首页 > 最新文献

Cmc-computers Materials & Continua最新文献

英文 中文
Automatic License Plate Recognition System for Vehicles Using a CNN 基于CNN的车辆车牌自动识别系统
IF 3.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.32604/cmc.2022.017681
S. Ranjithkumar, S. Chenthur pandian
{"title":"Automatic License Plate Recognition System for Vehicles Using a CNN","authors":"S. Ranjithkumar, S. Chenthur pandian","doi":"10.32604/cmc.2022.017681","DOIUrl":"https://doi.org/10.32604/cmc.2022.017681","url":null,"abstract":"","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"77 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74197168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
An Automated Real-Time Face Mask Detection System Using Transfer Learning with Faster-RCNN in the Era of the COVID-19 Pandemic 新型冠状病毒大流行时代基于快速rcnn迁移学习的自动实时口罩检测系统
IF 3.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.32604/cmc.2022.017865
Maha Farouk S. Sabir, I. Mehmood, Wafaa Adnan Alsaggaf, Enas Fawai Khairullah, Samar Alhuraiji, Ahmed S. Alghamdi, Ahmed A. Abd El-Latif
Today, due to the pandemic of COVID-19 the entire world is facing a serious health crisis. According to the World Health Organization (WHO), people in public places should wear a face mask to control the rapid transmission of COVID-19. The governmental bodies of different countries imposed that wearing a face mask is compulsory in public places. Therefore, it is very difficult to manually monitor people in overcrowded areas. This research focuses on providing a solution to enforce one of the important preventativemeasures of COVID-19 in public places, by presenting an automated system that automatically localizes masked and unmasked human faces within an image or video of an area which assist in this outbreak of COVID-19. This paper demonstrates a transfer learning approach with the Faster-RCNN model to detect faces that are masked or unmasked. The proposed framework is built by fine-tuning the state-of-the-art deep learning model, Faster-RCNN, and has been validated on a publicly available dataset named Face Mask Dataset (FMD) and achieving the highest average precision (AP) of 81% and highest average Recall (AR) of 84%. This shows the strong robustness and capabilities of the Faster-RCNN model to detect individuals with masked and un-masked faces. Moreover, this work applies to real-time and can be implemented in any public service area. © 2022 Tech Science Press. All rights reserved.
今天,由于COVID-19大流行,全世界都面临着严重的卫生危机。根据世界卫生组织(WHO)的建议,在公共场所,人们应该戴上口罩,以控制新冠肺炎的快速传播。各国政府机构规定,在公共场所必须佩戴口罩。因此,人工监控拥挤地区的人员是非常困难的。本研究的重点是提供一种在公共场所实施COVID-19重要预防措施之一的解决方案,通过展示一个自动化系统,在有助于本次COVID-19爆发的区域的图像或视频中自动定位戴口罩和未戴口罩的人脸。本文展示了一种使用Faster-RCNN模型的迁移学习方法来检测被屏蔽或未被屏蔽的人脸。提出的框架是通过微调最先进的深度学习模型Faster-RCNN构建的,并已在一个名为Face Mask dataset (FMD)的公开数据集上进行了验证,并实现了81%的最高平均精度(AP)和84%的最高平均召回率(AR)。这表明fast - rcnn模型具有很强的鲁棒性和能力来检测具有蒙面和未蒙面的个体。该工作具有实时性,可在任何公共服务领域实施。©2022科技科学出版社。版权所有。
{"title":"An Automated Real-Time Face Mask Detection System Using Transfer Learning with Faster-RCNN in the Era of the COVID-19 Pandemic","authors":"Maha Farouk S. Sabir, I. Mehmood, Wafaa Adnan Alsaggaf, Enas Fawai Khairullah, Samar Alhuraiji, Ahmed S. Alghamdi, Ahmed A. Abd El-Latif","doi":"10.32604/cmc.2022.017865","DOIUrl":"https://doi.org/10.32604/cmc.2022.017865","url":null,"abstract":"Today, due to the pandemic of COVID-19 the entire world is facing a serious health crisis. According to the World Health Organization (WHO), people in public places should wear a face mask to control the rapid transmission of COVID-19. The governmental bodies of different countries imposed that wearing a face mask is compulsory in public places. Therefore, it is very difficult to manually monitor people in overcrowded areas. This research focuses on providing a solution to enforce one of the important preventativemeasures of COVID-19 in public places, by presenting an automated system that automatically localizes masked and unmasked human faces within an image or video of an area which assist in this outbreak of COVID-19. This paper demonstrates a transfer learning approach with the Faster-RCNN model to detect faces that are masked or unmasked. The proposed framework is built by fine-tuning the state-of-the-art deep learning model, Faster-RCNN, and has been validated on a publicly available dataset named Face Mask Dataset (FMD) and achieving the highest average precision (AP) of 81% and highest average Recall (AR) of 84%. This shows the strong robustness and capabilities of the Faster-RCNN model to detect individuals with masked and un-masked faces. Moreover, this work applies to real-time and can be implemented in any public service area. © 2022 Tech Science Press. All rights reserved.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"7 3 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75567790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
An Improved Evolutionary Algorithm for Data Mining and Knowledge Discovery 一种改进的数据挖掘和知识发现进化算法
IF 3.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.32604/cmc.2022.021652
A. Siddiqa, Syed Abbas Zilqurnain Naqvi, Muhammad Ahsan, A. Ditta, Hani Alquhayz, M. A. Khan, Muhammad Adnan Khan
{"title":"An Improved Evolutionary Algorithm for Data Mining and Knowledge Discovery","authors":"A. Siddiqa, Syed Abbas Zilqurnain Naqvi, Muhammad Ahsan, A. Ditta, Hani Alquhayz, M. A. Khan, Muhammad Adnan Khan","doi":"10.32604/cmc.2022.021652","DOIUrl":"https://doi.org/10.32604/cmc.2022.021652","url":null,"abstract":"","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"9 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79043103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An Eigenspace Method for Detecting Space-Time Disease Clusters with Unknown Population-Data 基于未知种群数据的时空疾病聚类特征空间检测方法
IF 3.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.32604/cmc.2022.019029
Sami Ullah, Nurul Hidayah Mohd Nor, H. Daud, N. Zainuddin, Hadi Fanaee-T, Alamgir Khalil
Space-time disease cluster detection assists in conducting disease surveillance and implementing control strategies. The state-of-the-art method for this kind of problem is the Space-time Scan Statistics (SaTScan) which has limitations for non-traditional/non-clinical data sources due to its parametric model assumptions such as Poisson or Gaussian counts. Addressing this problem, an Eigenspace-based method called Multi-EigenSpot has recently been proposed as a nonparametric solution. However, it is based on the population counts data which are not always available in the least developed countries. In addition, the population counts are difficult to approximate for some surveillance data such as emergency department visits and over-the-counter drug sales, where the catchment area for each hospital/pharmacy is undefined. We extend the population-based Multi-EigenSpot method to approximate the potential disease clusters from the observed/reported disease counts only with no need for the population counts. The proposed adaptation uses an estimator of expected disease count that does not depend on the population counts. The proposed method was evaluated on the real-world dataset and the results were compared with the population-based methods: Multi-EigenSpot and SaTScan. The result shows that the proposed adaptation is effective in approximating the important outputs of the population-based methods.
时空疾病聚类检测有助于开展疾病监测和实施控制策略。解决这类问题的最先进的方法是时空扫描统计(SaTScan),由于其参数模型假设(如泊松计数或高斯计数)对非传统/非临床数据源有限制。为了解决这个问题,最近提出了一种基于特征空间的方法,称为多特征点,作为一种非参数解决方案。然而,它所依据的是人口统计数据,而这些数据在最不发达国家并不总是可用的。此外,对于一些监测数据,如急诊就诊和非处方药销售,人口数量难以估计,因为每家医院/药房的覆盖范围不明确。我们扩展了基于种群的多特征点方法,仅通过观察/报告的疾病计数来近似潜在的疾病群集,而不需要种群计数。拟议的适应使用了一个不依赖于种群数量的预期疾病数量估计值。在真实数据集上对该方法进行了评估,并将结果与基于种群的方法(Multi-EigenSpot和SaTScan)进行了比较。结果表明,所提出的自适应方法可以有效地逼近基于种群的方法的重要输出。
{"title":"An Eigenspace Method for Detecting Space-Time Disease Clusters with Unknown Population-Data","authors":"Sami Ullah, Nurul Hidayah Mohd Nor, H. Daud, N. Zainuddin, Hadi Fanaee-T, Alamgir Khalil","doi":"10.32604/cmc.2022.019029","DOIUrl":"https://doi.org/10.32604/cmc.2022.019029","url":null,"abstract":"Space-time disease cluster detection assists in conducting disease surveillance and implementing control strategies. The state-of-the-art method for this kind of problem is the Space-time Scan Statistics (SaTScan) which has limitations for non-traditional/non-clinical data sources due to its parametric model assumptions such as Poisson or Gaussian counts. Addressing this problem, an Eigenspace-based method called Multi-EigenSpot has recently been proposed as a nonparametric solution. However, it is based on the population counts data which are not always available in the least developed countries. In addition, the population counts are difficult to approximate for some surveillance data such as emergency department visits and over-the-counter drug sales, where the catchment area for each hospital/pharmacy is undefined. We extend the population-based Multi-EigenSpot method to approximate the potential disease clusters from the observed/reported disease counts only with no need for the population counts. The proposed adaptation uses an estimator of expected disease count that does not depend on the population counts. The proposed method was evaluated on the real-world dataset and the results were compared with the population-based methods: Multi-EigenSpot and SaTScan. The result shows that the proposed adaptation is effective in approximating the important outputs of the population-based methods.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"89 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78985472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
SDN Based DDos Mitigating Approach Using Traffic Entropy for IoT Network 基于SDN的物联网网络流量熵DDos缓解方法
IF 3.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.32604/cmc.2022.017772
Muhammad Ibrahim, Muhammad Hanif, Shabir Ahmad, Faisal Jamil, Tayyaba Sehar, Yunjung Lee, Dohyeun Kim
: The Internet of Things (IoT) has been widely adopted in various domains including smart cities, healthcare, smart factories, etc. In the last few years, the fitness industry has been reshaped by the introduction of smart fitness solutions for individuals as well as fitness gyms. The IoT fitness devices collect trainee data that is being used for various decision-making. However, it will face numerous security and privacy issues towards its realization. This work focuses on IoT security, especially DoS/DDoS attacks. In this paper, we have proposed a novel blockchain-enabled protocol (BEP) that uses the notion of a self-exposing node (SEN) approach for securing fitness IoT applications. The blockchain and SDN architectures are employed to enhance IoT security by a highly preventive security monitoring, analysis and response system. The proposed approach helps in detecting the DoS/DDoS attacks on the IoT fitness system and then mitigating the attacks. The BEP is used for handling Blockchain-related activities and SEN could be a sensor or actu-ator node within the fitness IoT system. SEN provides information about the inbound and outbound traffic to the BEP which is used to analyze the DoS/DDoS attacks on the fitness IoT system. The SEN calculates the inbound and outbound traffic features’ entropies and transmits them to the Blockchain in the form of transaction blocks. The BEP picks the whole mined blocks’ transactions and transfers them to the SDN controller node. The controller node correlates the entropies data of SENs and decides about the DoS or DDoS attack. So, there are two decision points, one is SEN, and another is the controller. To evaluate the performance of our proposed system, several experiments are performed and results concerning the entropy values and attack detection rate are obtained. The proposed approach has outperformed the other two approaches concerning the attack detection rate by an increase of 11% and 18% against Approach 1 and Approach 2 respectively.
物联网(IoT)已广泛应用于智慧城市、医疗保健、智能工厂等各个领域。在过去的几年里,随着智能健身解决方案的引入,健身行业已经被重塑。物联网健身设备收集学员数据,用于各种决策。然而,它的实现将面临许多安全和隐私问题。这项工作的重点是物联网安全,特别是DoS/DDoS攻击。在本文中,我们提出了一种新的支持区块链的协议(BEP),该协议使用自暴露节点(SEN)方法的概念来保护健身物联网应用程序。采用区块链和SDN架构,通过高度预防性的安全监控、分析和响应系统,增强物联网安全性。提出的方法有助于检测对物联网健身系统的DoS/DDoS攻击,然后减轻攻击。BEP用于处理与区块链相关的活动,SEN可以是健身物联网系统中的传感器或执行器节点。SEN向BEP提供有关入站和出站流量的信息,BEP用于分析健身物联网系统上的DoS/DDoS攻击。SEN计算入站和出站的流量特征熵,并以交易块的形式发送给区块链。BEP选择整个开采区块的交易并将其传输到SDN控制节点。控制节点将SENs的熵数据进行关联,并决定是DoS还是DDoS攻击。这里有两个决策点,一个是SEN,另一个是控制器。为了评估我们提出的系统的性能,进行了几个实验,得到了关于熵值和攻击检测率的结果。与方法1和方法2相比,该方法的攻击检测率分别提高了11%和18%。
{"title":"SDN Based DDos Mitigating Approach Using Traffic Entropy for IoT Network","authors":"Muhammad Ibrahim, Muhammad Hanif, Shabir Ahmad, Faisal Jamil, Tayyaba Sehar, Yunjung Lee, Dohyeun Kim","doi":"10.32604/cmc.2022.017772","DOIUrl":"https://doi.org/10.32604/cmc.2022.017772","url":null,"abstract":": The Internet of Things (IoT) has been widely adopted in various domains including smart cities, healthcare, smart factories, etc. In the last few years, the fitness industry has been reshaped by the introduction of smart fitness solutions for individuals as well as fitness gyms. The IoT fitness devices collect trainee data that is being used for various decision-making. However, it will face numerous security and privacy issues towards its realization. This work focuses on IoT security, especially DoS/DDoS attacks. In this paper, we have proposed a novel blockchain-enabled protocol (BEP) that uses the notion of a self-exposing node (SEN) approach for securing fitness IoT applications. The blockchain and SDN architectures are employed to enhance IoT security by a highly preventive security monitoring, analysis and response system. The proposed approach helps in detecting the DoS/DDoS attacks on the IoT fitness system and then mitigating the attacks. The BEP is used for handling Blockchain-related activities and SEN could be a sensor or actu-ator node within the fitness IoT system. SEN provides information about the inbound and outbound traffic to the BEP which is used to analyze the DoS/DDoS attacks on the fitness IoT system. The SEN calculates the inbound and outbound traffic features’ entropies and transmits them to the Blockchain in the form of transaction blocks. The BEP picks the whole mined blocks’ transactions and transfers them to the SDN controller node. The controller node correlates the entropies data of SENs and decides about the DoS or DDoS attack. So, there are two decision points, one is SEN, and another is the controller. To evaluate the performance of our proposed system, several experiments are performed and results concerning the entropy values and attack detection rate are obtained. The proposed approach has outperformed the other two approaches concerning the attack detection rate by an increase of 11% and 18% against Approach 1 and Approach 2 respectively.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"62 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79025382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Intelligent Multilevel Node Authentication in Mobile Computing Using Clone Node 基于克隆节点的移动计算智能多级节点认证
IF 3.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.32604/cmc.2022.020920
N. Malhotra, M. Bala
{"title":"Intelligent Multilevel Node Authentication in Mobile Computing Using Clone Node","authors":"N. Malhotra, M. Bala","doi":"10.32604/cmc.2022.020920","DOIUrl":"https://doi.org/10.32604/cmc.2022.020920","url":null,"abstract":"","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"35 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90704047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traditional Chinese Medicine Automated Diagnosis Based on Knowledge Graph Reasoning 基于知识图推理的中药自动诊断
IF 3.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.32604/cmc.2022.017295
W. El-shafai, Amira A. Mahmoud, El-sayed M. El-Rabaie, Taha E. Taha, Osama F. Zahran, Adel S. El-Fishawy, M. Abd-Elnaby, Fathi E. Abd El-Samie
{"title":"Traditional Chinese Medicine Automated Diagnosis Based on Knowledge Graph Reasoning","authors":"W. El-shafai, Amira A. Mahmoud, El-sayed M. El-Rabaie, Taha E. Taha, Osama F. Zahran, Adel S. El-Fishawy, M. Abd-Elnaby, Fathi E. Abd El-Samie","doi":"10.32604/cmc.2022.017295","DOIUrl":"https://doi.org/10.32604/cmc.2022.017295","url":null,"abstract":"","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"54 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89245328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Allocation and Migration of Virtual Machines Using Machine Learning 基于机器学习的虚拟机分配与迁移
IF 3.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.32604/cmc.2022.020473
Suruchi Talwani, Khaled Alhazmi, Jimmy Singla, Hasan J. Alyamani, A. Bashir
: Cloud computing promises the advent of a new era of service boosted by means of virtualization technology. The process of virtualization means creation of virtual infrastructure, devices, servers and computing resources needed to deploy an application smoothly. This extensively practiced technology involves selecting an efficient Virtual Machine (VM) to complete the task by transferring applications from Physical Machines (PM) to VM or from VM to VM. The whole process is very challenging not only in terms of computation but also in terms of energy and memory. This research paper presents an energy aware VM allocation and migration approach to meet the challenges faced by the growing number of cloud data centres. Machine Learning (ML) based Artificial Bee Colony (ABC) is used to rank the VM with respect to the load while considering the energy efficiency as a crucial parameter. The most efficient virtual machines are further selected and thus depending on the dynamics of the load and energy, applications are migrated from one VM to another. The simulationanalysis is performed in Matlab and it shows that this research work results in more reduction in energy consumption as compared to existing studies.
云计算预示着虚拟化技术推动的服务新时代的到来。虚拟化过程意味着创建顺利部署应用程序所需的虚拟基础设施、设备、服务器和计算资源。这种广泛实践的技术包括选择一个高效的虚拟机(VM)来完成任务,将应用程序从物理机(PM)转移到VM或从VM转移到VM。整个过程非常具有挑战性,不仅在计算方面,而且在能量和内存方面。本文提出了一种能源意识的虚拟机分配和迁移方法,以满足日益增长的云数据中心所面临的挑战。采用基于机器学习(ML)的人工蜂群(Artificial Bee Colony, ABC)对虚拟机的负载进行排序,同时将能效作为关键参数。进一步选择最有效的虚拟机,从而根据负载和能量的动态,将应用程序从一个VM迁移到另一个VM。在Matlab中进行了仿真分析,结果表明,与现有的研究相比,本研究工作在降低能耗方面取得了更大的成果。
{"title":"Allocation and Migration of Virtual Machines Using Machine Learning","authors":"Suruchi Talwani, Khaled Alhazmi, Jimmy Singla, Hasan J. Alyamani, A. Bashir","doi":"10.32604/cmc.2022.020473","DOIUrl":"https://doi.org/10.32604/cmc.2022.020473","url":null,"abstract":": Cloud computing promises the advent of a new era of service boosted by means of virtualization technology. The process of virtualization means creation of virtual infrastructure, devices, servers and computing resources needed to deploy an application smoothly. This extensively practiced technology involves selecting an efficient Virtual Machine (VM) to complete the task by transferring applications from Physical Machines (PM) to VM or from VM to VM. The whole process is very challenging not only in terms of computation but also in terms of energy and memory. This research paper presents an energy aware VM allocation and migration approach to meet the challenges faced by the growing number of cloud data centres. Machine Learning (ML) based Artificial Bee Colony (ABC) is used to rank the VM with respect to the load while considering the energy efficiency as a crucial parameter. The most efficient virtual machines are further selected and thus depending on the dynamics of the load and energy, applications are migrated from one VM to another. The simulationanalysis is performed in Matlab and it shows that this research work results in more reduction in energy consumption as compared to existing studies.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"12 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89659172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Reactions’ Descriptors Selection and Yield Estimation Using Metaheuristic Algorithms and Voting Ensemble 基于元启发式算法和投票集合的反应描述符选择和产出估计
IF 3.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.32604/cmc.2022.020523
Olutomilayo Olayemi Petinrin, Faisal Saeed, Xiangtao Li, F. Ghabban, Ka-chun Wong
: Bioactive compounds in plants, which can be synthesized using N-arylation methods such as the Buchwald-Hartwig reaction, are essential in drug discovery for their pharmacological effects. Important descriptors are necessary for the estimation of yields in these reactions. This study explores ten metaheuristic algorithms for descriptor selection and model a voting ensemble for evaluation. The algorithms were evaluated based on computational time and the number of selected descriptors. Analyses show that robust performance is obtained with more descriptors, compared to cases where fewer descriptors are selected. The essential descriptor was deduced based on the frequency of occurrence within the 50 extracted data subsets, and better performance was achieved with the voting ensemble than other algorithms with RMSE of 6.4270 and R 2 of 0.9423. The results and deductions from this study can be readily applied in the decision-making process of chemical synthesis by saving the computational cost associated with initial descriptor selection for yield estimation. The ensemble model has also shown robust performance in its yield estimation ability and efficiency.
植物中的生物活性化合物,可以通过n -芳基化方法合成,如Buchwald-Hartwig反应,在药物发现中对其药理作用至关重要。重要的描述符对于估计这些反应的产率是必要的。本研究探索了十种用于描述符选择的元启发式算法,并建立了一个用于评估的投票集合模型。基于计算时间和所选描述符的数量对算法进行了评估。分析表明,与选择较少描述符的情况相比,使用更多描述符可以获得健壮的性能。根据所提取的50个数据子集的出现频率推导出基本描述符,投票集合的RMSE为6.4270,r2为0.9423,优于其他算法。本研究的结果和推论可以很容易地应用于化学合成的决策过程,节省了初始描述符选择与产率估计相关的计算成本。该集成模型在产量估计能力和效率方面也表现出了较好的鲁棒性。
{"title":"Reactions’ Descriptors Selection and Yield Estimation Using Metaheuristic Algorithms and Voting Ensemble","authors":"Olutomilayo Olayemi Petinrin, Faisal Saeed, Xiangtao Li, F. Ghabban, Ka-chun Wong","doi":"10.32604/cmc.2022.020523","DOIUrl":"https://doi.org/10.32604/cmc.2022.020523","url":null,"abstract":": Bioactive compounds in plants, which can be synthesized using N-arylation methods such as the Buchwald-Hartwig reaction, are essential in drug discovery for their pharmacological effects. Important descriptors are necessary for the estimation of yields in these reactions. This study explores ten metaheuristic algorithms for descriptor selection and model a voting ensemble for evaluation. The algorithms were evaluated based on computational time and the number of selected descriptors. Analyses show that robust performance is obtained with more descriptors, compared to cases where fewer descriptors are selected. The essential descriptor was deduced based on the frequency of occurrence within the 50 extracted data subsets, and better performance was achieved with the voting ensemble than other algorithms with RMSE of 6.4270 and R 2 of 0.9423. The results and deductions from this study can be readily applied in the decision-making process of chemical synthesis by saving the computational cost associated with initial descriptor selection for yield estimation. The ensemble model has also shown robust performance in its yield estimation ability and efficiency.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"52 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87910242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Classification of Citrus Plant Diseases Using Deep Transfer Learning 基于深度迁移学习的柑橘植物病害分类
IF 3.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2022-01-01 DOI: 10.32604/cmc.2022.019046
M. F. U. Rehman, Fawad Ahmed, M. A. Khan, U. Tariq, Sajjad Shaukat Jamal, Jawad Ahmad, I. Hussain
: In recent years, the field of deep learning has played an important role towards automatic detection and classification of diseases in vegetables and fruits. This in turn has helped in improving the quality and production of vegetables and fruits. Citrus fruits are well known for their taste and nutritional values. They are one of the natural and well known sources of vitamin C and planted worldwide. There are several diseases which severely affect the quality and yield of citrus fruits. In this paper, a new deep learning based technique is proposed for citrus disease classification. Two different pre-trained deep learning models have been used in this work. To increase the size of the citrus dataset used in this paper, image augmentation techniques are used. Moreover, to improve the visual quality of images, hybrid contrast stretching has been adopted. In addition, transfer learning is used to retrain the pre-trained models and the feature set is enriched by using feature fusion. The fused feature set is optimized using a meta-heuristic algorithm, the Whale Optimization Algorithm (WOA). The selected features are used for the classification of six different diseases of citrus plants. The proposed technique attains a classification accuracy of 95.7% with superior results when compared with recent techniques.
近年来,深度学习在蔬菜和水果病害的自动检测和分类方面发挥了重要作用。这反过来又有助于提高蔬菜和水果的质量和产量。柑橘类水果以其美味和营养价值而闻名。它们是维生素C的天然和众所周知的来源之一,种植在世界各地。柑桔病害严重影响柑桔果实的品质和产量。提出了一种基于深度学习的柑橘病害分类方法。在这项工作中使用了两种不同的预训练深度学习模型。为了增加本文中使用的柑橘数据集的大小,使用了图像增强技术。此外,为了提高图像的视觉质量,还采用了混合对比度拉伸。此外,利用迁移学习对预训练模型进行再训练,并利用特征融合丰富特征集。融合的特征集使用一种元启发式算法,鲸鱼优化算法(WOA)进行优化。所选择的特征用于柑橘植物6种不同病害的分类。该方法的分类准确率达到95.7%,与现有的分类方法相比效果更好。
{"title":"Classification of Citrus Plant Diseases Using Deep Transfer Learning","authors":"M. F. U. Rehman, Fawad Ahmed, M. A. Khan, U. Tariq, Sajjad Shaukat Jamal, Jawad Ahmad, I. Hussain","doi":"10.32604/cmc.2022.019046","DOIUrl":"https://doi.org/10.32604/cmc.2022.019046","url":null,"abstract":": In recent years, the field of deep learning has played an important role towards automatic detection and classification of diseases in vegetables and fruits. This in turn has helped in improving the quality and production of vegetables and fruits. Citrus fruits are well known for their taste and nutritional values. They are one of the natural and well known sources of vitamin C and planted worldwide. There are several diseases which severely affect the quality and yield of citrus fruits. In this paper, a new deep learning based technique is proposed for citrus disease classification. Two different pre-trained deep learning models have been used in this work. To increase the size of the citrus dataset used in this paper, image augmentation techniques are used. Moreover, to improve the visual quality of images, hybrid contrast stretching has been adopted. In addition, transfer learning is used to retrain the pre-trained models and the feature set is enriched by using feature fusion. The fused feature set is optimized using a meta-heuristic algorithm, the Whale Optimization Algorithm (WOA). The selected features are used for the classification of six different diseases of citrus plants. The proposed technique attains a classification accuracy of 95.7% with superior results when compared with recent techniques.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"4 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88376229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
期刊
Cmc-computers Materials & Continua
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1