in this study, we develop a new magnetic flow-through cell and combine it with an existing CD spectrometer and autosampler to construct a high-throughput system. The effectiveness and performance of this new system are then evaluated. In addition, based on the MCD and absorption spectra of various phthalocyanine complexes, the effects of substituents and solvents on their magnetic and optical properties and the causes of these effects are discussed. The results demonstrate that this system is effective for the evaluation of the physicochemical properties of various phthalocyanine complexes.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139704759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, lipase-catalyzed resolution of N-acetyl-DL-methionine methyl ester (N-Ac-DL-MetOMe) was evaluated. A lipase from Brucella thiophenivorans was prone to exhibit high activity and excellent enantioselectivity toward N-Ac-DL-MetOMe to produce the key chiral intermediate N-acetyl-L-methionine methyl ester (N-Ac-L-MetOMe). The results showed that the enzymatic reaction was carried out in 100 g/L racemic substrate for 2 h, the conversion reached 51.3%, the enantiomeric excess value N-Ac-L-MetOMe exceeded 99%, and the enantiomeric ratio value >200. Therefore, the lipase from B. thiophenivorans has potential prospects for the resolution of N-Ac-DL-MetOMe to produce the important intermediate N-Ac-L-MetOMe.
{"title":"Resolution of N-acetyl-DL-methionine methyl ester by the lipase from Brucella thiophenivorans","authors":"Xiaojun Li, Qi Li, Liying Yang, Liqin Huang, Chenchen Peng, Jianyong Zheng","doi":"10.1002/chir.23643","DOIUrl":"10.1002/chir.23643","url":null,"abstract":"<p>In this study, lipase-catalyzed resolution of N-acetyl-DL-methionine methyl ester (N-Ac-DL-MetOMe) was evaluated. A lipase from <i>Brucella thiophenivorans</i> was prone to exhibit high activity and excellent enantioselectivity toward N-Ac-DL-MetOMe to produce the key chiral intermediate N-acetyl-L-methionine methyl ester (N-Ac-L-MetOMe). The results showed that the enzymatic reaction was carried out in 100 g/L racemic substrate for 2 h, the conversion reached 51.3%, the enantiomeric excess value N-Ac-L-MetOMe exceeded 99%, and the enantiomeric ratio value >200. Therefore, the lipase from <i>B. thiophenivorans</i> has potential prospects for the resolution of N-Ac-DL-MetOMe to produce the important intermediate N-Ac-L-MetOMe.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139647789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chiroptical properties of helical polymers do not always align with the sum of the local contributions of their unit cells. This study investigates the discrepancy in optical rotatory strength between local and global structures using a right-handed helical polyacetylene model. The chirality is examined through density functional theory (DFT) calculations. The analysis reveals that, at higher degrees of polymerization, the contribution of chirality from the helical strand generally surpasses the partial chirality from the local structure. The ratio of local contribution to total contribution is deduced within the framework of crystal orbital theory, and a numerical method using Wannier functions is presented for evaluation.
{"title":"Size dependence of optical activities in helical polymers","authors":"Masashi Hatanaka","doi":"10.1002/chir.23641","DOIUrl":"https://doi.org/10.1002/chir.23641","url":null,"abstract":"<p>Chiroptical properties of helical polymers do not always align with the sum of the local contributions of their unit cells. This study investigates the discrepancy in optical rotatory strength between local and global structures using a right-handed helical polyacetylene model. The chirality is examined through density functional theory (DFT) calculations. The analysis reveals that, at higher degrees of polymerization, the contribution of chirality from the helical strand generally surpasses the partial chirality from the local structure. The ratio of local contribution to total contribution is deduced within the framework of crystal orbital theory, and a numerical method using Wannier functions is presented for evaluation.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139655438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
For the synthesis and development of pharmaceuticals, chirality is an important structural component. Chiral heterocyclic compounds have annoyed the interest of synthetic chemists who are working to create useful and efficient techniques for these molecules. As indicated by the expanding number of chiral drugs created in the last two decades, the link between chirality and pharmacological activity has become more important in the pharmaceutical and biopharmaceutical industries. Approximately 65% of currently used drugs are chiral, and many of them are promoted as racemates in many circumstances. There are a growing number of new chiral heterocyclic compounds with important biological properties and intriguing uses in medical chemistry and drug discovery. In this study, we review current breakthroughs in chiral heterocycles and their different physiological activities that have been published in the last year (from 2010 to early 2023). This study focuses on the current trends in the use of chiral heterocycles in drug design and the creation of several powerful and competent candidates for diabetic illnesses.
{"title":"Advancement in chiral heterocycles for the antidiabetic activity","authors":"Tinku Gupta, Dimpy Rani, Lalit Mohan Nainwal, Reena Badhwar","doi":"10.1002/chir.23637","DOIUrl":"10.1002/chir.23637","url":null,"abstract":"<p>For the synthesis and development of pharmaceuticals, chirality is an important structural component. Chiral heterocyclic compounds have annoyed the interest of synthetic chemists who are working to create useful and efficient techniques for these molecules. As indicated by the expanding number of chiral drugs created in the last two decades, the link between chirality and pharmacological activity has become more important in the pharmaceutical and biopharmaceutical industries. Approximately 65% of currently used drugs are chiral, and many of them are promoted as racemates in many circumstances. There are a growing number of new chiral heterocyclic compounds with important biological properties and intriguing uses in medical chemistry and drug discovery. In this study, we review current breakthroughs in chiral heterocycles and their different physiological activities that have been published in the last year (from 2010 to early 2023). This study focuses on the current trends in the use of chiral heterocycles in drug design and the creation of several powerful and competent candidates for diabetic illnesses.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139517705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisa E. Greciano, Alfonso J. Schwalb, Luis Sánchez
Herein, the synthesis of two chiral NPBIs, (S)-1 and (R)-1, is reported and their self-assembling features investigated. The reported NPBIs form chiral supramolecular polymers with a rich dichroic pattern by the π-stacking of the aromatic backbones and the formation of an array of H-bonds between the amide functional groups. Furthermore, the peripheral 3,4,5-trialkoxy benzamide groups can form seven-membered pseudocycles by the intramolecular H-bonding interaction between the NH of the peripheral amides and one of the carbonyls of the imide units thus yielding a kinetically controlled self-assembly process. Unlike achiral NPBI 1, that has been reported to form up to four supramolecular polymorphs, the reported chiral NPBIs form only a J-type aggregated species. The results presented herein reveal how subtle changes exert an enormous influence on the supramolecular polymerization outcome.
{"title":"Effect of chirality in the supramolecular polymerization of N-annulated perylenediimides: Cancelling pathway complexity","authors":"Elisa E. Greciano, Alfonso J. Schwalb, Luis Sánchez","doi":"10.1002/chir.23639","DOIUrl":"https://doi.org/10.1002/chir.23639","url":null,"abstract":"<p>Herein, the synthesis of two chiral NPBIs, <b><i>(S)</i>-1</b> and <b><i>(R)-</i>1</b>, is reported and their self-assembling features investigated. The reported NPBIs form chiral supramolecular polymers with a rich dichroic pattern by the π-stacking of the aromatic backbones and the formation of an array of H-bonds between the amide functional groups. Furthermore, the peripheral 3,4,5-trialkoxy benzamide groups can form seven-membered pseudocycles by the intramolecular H-bonding interaction between the NH of the peripheral amides and one of the carbonyls of the imide units thus yielding a kinetically controlled self-assembly process. Unlike achiral NPBI <b>1</b>, that has been reported to form up to four supramolecular polymorphs, the reported chiral NPBIs form only a J-type aggregated species. The results presented herein reveal how subtle changes exert an enormous influence on the supramolecular polymerization outcome.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/chir.23639","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139550356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Verónica M. Lanaro, Lorena L. Sombra, Jorgelina C. Altamirano, César A. Almeida, Patricia W. Stege
Propranolol is currently considered as an emerging contaminant in water bodies. In this study, R- and S-propranolol were determined in river samples by electrokinetic chromatography (EKC) using nanodiamonds (NDs) and human serum albumin (HSA) as a pseudo-stationary phase in order to achieve enantioseparation. Previously, river samples were preconcentrated using a column filled with Amberlite® IR-120 and Dowex® 50WX8 resins. The setting up of influential factors such as temperature, voltage, pH, and HSA and NDs concentration is accurately described along this manuscript. A multivariate study and optimization was carried out to obtain the enantioseparation of propranolol (Rs = 2.91), which was reached under the following experimental conditions: voltage of 16 kV, temperature of 16°C, phosphate buffer pH 9.5, NDs of 0.20%, and HSA of 15 μmol l−1. The recoveries of analytes under optimal conditions were higher than 98%. The limits of detection were 0.85 μg l−1 for R- and S-propranolol. The method was applied to real samples, and the obtained results in three different water sources studied were 1.02, 0.59, and 0.30 μg l−1 for the R-enantiomer and 0.99, 0.54, and 0.28 μg l−1 for the S-enantiomer. The accuracy of the proposed methodology (including bias and precision) has allowed us to propose it as a successful tool for the control of water quality.
{"title":"Chiral separation of propranolol by electrokinetic chromatography using nanodiamonds and human serum albumin as a pseudo-stationary phase in river water","authors":"Verónica M. Lanaro, Lorena L. Sombra, Jorgelina C. Altamirano, César A. Almeida, Patricia W. Stege","doi":"10.1002/chir.23640","DOIUrl":"https://doi.org/10.1002/chir.23640","url":null,"abstract":"<p>Propranolol is currently considered as an emerging contaminant in water bodies. In this study, <i>R</i>- and <i>S</i>-propranolol were determined in river samples by electrokinetic chromatography (EKC) using nanodiamonds (NDs) and human serum albumin (HSA) as a pseudo-stationary phase in order to achieve enantioseparation. Previously, river samples were preconcentrated using a column filled with Amberlite® IR-120 and Dowex® 50WX8 resins. The setting up of influential factors such as temperature, voltage, pH, and HSA and NDs concentration is accurately described along this manuscript. A multivariate study and optimization was carried out to obtain the enantioseparation of propranolol (Rs = 2.91), which was reached under the following experimental conditions: voltage of 16 kV, temperature of 16°C, phosphate buffer pH 9.5, NDs of 0.20%, and HSA of 15 μmol l<sup>−1</sup>. The recoveries of analytes under optimal conditions were higher than 98%. The limits of detection were 0.85 μg l<sup>−1</sup> for <i>R</i>- and <i>S</i>-propranolol. The method was applied to real samples, and the obtained results in three different water sources studied were 1.02, 0.59, and 0.30 μg l<sup>−1</sup> for the <i>R-</i>enantiomer and 0.99, 0.54, and 0.28 μg l<sup>−1</sup> for the <i>S-</i>enantiomer. The accuracy of the proposed methodology (including bias and precision) has allowed us to propose it as a successful tool for the control of water quality.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jan Voigt, Mohammed Hasan, Christian Wäckerlin, Anil V. Karnik, Karl-Heinz Ernst
Helicenes represent an important class of chiral organic material with promising optoelectronic properties. Hence, functionalization of surfaces with helicenes is a key step toward new organic materials devices. The deposition of a heterohelicene containing two furano groups and two hydroxyl groups onto copper(111) surface in ultrahigh vacuum leads to different adsorbate modifications. At low coverage and low temperature, the molecules tend to lie on the surface in order to maximize van der Waals contact with the substrate. Thermal treatment leads to deprotonation of the hydroxyl groups and in part into a reorientation from lying into a standing adsorbate mode.
{"title":"Switching the on-surface orientation of oxygen-functionalized helicene","authors":"Jan Voigt, Mohammed Hasan, Christian Wäckerlin, Anil V. Karnik, Karl-Heinz Ernst","doi":"10.1002/chir.23642","DOIUrl":"https://doi.org/10.1002/chir.23642","url":null,"abstract":"<p>Helicenes represent an important class of chiral organic material with promising optoelectronic properties. Hence, functionalization of surfaces with helicenes is a key step toward new organic materials devices. The deposition of a heterohelicene containing two furano groups and two hydroxyl groups onto copper(111) surface in ultrahigh vacuum leads to different adsorbate modifications. At low coverage and low temperature, the molecules tend to lie on the surface in order to maximize van der Waals contact with the substrate. Thermal treatment leads to deprotonation of the hydroxyl groups and in part into a reorientation from lying into a standing adsorbate mode.</p>","PeriodicalId":10170,"journal":{"name":"Chirality","volume":"36 2","pages":""},"PeriodicalIF":2.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/chir.23642","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139494473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}