Pub Date : 2024-08-27DOI: 10.1186/s13148-024-01719-6
Sandip Kumar Rath, Gunsmaa Nyamsuren, Björn Tampe, David Sung-Wen Yu, Melanie S Hulshoff, Denise Schlösser, Sabine Maamari, Michael Zeisberg, Elisabeth M Zeisberg
Background: Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage. Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, activation of distinct DNA repair mechanism is essential.
Result: In this study, we report that TET3, a DNA demethylating enzyme, which has been shown to be reduced in cardiac fibrosis and to exert antifibrotic effects does so not only through its demethylating activity but also through maintaining genomic integrity by facilitating error-free homologous recombination (HR) repair of DNA damage. Using both in vitro and in vivo models of cardiac fibrosis as well as data from human heart tissue, we demonstrate that the loss of TET3 in cardiac fibroblasts leads to spontaneous DNA damage and in the presence of TGF-β to a shift from HR to the fast but more error-prone non-homologous end joining repair pathway. This shift contributes to increased fibroblast proliferation in a fibrotic environment. In vitro experiments showed TET3's recruitment to H2O2-induced DNA double-strand breaks (DSBs) in mouse cardiac fibroblasts, promoting HR repair. Overexpressing TET3 counteracted TGF-β-induced fibroblast proliferation and restored HR repair efficiency. Extending these findings to human cardiac fibrosis, we confirmed TET3 expression loss in fibrotic hearts and identified a negative correlation between TET3 levels, fibrosis markers, and DNA repair pathway alteration.
Conclusion: Collectively, our findings demonstrate TET3's pivotal role in modulating DDR and fibroblast proliferation in cardiac fibrosis and further highlight TET3 as a potential therapeutic target.
背景:心脏纤维化是各种慢性心脏病的标志。心脏成纤维细胞的活化和增殖是心脏纤维化的主要介质。现有研究表明,纤维化过程中产生的 ROS 和炎性细胞因子不仅是增殖刺激的信号,也会导致 DNA 损伤。因此,作为维持成纤维细胞持续增殖的先决条件,激活独特的 DNA 修复机制至关重要:在这项研究中,我们报告了一种 DNA 去甲基化酶 TET3,这种酶在心脏纤维化中被证明会减少并发挥抗纤维化作用,它不仅通过其去甲基化活性,还通过促进 DNA 损伤的无差错同源重组(HR)修复来维持基因组的完整性。我们利用体外和体内心脏纤维化模型以及来自人类心脏组织的数据证明,心脏成纤维细胞中 TET3 的缺失会导致自发性 DNA 损伤,并在 TGF-β 的存在下导致从 HR 转向快速但更容易出错的非同源末端连接修复途径。这种转变导致成纤维细胞在纤维化环境中增殖增加。体外实验显示,在小鼠心脏成纤维细胞中,TET3 被招募到 H2O2 诱导的 DNA 双链断裂(DSB)处,促进 HR 修复。过表达 TET3 可抵消 TGF-β 诱导的成纤维细胞增殖,并恢复 HR 修复效率。将这些发现扩展到人类心脏纤维化,我们证实了纤维化心脏中 TET3 的表达缺失,并确定了 TET3 水平、纤维化标志物和 DNA 修复途径改变之间的负相关:总之,我们的研究结果证明了 TET3 在心脏纤维化中调节 DDR 和成纤维细胞增殖的关键作用,并进一步突出了 TET3 作为潜在治疗靶点的作用。
{"title":"Loss of tet methyl cytosine dioxygenase 3 (TET3) enhances cardiac fibrosis via modulating the DNA damage repair response.","authors":"Sandip Kumar Rath, Gunsmaa Nyamsuren, Björn Tampe, David Sung-Wen Yu, Melanie S Hulshoff, Denise Schlösser, Sabine Maamari, Michael Zeisberg, Elisabeth M Zeisberg","doi":"10.1186/s13148-024-01719-6","DOIUrl":"10.1186/s13148-024-01719-6","url":null,"abstract":"<p><strong>Background: </strong>Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage. Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, activation of distinct DNA repair mechanism is essential.</p><p><strong>Result: </strong>In this study, we report that TET3, a DNA demethylating enzyme, which has been shown to be reduced in cardiac fibrosis and to exert antifibrotic effects does so not only through its demethylating activity but also through maintaining genomic integrity by facilitating error-free homologous recombination (HR) repair of DNA damage. Using both in vitro and in vivo models of cardiac fibrosis as well as data from human heart tissue, we demonstrate that the loss of TET3 in cardiac fibroblasts leads to spontaneous DNA damage and in the presence of TGF-β to a shift from HR to the fast but more error-prone non-homologous end joining repair pathway. This shift contributes to increased fibroblast proliferation in a fibrotic environment. In vitro experiments showed TET3's recruitment to H2O2-induced DNA double-strand breaks (DSBs) in mouse cardiac fibroblasts, promoting HR repair. Overexpressing TET3 counteracted TGF-β-induced fibroblast proliferation and restored HR repair efficiency. Extending these findings to human cardiac fibrosis, we confirmed TET3 expression loss in fibrotic hearts and identified a negative correlation between TET3 levels, fibrosis markers, and DNA repair pathway alteration.</p><p><strong>Conclusion: </strong>Collectively, our findings demonstrate TET3's pivotal role in modulating DDR and fibroblast proliferation in cardiac fibrosis and further highlight TET3 as a potential therapeutic target.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"119"},"PeriodicalIF":4.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1186/s13148-024-01728-5
Xin Zhuang, Peng Chen, Rong Yang, Xiaoying Man, Ruochen Wang, Yifen Shi
Background: Telomere shortening and epigenetic modifications are key factors in aging and hematologic diseases. This study investigates the relationship of telomere length and epigenetic age acceleration (EAA) with hematologic cancers, blood cells, and biochemical markers through the epigenetic clocks.
Methods: This study primarily utilizes genome-wide association studies of populations of European descent as instrumental variables, exploring the causal relationships between exposures and outcomes through a bidirectional two-sample Mendelian randomization (MR) approach. MR techniques include inverse variance weighted (IVW), MR Egger, and weighted median modes. Heterogeneity and pleiotropy in MR are assessed using Cochran's Q test and the MR Egger intercept, with the robustness of the conclusions further validated by multivariable MR (MVMR).
Results: Our research shows that longer telomere lengths significantly increase the risk of multiple myeloma, leukemia, and lymphoma (OR > 1, P < 0.05) and establish a causal relationship between telomere length and red blood cell indices such as RBC (OR = 1.121, PIVW = 0.034), MCH (OR = 0.801, PIVW = 2.046e-06), MCV (OR = 0.801, PIVW = 0.001), and MCHC (OR = 0.813, PIVW = 0.002). Additionally, MVMR analysis revealed an association between DNA methylation PhenoAge acceleration and alkaline phosphatase (OR = 1.026, PIVW = 0.007).
Conclusion: The study clarifies the relationships between telomere length, EAA, and hematological malignancies, further emphasizing the prognostic significance of telomere length and EAA. This deepens our understanding of the pathogenesis of hematological diseases, which can inform risk assessment and therapeutic strategies.
{"title":"Mendelian randomization analysis reveals the combined effects of epigenetics and telomere biology in hematologic cancers.","authors":"Xin Zhuang, Peng Chen, Rong Yang, Xiaoying Man, Ruochen Wang, Yifen Shi","doi":"10.1186/s13148-024-01728-5","DOIUrl":"10.1186/s13148-024-01728-5","url":null,"abstract":"<p><strong>Background: </strong>Telomere shortening and epigenetic modifications are key factors in aging and hematologic diseases. This study investigates the relationship of telomere length and epigenetic age acceleration (EAA) with hematologic cancers, blood cells, and biochemical markers through the epigenetic clocks.</p><p><strong>Methods: </strong>This study primarily utilizes genome-wide association studies of populations of European descent as instrumental variables, exploring the causal relationships between exposures and outcomes through a bidirectional two-sample Mendelian randomization (MR) approach. MR techniques include inverse variance weighted (IVW), MR Egger, and weighted median modes. Heterogeneity and pleiotropy in MR are assessed using Cochran's Q test and the MR Egger intercept, with the robustness of the conclusions further validated by multivariable MR (MVMR).</p><p><strong>Results: </strong>Our research shows that longer telomere lengths significantly increase the risk of multiple myeloma, leukemia, and lymphoma (OR > 1, P < 0.05) and establish a causal relationship between telomere length and red blood cell indices such as RBC (OR = 1.121, P<sub>IVW</sub> = 0.034), MCH (OR = 0.801, P<sub>IVW</sub> = 2.046e-06), MCV (OR = 0.801, P<sub>IVW</sub> = 0.001), and MCHC (OR = 0.813, P<sub>IVW</sub> = 0.002). Additionally, MVMR analysis revealed an association between DNA methylation PhenoAge acceleration and alkaline phosphatase (OR = 1.026, P<sub>IVW</sub> = 0.007).</p><p><strong>Conclusion: </strong>The study clarifies the relationships between telomere length, EAA, and hematological malignancies, further emphasizing the prognostic significance of telomere length and EAA. This deepens our understanding of the pathogenesis of hematological diseases, which can inform risk assessment and therapeutic strategies.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"120"},"PeriodicalIF":4.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351094/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-27DOI: 10.1186/s13148-024-01717-8
Manli Sun, Huan Yang, Yang Hu, Jiaqi Fan, Mingjing Duan, Jingqi Ruan, Shichang Li, Yang Xu, Yue Han
Background: Human aging and white blood cell (WBC) count are complex traits influenced by multiple genetic factors. Predictors of chronological age have been developed using epigenetic clocks. However, the bidirectional causal effects between epigenetic clocks and WBC count have not been fully examined.
Methods: This study employed Mendelian randomization (MR) to analyze summary statistics from four epigenetic clocks involving 34,710 participants, alongside data from the Blood Cell Consortium encompassing 563,946 individuals. We primarily explored bidirectional causal relationships using the random-effects inverse-variance weighted method, supplemented by additional MR methods for comprehensive analysis. Additionally, multivariate MR was applied to investigate independent effects of WBC count on epigenetic age acceleration.
Results: In the two-sample univariate MR (UVMR) analysis, we observed that a decrease in lymphocyte count markedly accelerated aging according to the PhenoAge, GrimAge, and HannumAge metrics (all P < 0.01, β < 0), though it did not affect Intrinsic Epigenetic Age Acceleration (IEAA). Conversely, an increase in neutrophil count significantly elevated PhenoAge levels (β: 0.38; 95% CI 0.14, 0.61; P = 1.65E-03 < 0.01). Reverse MR revealed no significant causal impacts of epigenetic clocks on overall WBC counts. Furthermore, in multivariate MR, the impact of lymphocyte counts on epigenetic aging metrics remained statistically significant. We also identified a marked causal association between neutrophil counts and PhenoAge, GrimAge, and HannumAge, with respective results showing strong associations (PhenoAge β: 0.78; 95% CI 0.47, 1.09; P = 8.26E-07; GrimAge β: 0.55; 95% CI 0.31, 0.79; P = 5.50E-06; HannumAge β: 0.42; 95% CI 0.18, 0.67; P = 6.30E-04). Likewise, eosinophil cell count demonstrated significant association with HannumAge (β: 0.33; 95% CI 0.13, 0.53; P = 1.43E-03 < 0.01).
Conclusion: These findings demonstrated that within WBCs, lymphocyte and neutrophil counts exert irreversible and independent causal effects on the acceleration of PhenoAge, GrimAge, and HannumAge. Our findings highlight the critical role of WBCs in influencing epigenetic clocks and underscore the importance of considering immune parameters when interpreting epigenetic age.
{"title":"Differential white blood cell count and epigenetic clocks: a bidirectional Mendelian randomization study.","authors":"Manli Sun, Huan Yang, Yang Hu, Jiaqi Fan, Mingjing Duan, Jingqi Ruan, Shichang Li, Yang Xu, Yue Han","doi":"10.1186/s13148-024-01717-8","DOIUrl":"10.1186/s13148-024-01717-8","url":null,"abstract":"<p><strong>Background: </strong>Human aging and white blood cell (WBC) count are complex traits influenced by multiple genetic factors. Predictors of chronological age have been developed using epigenetic clocks. However, the bidirectional causal effects between epigenetic clocks and WBC count have not been fully examined.</p><p><strong>Methods: </strong>This study employed Mendelian randomization (MR) to analyze summary statistics from four epigenetic clocks involving 34,710 participants, alongside data from the Blood Cell Consortium encompassing 563,946 individuals. We primarily explored bidirectional causal relationships using the random-effects inverse-variance weighted method, supplemented by additional MR methods for comprehensive analysis. Additionally, multivariate MR was applied to investigate independent effects of WBC count on epigenetic age acceleration.</p><p><strong>Results: </strong>In the two-sample univariate MR (UVMR) analysis, we observed that a decrease in lymphocyte count markedly accelerated aging according to the PhenoAge, GrimAge, and HannumAge metrics (all P < 0.01, β < 0), though it did not affect Intrinsic Epigenetic Age Acceleration (IEAA). Conversely, an increase in neutrophil count significantly elevated PhenoAge levels (β: 0.38; 95% CI 0.14, 0.61; P = 1.65E-03 < 0.01). Reverse MR revealed no significant causal impacts of epigenetic clocks on overall WBC counts. Furthermore, in multivariate MR, the impact of lymphocyte counts on epigenetic aging metrics remained statistically significant. We also identified a marked causal association between neutrophil counts and PhenoAge, GrimAge, and HannumAge, with respective results showing strong associations (PhenoAge β: 0.78; 95% CI 0.47, 1.09; P = 8.26E-07; GrimAge β: 0.55; 95% CI 0.31, 0.79; P = 5.50E-06; HannumAge β: 0.42; 95% CI 0.18, 0.67; P = 6.30E-04). Likewise, eosinophil cell count demonstrated significant association with HannumAge (β: 0.33; 95% CI 0.13, 0.53; P = 1.43E-03 < 0.01).</p><p><strong>Conclusion: </strong>These findings demonstrated that within WBCs, lymphocyte and neutrophil counts exert irreversible and independent causal effects on the acceleration of PhenoAge, GrimAge, and HannumAge. Our findings highlight the critical role of WBCs in influencing epigenetic clocks and underscore the importance of considering immune parameters when interpreting epigenetic age.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"118"},"PeriodicalIF":4.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351201/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1186/s13148-024-01727-6
Asmus Cosmos Skovgaard, Afsaneh Mohammadnejad, Hans Christian Beck, Qihua Tan, Mette Soerensen
Background: Cardiovascular diseases (CVDs) are major causes of mortality and morbidity worldwide; yet the understanding of their molecular basis is incomplete. Multi-omics studies have significant potential to uncover these mechanisms, but such studies are challenged by genetic and environmental confounding-a problem that can be effectively reduced by investigating intrapair differences in twins. Here, we linked data on all diagnoses of the circulatory system from the nationwide Danish Patient Registry (spanning 1977-2022) to a study population of 835 twins holding genome-wide DNA methylation and gene expression data. CVD diagnoses were divided into prevalent or incident cases (i.e., occurring before or after blood sample collection (2007-2011)). The diagnoses were classified into four groups: cerebrovascular diseases, coronary artery disease (CAD), arterial and other cardiovascular diseases (AOCDs), and diseases of the veins and lymphatic system. Statistical analyses were performed by linear (prevalent cases) or cox (incident cases) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) in both types of biological data and at both levels were inspected by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis.
Results: In general, more genes were found for prevalent than for incident cases, and bioinformatic analyses primarily found pathways of the immune system, signal transduction and diseases for prevalent cases, and pathways of cell-cell communication, metabolisms of proteins and RNA, gene expression, and chromatin organization groups for incident cases. This potentially reflects biology related to response to CVD (prevalent cases) and mechanisms related to regulation and development of disease (incident cases). Of specific genes, Myosin 1E was found to be central for CAD, and DEAD-Box Helicase 5 for AOCD. These genes were observed in both the prevalent and the incident analyses, potentially reflecting that their DNA methylation and gene transcription levels change both because of disease (prevalent cases) and prior disease (incident cases).
Conclusion: We present novel biomarkers for CVD by performing multi-omics analysis in twins, hereby lowering the confounding due to shared genetics and early life environment-a study design that is surprisingly rare in the field of CVD, and where additional studies are highly needed.
{"title":"Multi-omics association study of DNA methylation and gene expression levels and diagnoses of cardiovascular diseases in Danish Twins.","authors":"Asmus Cosmos Skovgaard, Afsaneh Mohammadnejad, Hans Christian Beck, Qihua Tan, Mette Soerensen","doi":"10.1186/s13148-024-01727-6","DOIUrl":"10.1186/s13148-024-01727-6","url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular diseases (CVDs) are major causes of mortality and morbidity worldwide; yet the understanding of their molecular basis is incomplete. Multi-omics studies have significant potential to uncover these mechanisms, but such studies are challenged by genetic and environmental confounding-a problem that can be effectively reduced by investigating intrapair differences in twins. Here, we linked data on all diagnoses of the circulatory system from the nationwide Danish Patient Registry (spanning 1977-2022) to a study population of 835 twins holding genome-wide DNA methylation and gene expression data. CVD diagnoses were divided into prevalent or incident cases (i.e., occurring before or after blood sample collection (2007-2011)). The diagnoses were classified into four groups: cerebrovascular diseases, coronary artery disease (CAD), arterial and other cardiovascular diseases (AOCDs), and diseases of the veins and lymphatic system. Statistical analyses were performed by linear (prevalent cases) or cox (incident cases) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) in both types of biological data and at both levels were inspected by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis.</p><p><strong>Results: </strong>In general, more genes were found for prevalent than for incident cases, and bioinformatic analyses primarily found pathways of the immune system, signal transduction and diseases for prevalent cases, and pathways of cell-cell communication, metabolisms of proteins and RNA, gene expression, and chromatin organization groups for incident cases. This potentially reflects biology related to response to CVD (prevalent cases) and mechanisms related to regulation and development of disease (incident cases). Of specific genes, Myosin 1E was found to be central for CAD, and DEAD-Box Helicase 5 for AOCD. These genes were observed in both the prevalent and the incident analyses, potentially reflecting that their DNA methylation and gene transcription levels change both because of disease (prevalent cases) and prior disease (incident cases).</p><p><strong>Conclusion: </strong>We present novel biomarkers for CVD by performing multi-omics analysis in twins, hereby lowering the confounding due to shared genetics and early life environment-a study design that is surprisingly rare in the field of CVD, and where additional studies are highly needed.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"117"},"PeriodicalIF":4.8,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348607/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-24DOI: 10.1186/s13148-024-01732-9
Zhaoqi Zhang, Xingru Zhao, Shang Gao, An Li, Ke Deng, Kai Yang, Wei Liu, Mi Du
Background: The relationship between periodontitis and cardiovascular disease (CVD) has been extensively studied, but the role of biological aging in this relationship remains poorly understood. This study is dedicated to investigating the effect of periodontitis on the incidence of CVD and to elucidating the potential mediating role of biological aging. Furthermore, this study will seek to elucidate the causal association between periodontitis, CVD, and biological aging.
Methods: We included 3269 participants from the National Health and Nutrition Examination Survey (2009-2014) with diagnostic information on periodontitis and composite CVD events. Biological aging was evaluated by utilizing both the Klemera-Doubal method's calculated biological age (KDMAge) and phenotypic age (PhenoAge). Logistic regression, restricted cubic spline (RCS) analysis, and subgroup analysis were used for data analysis. Mediation analysis was employed to explore the mediating role of biological aging. Subsequently, Mendelian randomization (MR) analyses were performed using genome-wide association study databases to explore potential causal relationships between periodontitis, CVD, and biological aging.
Results: Periodontitis was associated with a higher risk of CVD. Participants with periodontitis were found to have increased levels of biological aging, and elevated levels of biological aging were associated with increased CVD risk. Mediation analyses showed a partial mediating effect of biological aging (PhenoAge: 44.6%; KDMAge: 22.9%) between periodontitis and CVD risk. MR analysis showed that periodontitis played a causal role in increasing the risk of small vessel stroke, while myocardial infarction was found to increase the risk of periodontitis. In addition, reverse MR analysis showed that phenotypic aging can increase the risk of periodontitis, and there is a two-way causal relationship between CVD and biological aging.
Conclusions: Periodontitis is associated with an increased CVD risk, partially mediated by biological aging, with a complex causal interrelationship. Targeted interventions for periodontal health may slow the biological aging processes and reduce CVD risk.
{"title":"Biological aging mediates the association between periodontitis and cardiovascular disease: results from a national population study and Mendelian randomization analysis.","authors":"Zhaoqi Zhang, Xingru Zhao, Shang Gao, An Li, Ke Deng, Kai Yang, Wei Liu, Mi Du","doi":"10.1186/s13148-024-01732-9","DOIUrl":"10.1186/s13148-024-01732-9","url":null,"abstract":"<p><strong>Background: </strong>The relationship between periodontitis and cardiovascular disease (CVD) has been extensively studied, but the role of biological aging in this relationship remains poorly understood. This study is dedicated to investigating the effect of periodontitis on the incidence of CVD and to elucidating the potential mediating role of biological aging. Furthermore, this study will seek to elucidate the causal association between periodontitis, CVD, and biological aging.</p><p><strong>Methods: </strong>We included 3269 participants from the National Health and Nutrition Examination Survey (2009-2014) with diagnostic information on periodontitis and composite CVD events. Biological aging was evaluated by utilizing both the Klemera-Doubal method's calculated biological age (KDMAge) and phenotypic age (PhenoAge). Logistic regression, restricted cubic spline (RCS) analysis, and subgroup analysis were used for data analysis. Mediation analysis was employed to explore the mediating role of biological aging. Subsequently, Mendelian randomization (MR) analyses were performed using genome-wide association study databases to explore potential causal relationships between periodontitis, CVD, and biological aging.</p><p><strong>Results: </strong>Periodontitis was associated with a higher risk of CVD. Participants with periodontitis were found to have increased levels of biological aging, and elevated levels of biological aging were associated with increased CVD risk. Mediation analyses showed a partial mediating effect of biological aging (PhenoAge: 44.6%; KDMAge: 22.9%) between periodontitis and CVD risk. MR analysis showed that periodontitis played a causal role in increasing the risk of small vessel stroke, while myocardial infarction was found to increase the risk of periodontitis. In addition, reverse MR analysis showed that phenotypic aging can increase the risk of periodontitis, and there is a two-way causal relationship between CVD and biological aging.</p><p><strong>Conclusions: </strong>Periodontitis is associated with an increased CVD risk, partially mediated by biological aging, with a complex causal interrelationship. Targeted interventions for periodontal health may slow the biological aging processes and reduce CVD risk.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"116"},"PeriodicalIF":4.8,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1186/s13148-024-01722-x
Antonella Desiderio, Monica Pastorino, Michele Campitelli, Michele Longo, Claudia Miele, Raffaele Napoli, Francesco Beguinot, Gregory Alexander Raciti
Background: Cardiovascular diseases (CVD) affect over half a billion people worldwide and are the leading cause of global deaths. In particular, due to population aging and worldwide spreading of risk factors, the prevalence of heart failure (HF) is also increasing. HF accounts for approximately 36% of all CVD-related deaths and stands as the foremost cause of hospitalization. Patients affected by CVD or HF experience a substantial decrease in health-related quality of life compared to healthy subjects or affected by other diffused chronic diseases.
Main body: For both CVD and HF, prediction models have been developed, which utilize patient data, routine laboratory and further diagnostic tests. While some of these scores are currently used in clinical practice, there still is a need for innovative approaches to optimize CVD and HF prediction and to reduce the impact of these conditions on the global population. Epigenetic biomarkers, particularly DNA methylation (DNAm) changes, offer valuable insight for predicting risk, disease diagnosis and prognosis, and for monitoring treatment. The present work reviews current information relating DNAm, CVD and HF and discusses the use of DNAm in improving clinical risk prediction of CVD and HF as well as that of DNAm age as a proxy for cardiac aging.
Conclusion: DNAm biomarkers offer a valuable contribution to improving the accuracy of CV risk models. Many CpG sites have been adopted to develop specific prediction scores for CVD and HF with similar or enhanced performance on the top of existing risk measures. In the near future, integrating data from DNA methylome and other sources and advancements in new machine learning algorithms will help develop more precise and personalized risk prediction methods for CVD and HF.
背景:心血管疾病(CVD)影响着全球 5 亿多人,是全球死亡的主要原因。特别是,由于人口老龄化和危险因素在全球蔓延,心力衰竭(HF)的发病率也在不断上升。在所有与心血管疾病相关的死亡病例中,心力衰竭约占 36%,也是住院治疗的首要原因。与健康人或其他扩散性慢性疾病患者相比,心血管疾病或心力衰竭患者的健康相关生活质量大幅下降:针对心血管疾病和高血压,人们已经开发出了预测模型,这些模型利用了患者数据、常规实验室检测和进一步诊断检测。虽然其中一些评分目前已用于临床实践,但仍需要创新方法来优化心血管疾病和高血压的预测,并减少这些疾病对全球人口的影响。表观遗传生物标志物,尤其是 DNA 甲基化(DNAm)变化,为预测风险、疾病诊断和预后以及监测治疗提供了宝贵的见解。本研究回顾了与DNAm、心血管疾病和高血压有关的当前信息,并讨论了DNAm在改善心血管疾病和高血压临床风险预测中的应用,以及DNAm年龄作为心脏衰老替代指标的应用:结论:DNAm 生物标记为提高心血管疾病风险模型的准确性做出了宝贵贡献。许多 CpG 位点已被用于开发心血管疾病和高血压的特定预测评分,其性能与现有的风险测量指标相似或更高。在不久的将来,整合 DNA 甲基组和其他来源的数据以及新机器学习算法的进步将有助于开发更精确、更个性化的心血管疾病和高血压风险预测方法。
{"title":"DNA methylation in cardiovascular disease and heart failure: novel prediction models?","authors":"Antonella Desiderio, Monica Pastorino, Michele Campitelli, Michele Longo, Claudia Miele, Raffaele Napoli, Francesco Beguinot, Gregory Alexander Raciti","doi":"10.1186/s13148-024-01722-x","DOIUrl":"10.1186/s13148-024-01722-x","url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular diseases (CVD) affect over half a billion people worldwide and are the leading cause of global deaths. In particular, due to population aging and worldwide spreading of risk factors, the prevalence of heart failure (HF) is also increasing. HF accounts for approximately 36% of all CVD-related deaths and stands as the foremost cause of hospitalization. Patients affected by CVD or HF experience a substantial decrease in health-related quality of life compared to healthy subjects or affected by other diffused chronic diseases.</p><p><strong>Main body: </strong>For both CVD and HF, prediction models have been developed, which utilize patient data, routine laboratory and further diagnostic tests. While some of these scores are currently used in clinical practice, there still is a need for innovative approaches to optimize CVD and HF prediction and to reduce the impact of these conditions on the global population. Epigenetic biomarkers, particularly DNA methylation (DNAm) changes, offer valuable insight for predicting risk, disease diagnosis and prognosis, and for monitoring treatment. The present work reviews current information relating DNAm, CVD and HF and discusses the use of DNAm in improving clinical risk prediction of CVD and HF as well as that of DNAm age as a proxy for cardiac aging.</p><p><strong>Conclusion: </strong>DNAm biomarkers offer a valuable contribution to improving the accuracy of CV risk models. Many CpG sites have been adopted to develop specific prediction scores for CVD and HF with similar or enhanced performance on the top of existing risk measures. In the near future, integrating data from DNA methylome and other sources and advancements in new machine learning algorithms will help develop more precise and personalized risk prediction methods for CVD and HF.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"115"},"PeriodicalIF":4.8,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1186/s13148-024-01730-x
Hongxiang Fu, Harry Pickering, Liudmilla Rubbi, Ted M Ross, Wanding Zhou, Elaine F Reed, Matteo Pellegrini
Background: The effect of vaccination on the epigenome remains poorly characterized. In previous research, we identified an association between seroprotection against influenza and DNA methylation at sites associated with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon response. However, these studies did not fully account for confounding factors including age, gender, and BMI, along with changes in cell-type composition.
Results: Here, we studied the influenza vaccine response in a longitudinal cohort vaccinated over two consecutive years (2019-2020 and 2020-2021), using peripheral blood mononuclear cells and a targeted DNA methylation approach. To address the effects of multiple factors on the epigenome, we designed a multivariate multiple regression model that included seroprotection levels as quantified by the hemagglutination-inhibition (HAI) assay test.
Conclusions: Our findings indicate that 179 methylation sites can be combined as potential signatures to predict seroprotection. These sites were not only enriched for genes involved in the regulation of the RIG-I signaling pathway, as found previously, but also enriched for other genes associated with innate immunity to viruses and the transcription factor binding sites of BRD4, which is known to impact T cell memory. We propose a model to suggest that the RIG-I pathway and BRD4 could potentially be modulated to improve immunization strategies.
背景:疫苗接种对表观基因组的影响仍鲜为人知。在以前的研究中,我们发现流感血清保护与 RIG-1 信号通路相关位点的 DNA 甲基化之间存在关联,RIG-1 信号通路可识别病毒双链 RNA 并导致 I 型干扰素反应。然而,这些研究并未充分考虑年龄、性别和体重指数等混杂因素以及细胞类型组成的变化:在此,我们利用外周血单核细胞和靶向 DNA 甲基化方法,研究了连续两年(2019-2020 年和 2020-2021 年)接种疫苗的纵向队列中的流感疫苗反应。为了探讨多种因素对表观基因组的影响,我们设计了一个多变量多元回归模型,其中包括通过血凝抑制(HAI)检测试验量化的血清保护水平:我们的研究结果表明,179 个甲基化位点可作为预测血清保护的潜在特征。这些位点不仅富集了以前发现的参与调节 RIG-I 信号通路的基因,还富集了与病毒先天免疫相关的其他基因以及已知会影响 T 细胞记忆的 BRD4 的转录因子结合位点。我们提出了一个模型,表明有可能通过调节 RIG-I 通路和 BRD4 来改进免疫策略。
{"title":"The response to influenza vaccination is associated with DNA methylation-driven regulation of T cell innate antiviral pathways.","authors":"Hongxiang Fu, Harry Pickering, Liudmilla Rubbi, Ted M Ross, Wanding Zhou, Elaine F Reed, Matteo Pellegrini","doi":"10.1186/s13148-024-01730-x","DOIUrl":"10.1186/s13148-024-01730-x","url":null,"abstract":"<p><strong>Background: </strong>The effect of vaccination on the epigenome remains poorly characterized. In previous research, we identified an association between seroprotection against influenza and DNA methylation at sites associated with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon response. However, these studies did not fully account for confounding factors including age, gender, and BMI, along with changes in cell-type composition.</p><p><strong>Results: </strong>Here, we studied the influenza vaccine response in a longitudinal cohort vaccinated over two consecutive years (2019-2020 and 2020-2021), using peripheral blood mononuclear cells and a targeted DNA methylation approach. To address the effects of multiple factors on the epigenome, we designed a multivariate multiple regression model that included seroprotection levels as quantified by the hemagglutination-inhibition (HAI) assay test.</p><p><strong>Conclusions: </strong>Our findings indicate that 179 methylation sites can be combined as potential signatures to predict seroprotection. These sites were not only enriched for genes involved in the regulation of the RIG-I signaling pathway, as found previously, but also enriched for other genes associated with innate immunity to viruses and the transcription factor binding sites of BRD4, which is known to impact T cell memory. We propose a model to suggest that the RIG-I pathway and BRD4 could potentially be modulated to improve immunization strategies.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"114"},"PeriodicalIF":4.8,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340180/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1186/s13148-024-01712-z
Catarina Lopes, Tatiana C Almeida, Catarina Macedo-Silva, João Costa, Sofia Paulino, Carmen Jerónimo, Diogo Libânio, Mário Dinis-Ribeiro, Carina Pereira
Background: Early gastric cancer is treated endoscopically, but patients require surveillance due to the risk of metachronous gastric lesions (MGLs). Epigenetic alterations, particularly aberrant DNA methylation in genes, such as MIR124-3, MIR34b/c, NKX6-1, EMX1, MOS and CDO1, have been identified as promising biomarkers for MGL in Asian populations. We aimed to determine whether these changes could predict MGL risk in intermediate-risk Caucasian patients.
Methods: This case-cohort study included 36 patients who developed MGL matched to 48 patients without evidence of MGL in the same time frame (controls). Multiplex quantitative methylation-specific PCR was performed using DNA extracted from the normal mucosa adjacent to the primary lesion. The overall risk of progression to MGL was assessed using Kaplan-Meier and Cox proportional hazards model analyses.
Results: MIR124-3, MIR34b/c and NKX6-1 were successfully analyzed in 77 samples. MIR124-3 hypermethylation was detected in individuals who developed MGL (relative quantification 78.8 vs 50.5 in controls, p = 0.014), particularly in females and Helicobacter pylori-negative patients (p = 0.021 and p = 0.0079, respectively). This finding was further associated with a significantly greater risk for MGL development (aHR = 2.31, 95% CI 1.03-5.17, p = 0.042). Similarly, NKX6-1 was found to be hypermethylated in patients with synchronous lesions (relative quantification 7.9 vs 0.0 in controls, p = 0.0026). A molecular-based methylation model incorporating both genes was significantly associated with a threefold increased risk for MGL development (aHR = 3.10, 95% CI 1.07-8.95, p = 0.037).
Conclusions: This preliminary study revealed an association between MIR124-3 and NKX6-1 hypermethylation and the development of MGL in a Western population. These findings may represent a burden reduction and a greener approach to patient care.
{"title":"MIR124-3 and NKX6-1 hypermethylation profiles accurately predict metachronous gastric lesions in a Caucasian population.","authors":"Catarina Lopes, Tatiana C Almeida, Catarina Macedo-Silva, João Costa, Sofia Paulino, Carmen Jerónimo, Diogo Libânio, Mário Dinis-Ribeiro, Carina Pereira","doi":"10.1186/s13148-024-01712-z","DOIUrl":"10.1186/s13148-024-01712-z","url":null,"abstract":"<p><strong>Background: </strong>Early gastric cancer is treated endoscopically, but patients require surveillance due to the risk of metachronous gastric lesions (MGLs). Epigenetic alterations, particularly aberrant DNA methylation in genes, such as MIR124-3, MIR34b/c, NKX6-1, EMX1, MOS and CDO1, have been identified as promising biomarkers for MGL in Asian populations. We aimed to determine whether these changes could predict MGL risk in intermediate-risk Caucasian patients.</p><p><strong>Methods: </strong>This case-cohort study included 36 patients who developed MGL matched to 48 patients without evidence of MGL in the same time frame (controls). Multiplex quantitative methylation-specific PCR was performed using DNA extracted from the normal mucosa adjacent to the primary lesion. The overall risk of progression to MGL was assessed using Kaplan-Meier and Cox proportional hazards model analyses.</p><p><strong>Results: </strong>MIR124-3, MIR34b/c and NKX6-1 were successfully analyzed in 77 samples. MIR124-3 hypermethylation was detected in individuals who developed MGL (relative quantification 78.8 vs 50.5 in controls, p = 0.014), particularly in females and Helicobacter pylori-negative patients (p = 0.021 and p = 0.0079, respectively). This finding was further associated with a significantly greater risk for MGL development (aHR = 2.31, 95% CI 1.03-5.17, p = 0.042). Similarly, NKX6-1 was found to be hypermethylated in patients with synchronous lesions (relative quantification 7.9 vs 0.0 in controls, p = 0.0026). A molecular-based methylation model incorporating both genes was significantly associated with a threefold increased risk for MGL development (aHR = 3.10, 95% CI 1.07-8.95, p = 0.037).</p><p><strong>Conclusions: </strong>This preliminary study revealed an association between MIR124-3 and NKX6-1 hypermethylation and the development of MGL in a Western population. These findings may represent a burden reduction and a greener approach to patient care.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"113"},"PeriodicalIF":4.8,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Gestational DNA methylation age (GAmAge) has been developed and validated in European ancestry samples. Its applicability to other ethnicities and associations with fetal stress and newborn phenotypes such as inflammation markers are still to be determined. This study aims to examine the applicability of GAmAge developed from cord blood samples of European decedents to a racially diverse birth cohort, and associations with newborn phenotypes.
Methods: GAmAge based on 176 CpGs (Haftorn GAmAge) was calculated for 940 children from a US predominantly urban, low-income, multiethnic birth cohort. Cord blood DNA methylation was profiled by Illumina EPIC array. Newborn phenotypes included anthropometric measurements and, for a subset of newborns (N = 194), twenty-seven cord blood inflammatory markers (sandwich immunoassays).
Results: GAmAge had a stronger correlation with GEAA in boys (r = 0.89, 95% confidence interval (CI) [0.87,0.91]) compared with girls (r = 0.83, 95% CI [0.80,0.86]), and was stronger among extremely preterm to very preterm babies (r = 0.91, 95% CI [0.81,0.96]), compared with moderate (r = 0.48, 95% CI [0.34,0.60]) and term babies (r = 0.58, 95% CI [0.53,0.63]). Among White newborns (N = 51), the correlation between GAmAge vs. GEAA was slightly stronger (r = 0.89, 95% CI [0.82,0.94]) compared with Black/African American newborns (N = 668; r = 0.87, 95% CI [0.85,0.89]) or Hispanic (N = 221; r = 0.79, 95% CI [0.74,0.84]). Adjusting for GEAA and sex, GAmAge was associated with anthropometric measurements, cord blood brain-derived neurotrophic factor (BDNF), and monocyte chemoattractant protein-1 (MCP-1) (p < 0.05 for all).
Conclusions: GAmAge estimation is robust across different populations and racial/ethnic subgroups. GAmAge may be utilized as a proxy for GEAA and for assessing fetus development, indicated by inflammatory state and birth outcomes.
{"title":"Gestational DNA methylation age as a marker for fetal development and birth outcomes: findings from the Boston Birth Cohort.","authors":"Anat Yaskolka Meir, Maria Jimena Gutierrez, Xiumei Hong, Guoying Wang, Xiaobin Wang, Liming Liang","doi":"10.1186/s13148-024-01714-x","DOIUrl":"10.1186/s13148-024-01714-x","url":null,"abstract":"<p><strong>Background: </strong>Gestational DNA methylation age (GAmAge) has been developed and validated in European ancestry samples. Its applicability to other ethnicities and associations with fetal stress and newborn phenotypes such as inflammation markers are still to be determined. This study aims to examine the applicability of GAmAge developed from cord blood samples of European decedents to a racially diverse birth cohort, and associations with newborn phenotypes.</p><p><strong>Methods: </strong>GAmAge based on 176 CpGs (Haftorn GAmAge) was calculated for 940 children from a US predominantly urban, low-income, multiethnic birth cohort. Cord blood DNA methylation was profiled by Illumina EPIC array. Newborn phenotypes included anthropometric measurements and, for a subset of newborns (N = 194), twenty-seven cord blood inflammatory markers (sandwich immunoassays).</p><p><strong>Results: </strong>GAmAge had a stronger correlation with GEAA in boys (r = 0.89, 95% confidence interval (CI) [0.87,0.91]) compared with girls (r = 0.83, 95% CI [0.80,0.86]), and was stronger among extremely preterm to very preterm babies (r = 0.91, 95% CI [0.81,0.96]), compared with moderate (r = 0.48, 95% CI [0.34,0.60]) and term babies (r = 0.58, 95% CI [0.53,0.63]). Among White newborns (N = 51), the correlation between GAmAge vs. GEAA was slightly stronger (r = 0.89, 95% CI [0.82,0.94]) compared with Black/African American newborns (N = 668; r = 0.87, 95% CI [0.85,0.89]) or Hispanic (N = 221; r = 0.79, 95% CI [0.74,0.84]). Adjusting for GEAA and sex, GAmAge was associated with anthropometric measurements, cord blood brain-derived neurotrophic factor (BDNF), and monocyte chemoattractant protein-1 (MCP-1) (p < 0.05 for all).</p><p><strong>Conclusions: </strong>GAmAge estimation is robust across different populations and racial/ethnic subgroups. GAmAge may be utilized as a proxy for GEAA and for assessing fetus development, indicated by inflammatory state and birth outcomes.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"110"},"PeriodicalIF":4.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1186/s13148-024-01724-9
Luciano Calzari, Davide Fernando Dragani, Lucia Zanotti, Elvira Inglese, Romano Danesi, Rebecca Cavagnola, Alberto Brusati, Francesco Ranucci, Anna Maria Di Blasio, Luca Persani, Irene Campi, Sara De Martino, Antonella Farsetti, Veronica Barbi, Michela Gottardi Zamperla, Giulia Nicole Baldrighi, Carlo Gaetano, Gianfranco Parati, Davide Gentilini
Background: The epigenetic status of patients 6-month post-COVID-19 infection remains largely unexplored. The existence of long-COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), suggests potential long-term changes. Long-COVID includes symptoms like fatigue, neurological issues, and organ-related problems, regardless of initial infection severity. The mechanisms behind long-COVID are unclear, but virus-induced epigenetic changes could play a role.
Methods and results: Our study explores the lasting epigenetic impacts of SARS-CoV-2 infection. We analyzed genome-wide DNA methylation patterns in an Italian cohort of 96 patients 6 months after COVID-19 exposure, comparing them to 191 healthy controls. We identified 42 CpG sites with significant methylation differences (FDR < 0.05), primarily within CpG islands and gene promoters. Dysregulated genes highlighted potential links to glutamate/glutamine metabolism, which may be relevant to PASC symptoms. Key genes with potential significance to COVID-19 infection and long-term effects include GLUD1, ATP1A3, and ARRB2. Furthermore, Horvath's epigenetic clock showed a slight but significant age acceleration in post-COVID-19 patients. We also observed a substantial increase in stochastic epigenetic mutations (SEMs) in the post-COVID-19 group, implying potential epigenetic drift. SEM analysis identified 790 affected genes, indicating dysregulation in pathways related to insulin resistance, VEGF signaling, apoptosis, hypoxia response, T-cell activation, and endothelin signaling.
Conclusions: Our study provides valuable insights into the epigenetic consequences of COVID-19. Results suggest possible associations with accelerated aging, epigenetic drift, and the disruption of critical biological pathways linked to insulin resistance, immune response, and vascular health. Understanding these epigenetic changes could be crucial for elucidating the complex mechanisms behind long-COVID and developing targeted therapeutic interventions.
{"title":"Epigenetic patterns, accelerated biological aging, and enhanced epigenetic drift detected 6 months following COVID-19 infection: insights from a genome-wide DNA methylation study.","authors":"Luciano Calzari, Davide Fernando Dragani, Lucia Zanotti, Elvira Inglese, Romano Danesi, Rebecca Cavagnola, Alberto Brusati, Francesco Ranucci, Anna Maria Di Blasio, Luca Persani, Irene Campi, Sara De Martino, Antonella Farsetti, Veronica Barbi, Michela Gottardi Zamperla, Giulia Nicole Baldrighi, Carlo Gaetano, Gianfranco Parati, Davide Gentilini","doi":"10.1186/s13148-024-01724-9","DOIUrl":"10.1186/s13148-024-01724-9","url":null,"abstract":"<p><strong>Background: </strong>The epigenetic status of patients 6-month post-COVID-19 infection remains largely unexplored. The existence of long-COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), suggests potential long-term changes. Long-COVID includes symptoms like fatigue, neurological issues, and organ-related problems, regardless of initial infection severity. The mechanisms behind long-COVID are unclear, but virus-induced epigenetic changes could play a role.</p><p><strong>Methods and results: </strong>Our study explores the lasting epigenetic impacts of SARS-CoV-2 infection. We analyzed genome-wide DNA methylation patterns in an Italian cohort of 96 patients 6 months after COVID-19 exposure, comparing them to 191 healthy controls. We identified 42 CpG sites with significant methylation differences (FDR < 0.05), primarily within CpG islands and gene promoters. Dysregulated genes highlighted potential links to glutamate/glutamine metabolism, which may be relevant to PASC symptoms. Key genes with potential significance to COVID-19 infection and long-term effects include GLUD1, ATP1A3, and ARRB2. Furthermore, Horvath's epigenetic clock showed a slight but significant age acceleration in post-COVID-19 patients. We also observed a substantial increase in stochastic epigenetic mutations (SEMs) in the post-COVID-19 group, implying potential epigenetic drift. SEM analysis identified 790 affected genes, indicating dysregulation in pathways related to insulin resistance, VEGF signaling, apoptosis, hypoxia response, T-cell activation, and endothelin signaling.</p><p><strong>Conclusions: </strong>Our study provides valuable insights into the epigenetic consequences of COVID-19. Results suggest possible associations with accelerated aging, epigenetic drift, and the disruption of critical biological pathways linked to insulin resistance, immune response, and vascular health. Understanding these epigenetic changes could be crucial for elucidating the complex mechanisms behind long-COVID and developing targeted therapeutic interventions.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"112"},"PeriodicalIF":4.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142008396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}