Pub Date : 2002-07-12DOI: 10.1161/01.RES.0000024106.81401.95
T. Paravicini, L. Gulluyan, G. Dusting, G. Drummond
Reactive oxygen species including superoxide and hydrogen peroxide are important mediators in atherogenesis. We investigated the enzymatic source of vascular superoxide and its role in endothelium-dependent vasorelaxation during neointima formation. Silastic collars positioned around carotid arteries of rabbits for 14 days induced neointimal thickening. Using lucigenin-enhanced chemiluminescence, superoxide production was detectable in collared artery sections, but not in controls, only after inactivation of endogenous Cu2+/Zn2+-superoxide dismutase (Cu2+/Zn2+-SOD) with diethyldithiocarbamate (DETCA). Dihydroethidium staining indicated that endothelium and adventitia were the major sites of superoxide generation. Superoxide production in DETCA-treated collared arteries was enhanced further by NADPH and was inhibited by diphenyleneiodonium, suggesting NADPH oxidase was the source of the radical in collared arteries. Moreover, real-time PCR demonstrated 11-fold higher expression of the gp91phox subunit of NADPH oxidase in collared arteries than in controls. In vascular reactivity studies, endothelium-dependent vasorelaxation to acetylcholine did not differ between collared and control sections. However, treatment with DETCA reduced relaxations to acetylcholine in collared rings, but not in controls. NADPH further reduced relaxations to acetylcholine in DETCA-treated collared sections, but not in controls. In DETCA/NADPH-treated collared rings, sensitivity to nitroprusside, in contrast to acetylcholine, exceeded that of controls. Moreover, further treatment of such rings with exogenous Cu2+/Zn2+-SOD restored acetylcholine relaxations without altering nitroprusside responses. Thus, early neointimal lesions induced by periarterial collars are associated with elevated gp91phox expression and increased NAPDH-oxidase-dependent superoxide production in endothelium and adventitia. However, endothelium-dependent vasorelaxation is largely preserved due to the actions of Cu2+/Zn2+-SOD and increased smooth muscle sensitivity to nitric oxide.
{"title":"Increased NADPH Oxidase Activity, gp91phox Expression, and Endothelium-Dependent Vasorelaxation During Neointima Formation in Rabbits","authors":"T. Paravicini, L. Gulluyan, G. Dusting, G. Drummond","doi":"10.1161/01.RES.0000024106.81401.95","DOIUrl":"https://doi.org/10.1161/01.RES.0000024106.81401.95","url":null,"abstract":"Reactive oxygen species including superoxide and hydrogen peroxide are important mediators in atherogenesis. We investigated the enzymatic source of vascular superoxide and its role in endothelium-dependent vasorelaxation during neointima formation. Silastic collars positioned around carotid arteries of rabbits for 14 days induced neointimal thickening. Using lucigenin-enhanced chemiluminescence, superoxide production was detectable in collared artery sections, but not in controls, only after inactivation of endogenous Cu2+/Zn2+-superoxide dismutase (Cu2+/Zn2+-SOD) with diethyldithiocarbamate (DETCA). Dihydroethidium staining indicated that endothelium and adventitia were the major sites of superoxide generation. Superoxide production in DETCA-treated collared arteries was enhanced further by NADPH and was inhibited by diphenyleneiodonium, suggesting NADPH oxidase was the source of the radical in collared arteries. Moreover, real-time PCR demonstrated 11-fold higher expression of the gp91phox subunit of NADPH oxidase in collared arteries than in controls. In vascular reactivity studies, endothelium-dependent vasorelaxation to acetylcholine did not differ between collared and control sections. However, treatment with DETCA reduced relaxations to acetylcholine in collared rings, but not in controls. NADPH further reduced relaxations to acetylcholine in DETCA-treated collared sections, but not in controls. In DETCA/NADPH-treated collared rings, sensitivity to nitroprusside, in contrast to acetylcholine, exceeded that of controls. Moreover, further treatment of such rings with exogenous Cu2+/Zn2+-SOD restored acetylcholine relaxations without altering nitroprusside responses. Thus, early neointimal lesions induced by periarterial collars are associated with elevated gp91phox expression and increased NAPDH-oxidase-dependent superoxide production in endothelium and adventitia. However, endothelium-dependent vasorelaxation is largely preserved due to the actions of Cu2+/Zn2+-SOD and increased smooth muscle sensitivity to nitric oxide.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"63 1","pages":"54-61"},"PeriodicalIF":0.0,"publicationDate":"2002-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88101526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-06-28DOI: 10.1161/01.RES.0000024411.22110.AA
T. Hung, Jeremy N. Skepper, D. Charnock-Jones, G. Burton
Preeclampsia is a severe disorder of human pregnancy characterized by generalized activation of maternal endothelial cells. Oxidative stress of the placenta is considered a key intermediary step, precipitating deportation of apoptotic fragments into the maternal circulation, but the cause remains unknown. We hypothesize that intermittent placental perfusion, secondary to deficient trophoblast invasion of the endometrial arteries, leads to an ischemia-reperfusion–type insult. We therefore tested whether hypoxia-reoxygenation (H/R) in vitro stimulates apoptosis in human placental tissues compared with controls kept hypoxic or normoxic throughout. After H/R, release of cytochrome c from mitochondria was significantly increased and was associated with intense immunolabeling for active caspase 3 in the syncytiotrophoblast and fetal endothelial cells. There was also increased labeling of syncytiotrophoblastic nuclei for cleaved poly (ADP-ribose) polymerase (PARP), and higher cytosolic concentrations of cleaved PARP fragment were detected by Western blot. Syncytiotrophoblastic nuclei displayed increased chromatin condensation, and a significantly greater percentage was TUNEL positive. These changes were accompanied by increased lactate dehydrogenase release into the medium. Preadministration of the free radical scavenger, desferrioxamine, reduced cytochrome c release and the TUNEL-positive index, suggesting generation of hydroxyl radicals mediates these processes. By contrast, hypoxia alone caused a smaller increase in the TUNEL-positive index, and the majority of syncytiotrophoblastic nuclei displayed karyolysis, whereas normoxic controls remained euchromatic. We conclude that H/R stimulates apoptotic changes within the syncytiotrophoblast, whereas hypoxia principally induces necrosis. The quality of placental perfusion may therefore be a more important factor in the pathophysiology of preeclampsia than the absolute quantity.
{"title":"Hypoxia-Reoxygenation: A Potent Inducer of Apoptotic Changes in the Human Placenta and Possible Etiological Factor in Preeclampsia","authors":"T. Hung, Jeremy N. Skepper, D. Charnock-Jones, G. Burton","doi":"10.1161/01.RES.0000024411.22110.AA","DOIUrl":"https://doi.org/10.1161/01.RES.0000024411.22110.AA","url":null,"abstract":"Preeclampsia is a severe disorder of human pregnancy characterized by generalized activation of maternal endothelial cells. Oxidative stress of the placenta is considered a key intermediary step, precipitating deportation of apoptotic fragments into the maternal circulation, but the cause remains unknown. We hypothesize that intermittent placental perfusion, secondary to deficient trophoblast invasion of the endometrial arteries, leads to an ischemia-reperfusion–type insult. We therefore tested whether hypoxia-reoxygenation (H/R) in vitro stimulates apoptosis in human placental tissues compared with controls kept hypoxic or normoxic throughout. After H/R, release of cytochrome c from mitochondria was significantly increased and was associated with intense immunolabeling for active caspase 3 in the syncytiotrophoblast and fetal endothelial cells. There was also increased labeling of syncytiotrophoblastic nuclei for cleaved poly (ADP-ribose) polymerase (PARP), and higher cytosolic concentrations of cleaved PARP fragment were detected by Western blot. Syncytiotrophoblastic nuclei displayed increased chromatin condensation, and a significantly greater percentage was TUNEL positive. These changes were accompanied by increased lactate dehydrogenase release into the medium. Preadministration of the free radical scavenger, desferrioxamine, reduced cytochrome c release and the TUNEL-positive index, suggesting generation of hydroxyl radicals mediates these processes. By contrast, hypoxia alone caused a smaller increase in the TUNEL-positive index, and the majority of syncytiotrophoblastic nuclei displayed karyolysis, whereas normoxic controls remained euchromatic. We conclude that H/R stimulates apoptotic changes within the syncytiotrophoblast, whereas hypoxia principally induces necrosis. The quality of placental perfusion may therefore be a more important factor in the pathophysiology of preeclampsia than the absolute quantity.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"26 1","pages":"1274-1281"},"PeriodicalIF":0.0,"publicationDate":"2002-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76304352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-06-28DOI: 10.1161/01.RES.0000024691.82864.F0
Katherine Olin-Lewis, Jeana L Benton, J. Rutledge, D. Baskin, T. Wight, A. Chait
Lipoprotein retention in the vascular extracellular matrix (ECM) plays a critical role in atherogenesis. Previous studies demonstrated the presence of apo A-I and E in atherosclerotic lesions, suggesting that HDL may be trapped by the artery wall. We sought to determine mechanisms by which HDL could be bound and retained by the arterial wall, and whether apo E was a principal determinant of this binding. We evaluated in situ accumulation of fluorescently labeled DiI-human HDL±apo E in perfused carotid arteries from apo E–null mice. Apo E was important in mediating HDL binding to the vascular wall, with a 48±16% increase in accumulation of DiI-labeled apo E–containing HDL (HDL3+E) compared with DiI-apo E–free HDL (HDL3−E) (P =0.003). To investigate possible mechanisms responsible for retention, we assessed binding of unlabeled HDL3−E and HDL3+E to ECM generated by cultured arterial smooth muscle cells. Similar to the in situ carotid artery data, HDL3+E bound better to the ECM than did HDL3−E (3-fold lower Ka and 3.5-fold higher Bmax for HDL3+E versus HDL3−E). These differences were eliminated after either neutralization of arginine residues on apo E or digestion of matrix with chondroitin ABC lyase, suggesting that chondroitin and/or dermatan sulfate proteoglycans were responsible for apo E–mediated increased binding. These findings demonstrate that HDL can bind to both intact murine carotid arteries and smooth muscle cell–derived ECM, and that apo E is a principal determinant in mediating the ability of HDL to be trapped and retained via its interaction with ECM proteoglycans.
{"title":"Apolipoprotein E Mediates the Retention of High-Density Lipoproteins by Mouse Carotid Arteries and Cultured Arterial Smooth Muscle Cell Extracellular Matrices","authors":"Katherine Olin-Lewis, Jeana L Benton, J. Rutledge, D. Baskin, T. Wight, A. Chait","doi":"10.1161/01.RES.0000024691.82864.F0","DOIUrl":"https://doi.org/10.1161/01.RES.0000024691.82864.F0","url":null,"abstract":"Lipoprotein retention in the vascular extracellular matrix (ECM) plays a critical role in atherogenesis. Previous studies demonstrated the presence of apo A-I and E in atherosclerotic lesions, suggesting that HDL may be trapped by the artery wall. We sought to determine mechanisms by which HDL could be bound and retained by the arterial wall, and whether apo E was a principal determinant of this binding. We evaluated in situ accumulation of fluorescently labeled DiI-human HDL±apo E in perfused carotid arteries from apo E–null mice. Apo E was important in mediating HDL binding to the vascular wall, with a 48±16% increase in accumulation of DiI-labeled apo E–containing HDL (HDL3+E) compared with DiI-apo E–free HDL (HDL3−E) (P =0.003). To investigate possible mechanisms responsible for retention, we assessed binding of unlabeled HDL3−E and HDL3+E to ECM generated by cultured arterial smooth muscle cells. Similar to the in situ carotid artery data, HDL3+E bound better to the ECM than did HDL3−E (3-fold lower Ka and 3.5-fold higher Bmax for HDL3+E versus HDL3−E). These differences were eliminated after either neutralization of arginine residues on apo E or digestion of matrix with chondroitin ABC lyase, suggesting that chondroitin and/or dermatan sulfate proteoglycans were responsible for apo E–mediated increased binding. These findings demonstrate that HDL can bind to both intact murine carotid arteries and smooth muscle cell–derived ECM, and that apo E is a principal determinant in mediating the ability of HDL to be trapped and retained via its interaction with ECM proteoglycans.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"21 1","pages":"1333-1339"},"PeriodicalIF":0.0,"publicationDate":"2002-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86157387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-06-28DOI: 10.1161/01.RES.0000024690.69379.5C
Huifang M. Zhang, B. Yanagawa, P. Cheung, Honglin Luo, Ji Yuan, D. Chau, Aikun Wang, L. Bohunek, Janet E. Wilson, B. McManus, Decheng Yang
Our previous studies, using differential mRNA display, suggested that the mouse Nip21 gene may be involved in myocarditis development in the coxsackievirus B3 (CVB3)–infected mouse heart. Sequence comparison indicated that the mouse Nip21 gene shares high sequence homology to human Nip2. This human protein is known to interact with both the apoptosis inhibitor Bcl-2 and a homologous protein, the adenovirus E1B 19-kDa protein. Such interactions implicate Nip21 gene in cell death pathways. To study the function of this gene, we have cloned Nip21 from mouse hearts and established a Tet-On doxycycline-inducible HeLa cell line and a cardiomyocyte H9c2 cell line expressing Nip21 to characterize gene function in relation to apoptosis. We demonstrated that Nip21 expression could induce apoptosis via caspase-depended mitochondria activation. To further determine the function of Nip21 in CVB3-induced apoptosis, the Tet-On/Nip21 HeLa cell line was induced by doxycycline followed by CVB3 infection. We found that activation of caspase-3 and cleavage of poly-(ADP-ribose) polymerase occurred 2 hours earlier than in vector-transfected control cells, suggesting that Nip21 expression enhances CVB3-induced apoptosis. We also demonstrated a significant decrease in HeLa cell and H9c2 cell viability. Particularly, as illustrated by viral plaque assay, CVB3 replication was dramatically reduced in Tet-On HeLa cells, due at least in part to the earlier killing of the host cells by Nip21 overexpression.
{"title":"Nip21 Gene Expression Reduces Coxsackievirus B3 Replication by Promoting Apoptotic Cell Death via a Mitochondria-Dependent Pathway","authors":"Huifang M. Zhang, B. Yanagawa, P. Cheung, Honglin Luo, Ji Yuan, D. Chau, Aikun Wang, L. Bohunek, Janet E. Wilson, B. McManus, Decheng Yang","doi":"10.1161/01.RES.0000024690.69379.5C","DOIUrl":"https://doi.org/10.1161/01.RES.0000024690.69379.5C","url":null,"abstract":"Our previous studies, using differential mRNA display, suggested that the mouse Nip21 gene may be involved in myocarditis development in the coxsackievirus B3 (CVB3)–infected mouse heart. Sequence comparison indicated that the mouse Nip21 gene shares high sequence homology to human Nip2. This human protein is known to interact with both the apoptosis inhibitor Bcl-2 and a homologous protein, the adenovirus E1B 19-kDa protein. Such interactions implicate Nip21 gene in cell death pathways. To study the function of this gene, we have cloned Nip21 from mouse hearts and established a Tet-On doxycycline-inducible HeLa cell line and a cardiomyocyte H9c2 cell line expressing Nip21 to characterize gene function in relation to apoptosis. We demonstrated that Nip21 expression could induce apoptosis via caspase-depended mitochondria activation. To further determine the function of Nip21 in CVB3-induced apoptosis, the Tet-On/Nip21 HeLa cell line was induced by doxycycline followed by CVB3 infection. We found that activation of caspase-3 and cleavage of poly-(ADP-ribose) polymerase occurred 2 hours earlier than in vector-transfected control cells, suggesting that Nip21 expression enhances CVB3-induced apoptosis. We also demonstrated a significant decrease in HeLa cell and H9c2 cell viability. Particularly, as illustrated by viral plaque assay, CVB3 replication was dramatically reduced in Tet-On HeLa cells, due at least in part to the earlier killing of the host cells by Nip21 overexpression.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"3 1","pages":"1251-1258"},"PeriodicalIF":0.0,"publicationDate":"2002-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83257149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-06-28DOI: 10.1161/01.RES.0000023200.19316.D5
J. Ahn, R. Morishita, Y. Kaneda, Sang-Jun Lee, K. Kwon, Se-Young Choi, Ki‐Up Lee, J. Park, I. Moon, Jong-Gu Park, M. Yoshizumi, Y. Ouchi, I. Lee
Excessive proliferation of vascular smooth muscle cells (VSMCs) and neointimal formation are critical steps in the pathogenesis of atherosclerosis and restenosis after percutaneous transluminal angioplasty. In this study, we investigated the hypothesis that the activator protein-1 (AP-1) plays an important role in neointimal formation after vascular injury. A circular dumbbell AP-1 decoy oligodeoxynucleotide (CDODN) was developed as a novel therapeutic strategy for restenosis after angioplasty. This CDODN was more stable than the conventional phosphorothioate linear decoy ODN (PSODN) and maintained structural integrity on exposure to exonuclease III or serum. Transfection with AP-1 decoy ODNs strongly inhibited VSMC proliferation and migration, as well as glucose- and serum-induced expression of PCNA and cyclin A genes. Administration of AP-1 decoy ODNs in vivo using the hemagglutinating virus of Japan (HVJ)-liposome method virtually abolished neointimal formation after balloon injury to the rat carotid artery. Compared with PSODN, CDODN was more effective in inhibiting the proliferation of VSMCs in vitro and neointimal formation in vivo. Our results collectively indicate that AP-1 activation is crucial for the mediation of VSMC proliferation in response to vascular injury. Moreover, the use of stable CDODN specific for AP-1 activity in combination with the highly effective HVJ-liposome method provides a novel potential therapeutic strategy for the prevention of restenosis after angioplasty in humans.
{"title":"Inhibitory Effects of Novel AP-1 Decoy Oligodeoxynucleotides on Vascular Smooth Muscle Cell Proliferation In Vitro and Neointimal Formation In Vivo","authors":"J. Ahn, R. Morishita, Y. Kaneda, Sang-Jun Lee, K. Kwon, Se-Young Choi, Ki‐Up Lee, J. Park, I. Moon, Jong-Gu Park, M. Yoshizumi, Y. Ouchi, I. Lee","doi":"10.1161/01.RES.0000023200.19316.D5","DOIUrl":"https://doi.org/10.1161/01.RES.0000023200.19316.D5","url":null,"abstract":"Excessive proliferation of vascular smooth muscle cells (VSMCs) and neointimal formation are critical steps in the pathogenesis of atherosclerosis and restenosis after percutaneous transluminal angioplasty. In this study, we investigated the hypothesis that the activator protein-1 (AP-1) plays an important role in neointimal formation after vascular injury. A circular dumbbell AP-1 decoy oligodeoxynucleotide (CDODN) was developed as a novel therapeutic strategy for restenosis after angioplasty. This CDODN was more stable than the conventional phosphorothioate linear decoy ODN (PSODN) and maintained structural integrity on exposure to exonuclease III or serum. Transfection with AP-1 decoy ODNs strongly inhibited VSMC proliferation and migration, as well as glucose- and serum-induced expression of PCNA and cyclin A genes. Administration of AP-1 decoy ODNs in vivo using the hemagglutinating virus of Japan (HVJ)-liposome method virtually abolished neointimal formation after balloon injury to the rat carotid artery. Compared with PSODN, CDODN was more effective in inhibiting the proliferation of VSMCs in vitro and neointimal formation in vivo. Our results collectively indicate that AP-1 activation is crucial for the mediation of VSMC proliferation in response to vascular injury. Moreover, the use of stable CDODN specific for AP-1 activity in combination with the highly effective HVJ-liposome method provides a novel potential therapeutic strategy for the prevention of restenosis after angioplasty in humans.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"84 1","pages":"1325-1332"},"PeriodicalIF":0.0,"publicationDate":"2002-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90293070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-06-28DOI: 10.1161/01.RES.0000024389.03152.22
W. Pyle, M. C. Hart, J. Cooper, M. Sumandea, P. D. de Tombe, R. Solaro
Actin capping protein (CapZ) binds the barbed ends of actin at sarcomeric Z-lines. In addition to anchoring actin, Z-discs bind protein kinase C (PKC). Although CapZ is crucial for myofibrillogenesis, its role in muscle function and intracellular signaling is unknown. We hypothesized that CapZ downregulation would impair myocardial function and disrupt PKC-myofilament signaling by impairing PKC–Z-disc interaction. To test these hypotheses, we examined transgenic (TG) mice in which cardiac CapZ protein is reduced. Fiber bundles were dissected from papillary muscles and detergent extracted. Some fiber bundles were treated with PKC activators phenylephrine (PHE) or endothelin (ET) before detergent extraction. We simultaneously measured Ca2+-dependent tension and actomyosin MgATPase activity. CapZ downregulation increased myofilament Ca2+ sensitivity without affecting maximum tension or actomyosin MgATPase activity. Maximum tension and actomyosin MgATPase activity were decreased after PHE or ET treatment of wild-type (WT) muscle. Fiber bundles from TG hearts did not respond to PHE or ET. Immunoblot analysis revealed an increase in myofilament-associated PKC-&egr; after PHE or ET exposure of WT preparations. In contrast, myofilament-associated PKC-&egr; was decreased after PHE or ET treatment in TG myocardium. Protein levels of myofilament-associated PKC-&bgr; were decreased in TG ventricle. C-protein and troponin I phosphorylation was increased after PHE or ET treatment in WT and TG hearts. Basal phosphorylation levels of C-protein and troponin I were higher in TG myocardium. These results indicate that downregulation of CapZ, or other changes associated with CapZ downregulation, increases cardiac myofilament Ca2+ sensitivity, inhibits PKC-mediated control of myofilament activation, and decreases myofilament-associated PKC-&bgr;.
肌动蛋白封盖蛋白(CapZ)结合肌动蛋白在肌动蛋白z线上的倒钩端。除了锚定肌动蛋白,z -盘结合蛋白激酶C (PKC)。虽然CapZ对肌纤维形成至关重要,但其在肌肉功能和细胞内信号传导中的作用尚不清楚。我们假设CapZ下调会损害心肌功能,并通过损害pkc - z -椎间盘相互作用破坏pkc -肌丝信号传导。为了验证这些假设,我们检测了心脏CapZ蛋白减少的转基因(TG)小鼠。从乳头肌中剥离纤维束,提取洗涤剂。部分纤维束在去污剂提取前用PKC活化剂苯肾上腺素(phenylephrine, PHE)或内皮素(endothelin, ET)处理。我们同时测量了Ca2+依赖性张力和肌动球蛋白MgATPase活性。CapZ下调可增加肌丝Ca2+敏感性,但不影响最大张力或肌动球蛋白MgATPase活性。野生型(WT)肌肉经PHE或ET处理后,最大张力和肌动球蛋白MgATPase活性降低。来自TG心脏的纤维束对PHE或ET没有反应。免疫印迹分析显示肌丝相关PKC-&egr增加;在PHE或ET暴露WT制剂后。相反,肌丝相关的PKC-&egr;经苯丙氨酸或ET治疗后,TG心肌的血凝素含量降低。肌丝相关PKC-&bgr蛋白水平的研究心室TG降低。在WT和TG心脏中,PHE或ET处理后c蛋白和肌钙蛋白I磷酸化升高。c蛋白和肌钙蛋白I的基础磷酸化水平在TG心肌中较高。这些结果表明,CapZ的下调,或与CapZ下调相关的其他变化,增加心肌肌丝Ca2+敏感性,抑制PKC介导的肌丝激活控制,并降低肌丝相关的PKC-&bgr;
{"title":"Actin Capping Protein: An Essential Element in Protein Kinase Signaling to the Myofilaments","authors":"W. Pyle, M. C. Hart, J. Cooper, M. Sumandea, P. D. de Tombe, R. Solaro","doi":"10.1161/01.RES.0000024389.03152.22","DOIUrl":"https://doi.org/10.1161/01.RES.0000024389.03152.22","url":null,"abstract":"Actin capping protein (CapZ) binds the barbed ends of actin at sarcomeric Z-lines. In addition to anchoring actin, Z-discs bind protein kinase C (PKC). Although CapZ is crucial for myofibrillogenesis, its role in muscle function and intracellular signaling is unknown. We hypothesized that CapZ downregulation would impair myocardial function and disrupt PKC-myofilament signaling by impairing PKC–Z-disc interaction. To test these hypotheses, we examined transgenic (TG) mice in which cardiac CapZ protein is reduced. Fiber bundles were dissected from papillary muscles and detergent extracted. Some fiber bundles were treated with PKC activators phenylephrine (PHE) or endothelin (ET) before detergent extraction. We simultaneously measured Ca2+-dependent tension and actomyosin MgATPase activity. CapZ downregulation increased myofilament Ca2+ sensitivity without affecting maximum tension or actomyosin MgATPase activity. Maximum tension and actomyosin MgATPase activity were decreased after PHE or ET treatment of wild-type (WT) muscle. Fiber bundles from TG hearts did not respond to PHE or ET. Immunoblot analysis revealed an increase in myofilament-associated PKC-&egr; after PHE or ET exposure of WT preparations. In contrast, myofilament-associated PKC-&egr; was decreased after PHE or ET treatment in TG myocardium. Protein levels of myofilament-associated PKC-&bgr; were decreased in TG ventricle. C-protein and troponin I phosphorylation was increased after PHE or ET treatment in WT and TG hearts. Basal phosphorylation levels of C-protein and troponin I were higher in TG myocardium. These results indicate that downregulation of CapZ, or other changes associated with CapZ downregulation, increases cardiac myofilament Ca2+ sensitivity, inhibits PKC-mediated control of myofilament activation, and decreases myofilament-associated PKC-&bgr;.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"25 1","pages":"1299-1306"},"PeriodicalIF":0.0,"publicationDate":"2002-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89362374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-06-28DOI: 10.1161/01.RES.0000022161.42655.98
Jun Chen, S. Brodsky, David M Goligorsky, D. Hampel, Hong Li, S. Gross, M. Goligorsky
Diabetic vasculopathy is central to the development of diverse cardiovascular, renal, retinal, and neurological complications of diabetes. We previously demonstrated that growth of endothelial cells on glycated extracellular matrix proteins (collagen and matrigel) results in a significant decrease in cell proliferation. In the present study, we show that early-passage human umbilical vein endothelial cells (HUVECs) grown on glycated collagen (GC) express hallmarks of premature cell senescence, ie, increase in the proportion of cells expressing senescence-associated &bgr;-galactosidase activity, apoptotic rate, and p53 and p14AFR expression, but in contrast to replicative senescence, display neither attrition of telomeres nor decrease in telomerase activity. An increased frequency of prematurely senescent cells was similarly observed in vivo in aortae of young Zucker diabetic rats, compared with lean controls. NO production by HUVECs grown on GC was decreased, despite a 3-fold increase in eNOS expression and was associated with the increased nitrotyrosine-modified proteins. Development of premature senescence of HUVECs on GC could be prevented and reversed by treatments with the peroxynitrite scavenger, ebselen, eNOS intermediate N&ohgr;-hydroxy-l-arginine (NOHA), or superoxide dismutase mimetic Mn-TBAP. Concomitant with the reversal of senescence, ebselen, and NOHA each restored NO production to levels observed with HUVECs grown on unmodified collagen. Our findings indicate that diabetes mellitus in vivo and GC exposure in vitro elicit premature senescence of the vascular endothelium, a process with distinct pathogenetic mechanisms. Premature senescence of the vascular endothelium is hypothesized to be an important contributor to diabetic vasculopathy and a consequence of reduced NO availability, peroxynitrite, and/or superoxide excess.
{"title":"Glycated Collagen I Induces Premature Senescence-Like Phenotypic Changes in Endothelial Cells","authors":"Jun Chen, S. Brodsky, David M Goligorsky, D. Hampel, Hong Li, S. Gross, M. Goligorsky","doi":"10.1161/01.RES.0000022161.42655.98","DOIUrl":"https://doi.org/10.1161/01.RES.0000022161.42655.98","url":null,"abstract":"Diabetic vasculopathy is central to the development of diverse cardiovascular, renal, retinal, and neurological complications of diabetes. We previously demonstrated that growth of endothelial cells on glycated extracellular matrix proteins (collagen and matrigel) results in a significant decrease in cell proliferation. In the present study, we show that early-passage human umbilical vein endothelial cells (HUVECs) grown on glycated collagen (GC) express hallmarks of premature cell senescence, ie, increase in the proportion of cells expressing senescence-associated &bgr;-galactosidase activity, apoptotic rate, and p53 and p14AFR expression, but in contrast to replicative senescence, display neither attrition of telomeres nor decrease in telomerase activity. An increased frequency of prematurely senescent cells was similarly observed in vivo in aortae of young Zucker diabetic rats, compared with lean controls. NO production by HUVECs grown on GC was decreased, despite a 3-fold increase in eNOS expression and was associated with the increased nitrotyrosine-modified proteins. Development of premature senescence of HUVECs on GC could be prevented and reversed by treatments with the peroxynitrite scavenger, ebselen, eNOS intermediate N&ohgr;-hydroxy-l-arginine (NOHA), or superoxide dismutase mimetic Mn-TBAP. Concomitant with the reversal of senescence, ebselen, and NOHA each restored NO production to levels observed with HUVECs grown on unmodified collagen. Our findings indicate that diabetes mellitus in vivo and GC exposure in vitro elicit premature senescence of the vascular endothelium, a process with distinct pathogenetic mechanisms. Premature senescence of the vascular endothelium is hypothesized to be an important contributor to diabetic vasculopathy and a consequence of reduced NO availability, peroxynitrite, and/or superoxide excess.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"46 1","pages":"1290-1298"},"PeriodicalIF":0.0,"publicationDate":"2002-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73763872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-06-28DOI: 10.1161/01.RES.0000023201.41774.EA
M. Heidkamp, A. Bayer, Jared A Kalina, D. Eble, A. Samarel
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase involved in adhesion-dependent signal transduction. FAK is highly expressed in cultured neonatal rat ventricular myocytes (NRVMs) and undergoes tyrosine autophosphorylation in response to cell adhesion, stretch, and growth factor stimulation. We previously showed that inhibition of FAK phosphorylation by adenovirally mediated overexpression of FRNK (the autonomously expressed C-terminal domain of FAK) prevented endothelin-1 (ET)-induced NRVM hypertrophy. One question raised by these studies was whether FRNK localized to focal adhesions and displaced FAK from sites required for downstream signaling. Therefore, we constructed a replication-defective adenovirus encoding a GFP-FRNK fusion protein (Adv-GFP-FRNK) and examined its effects on NRVM cytoarchitecture and signaling. Uninfected NRVMs contained small amounts of endogenous FRNK. NRVMs infected with Adv-GFP-FRNK expressed much larger amounts of a 66-/68-kDa protein that localized to costameres and focal adhesions. GFP-FRNK overexpression suppressed basal and ET-induced FAK phosphorylation and also inhibited ET-induced phosphorylation of PYK2, the other member of the FAK family of nonreceptor protein tyrosine kinases. In contrast, GFP-FRNK overexpression did not prevent ET-induced ERK, JNK, or p70S6K phosphorylation. Furthermore, GFP-FRNK resulted in the loss of detectable FAK and paxillin in focal adhesions, which was accompanied by reduced levels of total paxillin and, ultimately, cell detachment and apoptosis. We conclude that FRNK functions as a dominant-negative inhibitor of adhesion-dependent signaling by displacing FAK from focal adhesions and interfering with the anchorage of NRVMs that is necessary for cell survival, a process known as anoikis.
{"title":"GFP-FRNK Disrupts Focal Adhesions and Induces Anoikis in Neonatal Rat Ventricular Myocytes","authors":"M. Heidkamp, A. Bayer, Jared A Kalina, D. Eble, A. Samarel","doi":"10.1161/01.RES.0000023201.41774.EA","DOIUrl":"https://doi.org/10.1161/01.RES.0000023201.41774.EA","url":null,"abstract":"Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase involved in adhesion-dependent signal transduction. FAK is highly expressed in cultured neonatal rat ventricular myocytes (NRVMs) and undergoes tyrosine autophosphorylation in response to cell adhesion, stretch, and growth factor stimulation. We previously showed that inhibition of FAK phosphorylation by adenovirally mediated overexpression of FRNK (the autonomously expressed C-terminal domain of FAK) prevented endothelin-1 (ET)-induced NRVM hypertrophy. One question raised by these studies was whether FRNK localized to focal adhesions and displaced FAK from sites required for downstream signaling. Therefore, we constructed a replication-defective adenovirus encoding a GFP-FRNK fusion protein (Adv-GFP-FRNK) and examined its effects on NRVM cytoarchitecture and signaling. Uninfected NRVMs contained small amounts of endogenous FRNK. NRVMs infected with Adv-GFP-FRNK expressed much larger amounts of a 66-/68-kDa protein that localized to costameres and focal adhesions. GFP-FRNK overexpression suppressed basal and ET-induced FAK phosphorylation and also inhibited ET-induced phosphorylation of PYK2, the other member of the FAK family of nonreceptor protein tyrosine kinases. In contrast, GFP-FRNK overexpression did not prevent ET-induced ERK, JNK, or p70S6K phosphorylation. Furthermore, GFP-FRNK resulted in the loss of detectable FAK and paxillin in focal adhesions, which was accompanied by reduced levels of total paxillin and, ultimately, cell detachment and apoptosis. We conclude that FRNK functions as a dominant-negative inhibitor of adhesion-dependent signaling by displacing FAK from focal adhesions and interfering with the anchorage of NRVMs that is necessary for cell survival, a process known as anoikis.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"16 1","pages":"1282-1289"},"PeriodicalIF":0.0,"publicationDate":"2002-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73814622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-06-28DOI: 10.1161/01.RES.0000024689.07590.C2
E. Michelakis, V. Hampl, A. Nsair, Xichen Wu, Gwyneth Harry, A. Haromy, Rachita Gurtu, S. Archer
Renal arteries (RAs) dilate in response to hypoxia, whereas the pulmonary arteries (PAs) constrict. In the PA, O2 tension is detected by an unidentified redox sensor, which controls K+ channel function and thus smooth muscle cell (SMC) membrane potential and cytosolic calcium. Mitochondria are important regulators of cellular redox status and are candidate vascular O2 sensors. Mitochondria-derived activated oxygen species (AOS), like H2O2, can diffuse to the cytoplasm and cause vasodilatation by activating sarcolemmal K+ channels. We hypothesize that mitochondrial diversity between vascular beds explains the opposing responses to hypoxia in PAs versus RAs. The effects of hypoxia and proximal electron transport chain (pETC) inhibitors (rotenone and antimycin A) were compared in rat isolated arteries, vascular SMCs, and perfused organs. Hypoxia and pETC inhibitors decrease production of AOS and outward K+ current and constrict PAs while increasing AOS production and outward K+ current and dilating RAs. At baseline, lung mitochondria have lower respiratory rates and higher rates of AOS and H2O2 production. Similarly, production of AOS and H2O2 is greater in PA versus RA rings. SMC mitochondrial membrane potential is more depolarized in PAs versus RAs. These differences relate in part to the lower expression of proximal ETC components and greater expression of mitochondrial manganese superoxide dismutase in PAs versus RAs. Differential regulation of a tonically produced, mitochondria-derived, vasodilating factor, possibly H2O2, can explain the opposing effects of hypoxia on the PAs versus RAs. We conclude that the PA and RA have different mitochondria.
{"title":"Diversity in Mitochondrial Function Explains Differences in Vascular Oxygen Sensing","authors":"E. Michelakis, V. Hampl, A. Nsair, Xichen Wu, Gwyneth Harry, A. Haromy, Rachita Gurtu, S. Archer","doi":"10.1161/01.RES.0000024689.07590.C2","DOIUrl":"https://doi.org/10.1161/01.RES.0000024689.07590.C2","url":null,"abstract":"Renal arteries (RAs) dilate in response to hypoxia, whereas the pulmonary arteries (PAs) constrict. In the PA, O2 tension is detected by an unidentified redox sensor, which controls K+ channel function and thus smooth muscle cell (SMC) membrane potential and cytosolic calcium. Mitochondria are important regulators of cellular redox status and are candidate vascular O2 sensors. Mitochondria-derived activated oxygen species (AOS), like H2O2, can diffuse to the cytoplasm and cause vasodilatation by activating sarcolemmal K+ channels. We hypothesize that mitochondrial diversity between vascular beds explains the opposing responses to hypoxia in PAs versus RAs. The effects of hypoxia and proximal electron transport chain (pETC) inhibitors (rotenone and antimycin A) were compared in rat isolated arteries, vascular SMCs, and perfused organs. Hypoxia and pETC inhibitors decrease production of AOS and outward K+ current and constrict PAs while increasing AOS production and outward K+ current and dilating RAs. At baseline, lung mitochondria have lower respiratory rates and higher rates of AOS and H2O2 production. Similarly, production of AOS and H2O2 is greater in PA versus RA rings. SMC mitochondrial membrane potential is more depolarized in PAs versus RAs. These differences relate in part to the lower expression of proximal ETC components and greater expression of mitochondrial manganese superoxide dismutase in PAs versus RAs. Differential regulation of a tonically produced, mitochondria-derived, vasodilating factor, possibly H2O2, can explain the opposing effects of hypoxia on the PAs versus RAs. We conclude that the PA and RA have different mitochondria.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"39 1","pages":"1307-1315"},"PeriodicalIF":0.0,"publicationDate":"2002-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81874822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2002-06-28DOI: 10.1161/01.RES.0000022160.64355.62
Ying-mei Liu, W. Min
It has been shown that thioredoxin (Trx) in a reduced form binds to and inhibits apoptosis signal-regulating kinase 1 (ASK1). Apoptotic stimuli such as tumor necrosis factor (TNF) and reactive oxygen species (ROS) activate ASK1 in part by oxidizing Trx (forming intramolecular disulfide between C32 and C35) to release Trx from ASK1. In the present study, we examined if Trx affects ASK1 protein stability and whether the redox activity of Trx is critical in regulating ASK1 activity. First, we showed that overexpression of the wild-type Trx (Trx-WT) in endothelial cells induced ASK1 ubiquitination and degradation. Trx-induced ASK1 ubiquitination/degradation could be blocked by ASK1 activators TNF and TRAF2. We then tested the single-mutation of Trx at the catalytic site C32 or C35 (Trx-C32S or Trx-C35S) and the double-mutation (Trx-CS). The results showed that the single mutants (but not Trx-CS) retained the binding activity for ASK1 and the ability to induce ASK1 ubiquitination/degradation. Unlike Trx-WT, Trx-C32S and Trx-C35S mutants constitutively bind to ASK1 even in the presence of hydrogen peroxide in vitro and TNF in vivo. Finally, we showed that the single mutants (not Trx-WT) significantly (n=4 and P <0.05) inhibited ASK1-induced JNK activation, caspase 3 activity, and apoptosis in TNF/ROS-resistant manner. Our data suggest that association of Trx with ASK1 through a single Cysteine (C32 or C35) is necessary and sufficient for Trx activity in inducing ASK1 ubiquitination/degradation leading to inhibition of ASK1-induced apoptosis.
{"title":"Thioredoxin Promotes ASK1 Ubiquitination and Degradation to Inhibit ASK1-Mediated Apoptosis in a Redox Activity-Independent Manner","authors":"Ying-mei Liu, W. Min","doi":"10.1161/01.RES.0000022160.64355.62","DOIUrl":"https://doi.org/10.1161/01.RES.0000022160.64355.62","url":null,"abstract":"It has been shown that thioredoxin (Trx) in a reduced form binds to and inhibits apoptosis signal-regulating kinase 1 (ASK1). Apoptotic stimuli such as tumor necrosis factor (TNF) and reactive oxygen species (ROS) activate ASK1 in part by oxidizing Trx (forming intramolecular disulfide between C32 and C35) to release Trx from ASK1. In the present study, we examined if Trx affects ASK1 protein stability and whether the redox activity of Trx is critical in regulating ASK1 activity. First, we showed that overexpression of the wild-type Trx (Trx-WT) in endothelial cells induced ASK1 ubiquitination and degradation. Trx-induced ASK1 ubiquitination/degradation could be blocked by ASK1 activators TNF and TRAF2. We then tested the single-mutation of Trx at the catalytic site C32 or C35 (Trx-C32S or Trx-C35S) and the double-mutation (Trx-CS). The results showed that the single mutants (but not Trx-CS) retained the binding activity for ASK1 and the ability to induce ASK1 ubiquitination/degradation. Unlike Trx-WT, Trx-C32S and Trx-C35S mutants constitutively bind to ASK1 even in the presence of hydrogen peroxide in vitro and TNF in vivo. Finally, we showed that the single mutants (not Trx-WT) significantly (n=4 and P <0.05) inhibited ASK1-induced JNK activation, caspase 3 activity, and apoptosis in TNF/ROS-resistant manner. Our data suggest that association of Trx with ASK1 through a single Cysteine (C32 or C35) is necessary and sufficient for Trx activity in inducing ASK1 ubiquitination/degradation leading to inhibition of ASK1-induced apoptosis.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"23 1","pages":"1259-1266"},"PeriodicalIF":0.0,"publicationDate":"2002-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74215596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}