首页 > 最新文献

Cognitive Neurodynamics最新文献

英文 中文
Alternating chimera states and synchronization in multilayer neuronal networks with ephaptic intralayer coupling 具有突触内层耦合的多层神经元网络中的交替嵌合态和同步性
IF 3.7 3区 工程技术 Q2 NEUROSCIENCES Pub Date : 2024-08-31 DOI: 10.1007/s11571-024-10169-y
Heng Li, Yong Xie

Over the past decade, most of researches on the communication between the neurons are based on synapses. However, the changes in action potentials in neurons may produce complex electromagnetic fields in the media, which may also have an impact on the electrical activity of neurons. To explore this factor, we construct a two-layer neuronal network composed of identical Hindmarsh–Rose neurons. Each neuron is connected with its neighbors in the layer via magnetic connections and a neuron in the corresponding position of the other layer via electrical synapse. By adjusting the electrical coupling strength and magnetic coupling strength, we find the appearance of alternating chimera states and transient chimera states whenever the intralayer coupling is nonlocal and local, respectively. According to our study, these phenomena have not been studied in multilayer networks of this structure. And it is found that the transient chimera states only could occur when the number of coupled neighbors is small. In addition, the states of two independent networks will affect the final states of networks applying the same sufficiently large interlayer coupling strength. Our study reveals a possible effect of electrical coupling and ephaptic coupling produced together on the dynamic behavior of the neuronal networks. Meanwhile, our results suggest that it makes sense to take electromagnetic induction into neuronal models.

在过去十年中,有关神经元之间通信的研究大多基于突触。然而,神经元动作电位的变化可能在介质中产生复杂的电磁场,这也可能对神经元的电活动产生影响。为了探索这一因素,我们构建了一个由相同的 Hindmarsh-Rose 神经元组成的双层神经元网络。每个神经元都通过磁连接与本层的邻近神经元相连,并通过电突触与另一层相应位置的神经元相连。通过调整电耦合强度和磁耦合强度,我们发现当层内耦合分别为非局部耦合和局部耦合时,会出现交替嵌合态和瞬时嵌合态。根据我们的研究,在这种结构的多层网络中还没有研究过这些现象。研究发现,只有当耦合邻域的数量较少时,才会出现瞬态嵌合态。此外,两个独立网络的状态会影响应用相同的足够大的层间耦合强度的网络的最终状态。我们的研究揭示了电耦合和突触耦合共同产生对神经元网络动态行为的可能影响。同时,我们的研究结果表明,将电磁感应引入神经元模型是有意义的。
{"title":"Alternating chimera states and synchronization in multilayer neuronal networks with ephaptic intralayer coupling","authors":"Heng Li, Yong Xie","doi":"10.1007/s11571-024-10169-y","DOIUrl":"https://doi.org/10.1007/s11571-024-10169-y","url":null,"abstract":"<p>Over the past decade, most of researches on the communication between the neurons are based on synapses. However, the changes in action potentials in neurons may produce complex electromagnetic fields in the media, which may also have an impact on the electrical activity of neurons. To explore this factor, we construct a two-layer neuronal network composed of identical Hindmarsh–Rose neurons. Each neuron is connected with its neighbors in the layer via magnetic connections and a neuron in the corresponding position of the other layer via electrical synapse. By adjusting the electrical coupling strength and magnetic coupling strength, we find the appearance of alternating chimera states and transient chimera states whenever the intralayer coupling is nonlocal and local, respectively. According to our study, these phenomena have not been studied in multilayer networks of this structure. And it is found that the transient chimera states only could occur when the number of coupled neighbors is small. In addition, the states of two independent networks will affect the final states of networks applying the same sufficiently large interlayer coupling strength. Our study reveals a possible effect of electrical coupling and ephaptic coupling produced together on the dynamic behavior of the neuronal networks. Meanwhile, our results suggest that it makes sense to take electromagnetic induction into neuronal models.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"13 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synaptic effects on the intermittent synchronization of gamma rhythms 突触对伽马节律间歇同步的影响
IF 3.7 3区 工程技术 Q2 NEUROSCIENCES Pub Date : 2024-08-29 DOI: 10.1007/s11571-024-10150-9
Quynh-Anh Nguyen, Leonid L. Rubchinsky

Synchronization of neural activity in the gamma frequency band is associated with various cognitive phenomena. Abnormalities of gamma synchronization may underlie symptoms of several neurological and psychiatric disorders such as schizophrenia and autism spectrum disorder. Properties of neural oscillations in the gamma band depend critically on the synaptic properties of the underlying circuits. This study explores how synaptic properties in pyramidal-interneuronal circuits affect not only the average synchronization strength but also the fine temporal patterning of neural synchrony. If two signals show only moderate synchrony strength, it may be possible to consider these dynamics as alternating between synchronized and desynchronized states. We use a model of connected circuits that produces pyramidal-interneuronal gamma oscillations to explore the temporal patterning of synchronized and desynchronized intervals. Changes in synaptic strength may alter the temporal patterning of synchronized dynamics (even if the average synchrony strength is not changed). Larger values of local synaptic connections promote longer desynchronization durations, while larger values of long-range synaptic connections promote shorter desynchronization durations. Furthermore, we show that circuits with different temporal patterning of synchronization may have different sensitivity to synaptic input. Thus, the alterations of synaptic strength may mediate physiological properties of neural circuits not only through change in the average synchrony level of gamma oscillations, but also through change in how synchrony is patterned in time over very short time scales.

伽马频段的神经活动同步与各种认知现象有关。伽马同步异常可能是精神分裂症和自闭症谱系障碍等多种神经和精神疾病的症状根源。伽马频段的神经振荡特性关键取决于底层回路的突触特性。本研究探讨了锥体-神经元间回路的突触特性如何不仅影响平均同步强度,而且影响神经同步的精细时间模式。如果两个信号仅表现出适度的同步强度,那么就有可能将这些动态视为同步和非同步状态之间的交替。我们使用一个产生锥体-神经元间伽玛振荡的连接电路模型来探索同步和非同步间隔的时间模式。突触强度的变化可能会改变同步动态的时间模式(即使平均同步强度没有变化)。局部突触连接的数值越大,非同步化持续时间越长,而长程突触连接的数值越大,非同步化持续时间越短。此外,我们还发现,具有不同时间同步模式的电路可能对突触输入具有不同的敏感性。因此,突触强度的改变可能不仅通过改变伽马振荡的平均同步水平,还通过改变极短时间尺度上的同步模式来介导神经回路的生理特性。
{"title":"Synaptic effects on the intermittent synchronization of gamma rhythms","authors":"Quynh-Anh Nguyen, Leonid L. Rubchinsky","doi":"10.1007/s11571-024-10150-9","DOIUrl":"https://doi.org/10.1007/s11571-024-10150-9","url":null,"abstract":"<p>Synchronization of neural activity in the gamma frequency band is associated with various cognitive phenomena. Abnormalities of gamma synchronization may underlie symptoms of several neurological and psychiatric disorders such as schizophrenia and autism spectrum disorder. Properties of neural oscillations in the gamma band depend critically on the synaptic properties of the underlying circuits. This study explores how synaptic properties in pyramidal-interneuronal circuits affect not only the average synchronization strength but also the fine temporal patterning of neural synchrony. If two signals show only moderate synchrony strength, it may be possible to consider these dynamics as alternating between synchronized and desynchronized states. We use a model of connected circuits that produces pyramidal-interneuronal gamma oscillations to explore the temporal patterning of synchronized and desynchronized intervals. Changes in synaptic strength may alter the temporal patterning of synchronized dynamics (even if the average synchrony strength is not changed). Larger values of local synaptic connections promote longer desynchronization durations, while larger values of long-range synaptic connections promote shorter desynchronization durations. Furthermore, we show that circuits with different temporal patterning of synchronization may have different sensitivity to synaptic input. Thus, the alterations of synaptic strength may mediate physiological properties of neural circuits not only through change in the average synchrony level of gamma oscillations, but also through change in how synchrony is patterned in time over very short time scales.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"28 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating the energy of dissipative neural systems 估算耗散神经系统的能量
IF 3.7 3区 工程技术 Q2 NEUROSCIENCES Pub Date : 2024-08-29 DOI: 10.1007/s11571-024-10166-1
Erik D. Fagerholm, Robert Leech, Federico E. Turkheimer, Gregory Scott, Milan Brázdil

There is, at present, a lack of consensus regarding precisely what is meant by the term 'energy' across the sub-disciplines of neuroscience. Definitions range from deficits in the rate of glucose metabolism in consciousness research to regional changes in neuronal activity in cognitive neuroscience. In computational neuroscience virtually all models define the energy of neuronal regions as a quantity that is in a continual process of dissipation to its surroundings. This, however, is at odds with the definition of energy used across all sub-disciplines of physics: a quantity that does not change as a dynamical system evolves in time. Here, we bridge this gap between the dissipative models used in computational neuroscience and the energy-conserving models of physics using a mathematical technique first proposed in the context of fluid dynamics. We go on to derive an expression for the energy of the linear time-invariant (LTI) state space equation. We then use resting-state fMRI data obtained from the human connectome project to show that LTI energy is associated with glucose uptake metabolism. Our hope is that this work paves the way for an increased understanding of energy in the brain, from both a theoretical as well as an experimental perspective.

目前,神经科学各分支学科对 "能量 "一词的确切含义缺乏共识。定义范围从意识研究中葡萄糖代谢率的缺陷到认知神经科学中神经元活动的区域变化。在计算神经科学中,几乎所有模型都将神经元区域的能量定义为一个不断向周围耗散的量。然而,这与物理学所有分支学科对能量的定义相悖:能量是一个不会随着动态系统的时间演化而改变的量。在这里,我们利用流体力学中首次提出的数学技术,弥合了计算神经科学中使用的耗散模型与物理学中的能量守恒模型之间的差距。我们进而推导出线性时不变(LTI)状态空间方程的能量表达式。然后,我们利用从人类连接组项目中获得的静息态 fMRI 数据,证明 LTI 能量与葡萄糖摄取代谢有关。我们希望这项工作能从理论和实验角度为加深对大脑能量的理解铺平道路。
{"title":"Estimating the energy of dissipative neural systems","authors":"Erik D. Fagerholm, Robert Leech, Federico E. Turkheimer, Gregory Scott, Milan Brázdil","doi":"10.1007/s11571-024-10166-1","DOIUrl":"https://doi.org/10.1007/s11571-024-10166-1","url":null,"abstract":"<p>There is, at present, a lack of consensus regarding precisely what is meant by the term 'energy' across the sub-disciplines of neuroscience. Definitions range from deficits in the rate of glucose metabolism in consciousness research to regional changes in neuronal activity in cognitive neuroscience. In computational neuroscience virtually all models define the energy of neuronal regions as a quantity that is in a continual process of dissipation to its surroundings. This, however, is at odds with the definition of energy used across all sub-disciplines of physics: a quantity that does not change as a dynamical system evolves in time. Here, we bridge this gap between the dissipative models used in computational neuroscience and the energy-conserving models of physics using a mathematical technique first proposed in the context of fluid dynamics. We go on to derive an expression for the energy of the linear time-invariant (LTI) state space equation. We then use resting-state fMRI data obtained from the human connectome project to show that LTI energy is associated with glucose uptake metabolism. Our hope is that this work paves the way for an increased understanding of energy in the brain, from both a theoretical as well as an experimental perspective.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"71 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cross-attention swin transformer network for EEG-based subject-independent cognitive load assessment 基于脑电图的受试者独立认知负荷评估的交叉注意斯温变压器网络
IF 3.7 3区 工程技术 Q2 NEUROSCIENCES Pub Date : 2024-08-20 DOI: 10.1007/s11571-024-10160-7
Zhongrui Li, Rongkai Zhang, Li Tong, Ying Zeng, Yuanlong Gao, Kai Yang, Bin Yan

EEG signals play a crucial role in assessing cognitive load, which is a key element in ensuring the secure operation of human–computer interaction systems. However, the variability of EEG signals across different subjects poses a challenge in applying the pre-trained cognitive load assessment model to new subjects. Moreover, previous domain adaptation research has primarily focused on developing complex network architectures to learn more domain-invariant features, overlooking the noise introduced by pseudo-labels and the challenges posed by domain migration problems. Therefore, this study proposes a novel cross-attention swin-transformer network for cross-subject cognitive load assessment, which achieves inter-domain feature alignment through parameter sharing in cross attention mechanism without using pseudo-labels, and utilizes maximum mean discrepancy (MMD) to measure the difference between the feature distributions of the source and target domains, further promoting feature alignment between domains. This method aims to leverage the advantages of cross-attention mechanism and MMD to better mitigate individual differences among subjects in cross-subject cognitive workload assessment. To validate the classification performance of the proposed network, two datasets of image recognition task and N-back task were employed for testing. Results show that, the proposed model outperformed advanced methods with cross-subject classification results of 88.13% and 81.27% on the on local and public datasets. The ablation experiment results reveal that using either the cross-attention mechanism or the MMD strategy alone improves cross-subject classification performance by 2.11% and 2.95% on the local dataset, respectively. Furthermore, the results of the EEG features distribution differences between all subjects before and after network training showed a significant reduction in feature distribution differences between subjects, further confirming the network’s effectiveness in minimizing inter-subject differences.

脑电信号在评估认知负荷方面起着至关重要的作用,而认知负荷是确保人机交互系统安全运行的关键因素。然而,不同受试者的脑电信号存在差异,这给将预先训练好的认知负荷评估模型应用于新受试者带来了挑战。此外,以往的领域适应研究主要集中在开发复杂的网络架构,以学习更多的领域不变特征,忽略了伪标签带来的噪声和领域迁移问题带来的挑战。因此,本研究提出了一种用于跨主体认知负荷评估的新型交叉注意swin-transformer网络,通过交叉注意机制中的参数共享实现域间特征对齐,而不使用伪标签,并利用最大均值差异(MMD)测量源域和目标域特征分布的差异,进一步促进域间特征对齐。该方法旨在利用交叉注意机制和最大均值差异的优势,在跨受试者认知工作量评估中更好地减轻受试者之间的个体差异。为了验证所提网络的分类性能,我们使用了图像识别任务和 N-back 任务两个数据集进行测试。结果表明,在本地数据集和公共数据集上,所提模型的跨主体分类结果分别为 88.13% 和 81.27%,优于先进方法。消融实验结果显示,在本地数据集上,单独使用交叉注意机制或 MMD 策略可将跨主体分类性能分别提高 2.11% 和 2.95%。此外,所有受试者在网络训练前后的脑电图特征分布差异结果显示,受试者之间的特征分布差异显著减少,进一步证实了网络在最小化受试者间差异方面的有效性。
{"title":"A cross-attention swin transformer network for EEG-based subject-independent cognitive load assessment","authors":"Zhongrui Li, Rongkai Zhang, Li Tong, Ying Zeng, Yuanlong Gao, Kai Yang, Bin Yan","doi":"10.1007/s11571-024-10160-7","DOIUrl":"https://doi.org/10.1007/s11571-024-10160-7","url":null,"abstract":"<p>EEG signals play a crucial role in assessing cognitive load, which is a key element in ensuring the secure operation of human–computer interaction systems. However, the variability of EEG signals across different subjects poses a challenge in applying the pre-trained cognitive load assessment model to new subjects. Moreover, previous domain adaptation research has primarily focused on developing complex network architectures to learn more domain-invariant features, overlooking the noise introduced by pseudo-labels and the challenges posed by domain migration problems. Therefore, this study proposes a novel cross-attention swin-transformer network for cross-subject cognitive load assessment, which achieves inter-domain feature alignment through parameter sharing in cross attention mechanism without using pseudo-labels, and utilizes maximum mean discrepancy (MMD) to measure the difference between the feature distributions of the source and target domains, further promoting feature alignment between domains. This method aims to leverage the advantages of cross-attention mechanism and MMD to better mitigate individual differences among subjects in cross-subject cognitive workload assessment. To validate the classification performance of the proposed network, two datasets of image recognition task and N-back task were employed for testing. Results show that, the proposed model outperformed advanced methods with cross-subject classification results of 88.13% and 81.27% on the on local and public datasets. The ablation experiment results reveal that using either the cross-attention mechanism or the MMD strategy alone improves cross-subject classification performance by 2.11% and 2.95% on the local dataset, respectively. Furthermore, the results of the EEG features distribution differences between all subjects before and after network training showed a significant reduction in feature distribution differences between subjects, further confirming the network’s effectiveness in minimizing inter-subject differences.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"57 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bimodal deep learning network based on CNN for fine motor imagery 基于 CNN 的双模态深度学习网络,用于精细运动成像
IF 3.7 3区 工程技术 Q2 NEUROSCIENCES Pub Date : 2024-08-19 DOI: 10.1007/s11571-024-10159-0
Chenyao Wu, Yu Wang, Shuang Qiu, Huiguang He

Motor imagery (MI) is an important brain-computer interface (BCI) paradigm. The traditional MI paradigm (imagining different limbs) limits the intuitive control of the outer devices, while fine MI paradigm (imagining different joint movements from the same limb) can control the mechanical arm without cognitive disconnection. However, the decoding performance of fine MI limits its application. Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) are widely used in BCI systems because of their portability and easy operation. In this study, a fine MI paradigm including four classes (hand, wrist, shoulder and rest) was designed, and the data of EEG-fNIRS bimodal brain activity was collected from 12 subjects. Event-related desynchronization (ERD) from EEG signals shows a contralateral dominant phenomenon, and there is difference between the ERD of the four classes. For fNIRS signal in the time dimension, the time periods with significant difference can be observed in the activation patterns of four MI tasks. Spatially, the signal peak based brain topographic map also shows difference of these four MI tasks. The EEG signal and fNIRS signal of these four classes are distinguishable. In this study, a bimodal fusion network is proposed to improve the fine MI tasks decoding performance. The features of these two modalities are extracted separately by two feature extractors based on convolutional neural networks (CNN). The recognition performance was significantly improved by the bimodal method proposed in this study, compared with the performance of the single-modal network. The proposed method outperformed all comparison methods, and achieved a four-class accuracy of 58.96%. This paper demonstrates the feasibility of EEG and fNIRS bimodal BCI systems for fine MI, and shows the effectiveness of the proposed bimodal fusion method. This research is supposed to support fine MI-based BCI systems with theories and techniques.

运动想象(MI)是一种重要的脑机接口(BCI)范式。传统的运动想象范式(想象不同的肢体)限制了对外部设备的直观控制,而精细的运动想象范式(想象同一肢体的不同关节运动)可以在不切断认知的情况下控制机械臂。然而,精细 MI 的解码性能限制了其应用。脑电图(EEG)和功能性近红外光谱(fNIRS)因其便携性和易操作性被广泛应用于生物识别(BCI)系统。本研究设计了包括手部、腕部、肩部和静息四类的精细 MI 范式,并收集了 12 名受试者的脑电图-近红外双模态脑活动数据。脑电图信号的事件相关不同步(ERD)显示出对侧优势现象,且四个等级的ERD存在差异。对于时间维度的 fNIRS 信号,可以观察到四种 MI 任务的激活模式存在显著差异的时间段。在空间维度上,基于信号峰值的脑地形图也显示出这四种 MI 任务的差异。这四类任务的脑电图信号和 fNIRS 信号是可以区分的。本研究提出了一种双模态融合网络,以提高精细 MI 任务的解码性能。基于卷积神经网络(CNN)的两个特征提取器分别提取这两种模态的特征。与单模态网络相比,本研究提出的双模态方法明显提高了识别性能。所提出的方法优于所有比较方法,四类准确率达到 58.96%。本文证明了脑电图和 fNIRS 双模 BCI 系统用于精细 MI 的可行性,并展示了所提出的双模融合方法的有效性。该研究为基于精细 MI 的 BCI 系统提供了理论和技术上的支持。
{"title":"A bimodal deep learning network based on CNN for fine motor imagery","authors":"Chenyao Wu, Yu Wang, Shuang Qiu, Huiguang He","doi":"10.1007/s11571-024-10159-0","DOIUrl":"https://doi.org/10.1007/s11571-024-10159-0","url":null,"abstract":"<p>Motor imagery (MI) is an important brain-computer interface (BCI) paradigm. The traditional MI paradigm (imagining different limbs) limits the intuitive control of the outer devices, while fine MI paradigm (imagining different joint movements from the same limb) can control the mechanical arm without cognitive disconnection. However, the decoding performance of fine MI limits its application. Electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) are widely used in BCI systems because of their portability and easy operation. In this study, a fine MI paradigm including four classes (hand, wrist, shoulder and rest) was designed, and the data of EEG-fNIRS bimodal brain activity was collected from 12 subjects. Event-related desynchronization (ERD) from EEG signals shows a contralateral dominant phenomenon, and there is difference between the ERD of the four classes. For fNIRS signal in the time dimension, the time periods with significant difference can be observed in the activation patterns of four MI tasks. Spatially, the signal peak based brain topographic map also shows difference of these four MI tasks. The EEG signal and fNIRS signal of these four classes are distinguishable. In this study, a bimodal fusion network is proposed to improve the fine MI tasks decoding performance. The features of these two modalities are extracted separately by two feature extractors based on convolutional neural networks (CNN). The recognition performance was significantly improved by the bimodal method proposed in this study, compared with the performance of the single-modal network. The proposed method outperformed all comparison methods, and achieved a four-class accuracy of 58.96%. This paper demonstrates the feasibility of EEG and fNIRS bimodal BCI systems for fine MI, and shows the effectiveness of the proposed bimodal fusion method. This research is supposed to support fine MI-based BCI systems with theories and techniques.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"11 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Striatum is the potential target for treating absence epilepsy: a theoretical evidence 纹状体是治疗失神性癫痫的潜在靶点:理论证据
IF 3.7 3区 工程技术 Q2 NEUROSCIENCES Pub Date : 2024-08-17 DOI: 10.1007/s11571-024-10161-6
Bing Hu, Weiting Zhou, Xunfu Ma

The output of the basal ganglia to the corticothalamic system plays an important role in regulating absence seizures. Inspired by experiments, we systematically study the crucial roles of two newly identified direct inhibitory striatal-cortical projections that project from the striatal D1 nucleus (SD1) and striatal D2 nucleus (SD2) to the cerebral cortex, in controlling absence seizures. Through computational simulation, we observe that typical 2–4 Hz spike and wave discharges (SWDs) can be induced through the pathological mechanism of cortical circuits, and both enhancing the inhibitory coupling weight on the striatal-cortical projections and improving the discharge activation level of striatal populations can effectively control typical SWDs. Furthermore, typical SWDs can be suppressed by appropriately adjusting several input projections directly related to the striatum, through regulating the activation level of striatal populations. Interestingly, several indirect striatum-related basal ganglia projections also have significant effects on the inhibition of typical SWDs, through the direct inhibitory striatal-cortical projections. Both the unidirectional control mode and bidirectional control mode for typical SWDs exist in our modified model. Importantly, the enhancement of coupling strengths on inhibitory striatal-cortical projections is beneficial for suppressing SWDs and may play a decisive regulatory role in the formation of control modes. Therefore, our study suggests that striatum may be potential effective targets for the treatment of absence seizures, through two newly identified direct inhibitory striatal-cortical projections. Interestingly, we find that external stimuli simultaneously targeting the striatum and another basal ganglia nucleus have a better control effect on SWDs than targeting a single basal ganglia nucleus, and the obtained results provide testable hypotheses for future experiments.

基底节向皮质-丘脑系统的输出在失神发作的调节中起着重要作用。受实验启发,我们系统地研究了两个新发现的纹状体-皮层直接抑制性投射,它们分别从纹状体 D1 核(SD1)和纹状体 D2 核(SD2)投射到大脑皮层,在控制失神发作中的关键作用。通过计算模拟,我们观察到典型的2-4赫兹尖波放电(SWDs)可通过皮层回路的病理机制诱发,而增强纹状体-皮层投射的抑制耦合权重和提高纹状体群的放电激活水平均可有效控制典型的SWDs。此外,通过调节纹状体群的激活水平,适当调整与纹状体直接相关的几个输入投射,也可以抑制典型的 SWD。有趣的是,通过纹状体-皮层的直接抑制性投射,几个与纹状体间接相关的基底节投射也对典型 SWDs 的抑制有显著效果。在我们改进的模型中,典型 SWD 的单向控制模式和双向控制模式都存在。重要的是,抑制性纹状体-皮层投射耦合强度的增强有利于抑制SWD,并可能在控制模式的形成过程中起到决定性的调节作用。因此,我们的研究表明,纹状体可能通过两个新发现的直接抑制性纹状体-皮层投射成为治疗失神发作的潜在有效靶点。有趣的是,我们发现同时针对纹状体和另一个基底节细胞核的外部刺激比针对单一基底节细胞核的外部刺激对失神发作有更好的控制效果。
{"title":"Striatum is the potential target for treating absence epilepsy: a theoretical evidence","authors":"Bing Hu, Weiting Zhou, Xunfu Ma","doi":"10.1007/s11571-024-10161-6","DOIUrl":"https://doi.org/10.1007/s11571-024-10161-6","url":null,"abstract":"<p>The output of the basal ganglia to the corticothalamic system plays an important role in regulating absence seizures. Inspired by experiments, we systematically study the crucial roles of two newly identified direct inhibitory striatal-cortical projections that project from the striatal D1 nucleus (SD1) and striatal D2 nucleus (SD2) to the cerebral cortex, in controlling absence seizures. Through computational simulation, we observe that typical 2–4 Hz spike and wave discharges (SWDs) can be induced through the pathological mechanism of cortical circuits, and both enhancing the inhibitory coupling weight on the striatal-cortical projections and improving the discharge activation level of striatal populations can effectively control typical SWDs. Furthermore, typical SWDs can be suppressed by appropriately adjusting several input projections directly related to the striatum, through regulating the activation level of striatal populations. Interestingly, several indirect striatum-related basal ganglia projections also have significant effects on the inhibition of typical SWDs, through the direct inhibitory striatal-cortical projections. Both the unidirectional control mode and bidirectional control mode for typical SWDs exist in our modified model. Importantly, the enhancement of coupling strengths on inhibitory striatal-cortical projections is beneficial for suppressing SWDs and may play a decisive regulatory role in the formation of control modes. Therefore, our study suggests that striatum may be potential effective targets for the treatment of absence seizures, through two newly identified direct inhibitory striatal-cortical projections. Interestingly, we find that external stimuli simultaneously targeting the striatum and another basal ganglia nucleus have a better control effect on SWDs than targeting a single basal ganglia nucleus, and the obtained results provide testable hypotheses for future experiments.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"10 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Set-pMAE: spatial-spEctral-temporal based parallel masked autoEncoder for EEG emotion recognition Set-pMAE:用于脑电图情绪识别的基于空间-ctral-temporal 的并行屏蔽自动编码器
IF 3.7 3区 工程技术 Q2 NEUROSCIENCES Pub Date : 2024-08-14 DOI: 10.1007/s11571-024-10162-5
Chenyu Pan, Huimin Lu, Chenglin Lin, Zeyi Zhong, Bing Liu

The utilization of Electroencephalography (EEG) for emotion recognition has emerged as the primary tool in the field of affective computing. Traditional supervised learning methods are typically constrained by the availability of labeled data, which can result in weak generalizability of learned features. Additionally, EEG signals are highly correlated with human emotional states across temporal, spatial, and spectral dimensions. In this paper, we propose a Spatial-spEctral-Temporal based parallel Masked Autoencoder (SET-pMAE) model for EEG emotion recognition. SET-pMAE learns generic representations of spatial-temporal features and spatial-spectral features through a dual-branch self-supervised task. The reconstruction task of the spatial-temporal branch aims to capture the spatial-temporal contextual dependencies of EEG signals, while the reconstruction task of the spatial-spectral branch focuses on capturing the intrinsic spatial associations of the spectral domain across different brain regions. By learning from both tasks simultaneously, SET-pMAE can capture the generalized representations of features from the both tasks, thereby reducing the risk of overfitting. In order to verify the effectiveness of the proposed model, a series of experiments are conducted on the DEAP and DREAMER datasets. Results from experiments reveal that by employing self-supervised learning, the proposed model effectively captures more discriminative and generalized features, thereby attaining excellent performance.

利用脑电图(EEG)进行情绪识别已成为情感计算领域的主要工具。传统的监督学习方法通常受制于标记数据的可用性,这可能导致所学特征的泛化能力较弱。此外,脑电信号在时间、空间和频谱维度上与人类情绪状态高度相关。在本文中,我们提出了一种基于空间-外延-时间的并行掩码自动编码器(SET-pMAE)模型,用于脑电图情绪识别。SET-pMAE 通过双分支自监督任务学习空间-时间特征和空间-光谱特征的通用表征。空间-时间分支的重构任务旨在捕捉脑电信号的空间-时间上下文依赖关系,而空间-频谱分支的重构任务则侧重于捕捉不同脑区频谱域的内在空间关联。通过同时学习这两个任务,SET-pMAE 可以捕捉这两个任务中特征的广义表征,从而降低过拟合的风险。为了验证所提模型的有效性,我们在 DEAP 和 DREAMER 数据集上进行了一系列实验。实验结果表明,通过采用自监督学习,所提出的模型有效地捕捉到了更多具有区分性和概括性的特征,从而获得了优异的性能。
{"title":"Set-pMAE: spatial-spEctral-temporal based parallel masked autoEncoder for EEG emotion recognition","authors":"Chenyu Pan, Huimin Lu, Chenglin Lin, Zeyi Zhong, Bing Liu","doi":"10.1007/s11571-024-10162-5","DOIUrl":"https://doi.org/10.1007/s11571-024-10162-5","url":null,"abstract":"<p>The utilization of Electroencephalography (EEG) for emotion recognition has emerged as the primary tool in the field of affective computing. Traditional supervised learning methods are typically constrained by the availability of labeled data, which can result in weak generalizability of learned features. Additionally, EEG signals are highly correlated with human emotional states across temporal, spatial, and spectral dimensions. In this paper, we propose a Spatial-spEctral-Temporal based parallel Masked Autoencoder (SET-pMAE) model for EEG emotion recognition. SET-pMAE learns generic representations of spatial-temporal features and spatial-spectral features through a dual-branch self-supervised task. The reconstruction task of the spatial-temporal branch aims to capture the spatial-temporal contextual dependencies of EEG signals, while the reconstruction task of the spatial-spectral branch focuses on capturing the intrinsic spatial associations of the spectral domain across different brain regions. By learning from both tasks simultaneously, SET-pMAE can capture the generalized representations of features from the both tasks, thereby reducing the risk of overfitting. In order to verify the effectiveness of the proposed model, a series of experiments are conducted on the DEAP and DREAMER datasets. Results from experiments reveal that by employing self-supervised learning, the proposed model effectively captures more discriminative and generalized features, thereby attaining excellent performance.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"4 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of a cognitive network with effective connectivity to post-stroke cognitive impairment 识别与中风后认知障碍具有有效连接性的认知网络
IF 3.7 3区 工程技术 Q2 NEUROSCIENCES Pub Date : 2024-08-12 DOI: 10.1007/s11571-024-10139-4
Jing Zhang, Hui Tang, Lijun Zuo, Hao Liu, Chang Liu, Zixiao Li, Jing Jing, Yongjun Wang, Tao Liu

Altered connectivity within complex functional networks has been observed in individuals with post-stroke cognitive impairment (PSCI) and during cognitive tasks. This study aimed to identify a cognitive function network that is responsive to cognitive changes during cognitive tasks and also sensitive to PSCI. To explore the network, we analyzed resting-state fMRI data from 20 PSCI patients and task-state fMRI data from 100 unrelated healthy young adults using functional connectivity analysis. We further employed spectral dynamic causal modeling to examine the effective connectivity among the pivotal regions within the network. Our findings revealed a common cognitive network that encompassed the hub regions 231 in the Subcortical network (SC), 70, 199, 242 in the Frontoparietal network (FP), 214 in the Visual II network, and 253 in the Cerebellum network (CBL). These hubs’ effective connectivity, which showed reliable but slight changes during different cognitive tasks, exhibited notable alterations when comparing post-stroke cognitive impairment and improvement statuses. Decreased coupling strengths were observed in effective connections to CBL253 and from SC231 and FP70 in the improvement status. Increased connections to SC231 and FP70, from CBL253 and FP242, as well as from FP199 and FP242 to FP242 were observed in this status. These alterations exhibited a high sensitivity to signs of recovery, ranging from 80 to 100%. The effective connectivity pattern in both post-stroke cognitive statuses also reflected the influence of the MoCA score. This research succeeded in identifying a cognitive network with sensitive effective connectivity to cognitive changes after stroke, presenting a potential neuroimaging biomarker for forthcoming interventional studies.

在脑卒中后认知障碍(PSCI)患者和认知任务期间,复杂功能网络内的连接性发生了改变。本研究旨在确定一个认知功能网络,该网络对认知任务过程中的认知变化具有反应性,同时对卒中后认知障碍也很敏感。为了探索该网络,我们使用功能连接分析法分析了 20 名 PSCI 患者的静息态 fMRI 数据和 100 名无关联健康年轻人的任务态 fMRI 数据。我们进一步采用频谱动态因果建模来研究网络中关键区域之间的有效连接。我们的发现揭示了一个共同的认知网络,其中包括皮层下网络(SC)中的枢纽区域 231,前顶叶网络(FP)中的枢纽区域 70、199 和 242,视觉 II 网络中的枢纽区域 214,以及小脑网络(CBL)中的枢纽区域 253。这些中枢的有效连通性在不同的认知任务中表现出可靠但轻微的变化,在比较卒中后认知障碍和认知改善状态时表现出明显的变化。在改善状态下,与 CBL253 以及 SC231 和 FP70 之间的有效连接耦合强度降低。在这种状态下,与 SC231 和 FP70 的连接、CBL253 和 FP242 的连接以及 FP199 和 FP242 与 FP242 的连接都有所增加。这些变化对恢复迹象的敏感度很高,从 80% 到 100% 不等。卒中后两种认知状态下的有效连接模式也反映了MoCA评分的影响。这项研究成功地发现了一个对中风后认知变化具有敏感有效连接性的认知网络,为即将开展的干预研究提供了一个潜在的神经影像生物标志物。
{"title":"Identification of a cognitive network with effective connectivity to post-stroke cognitive impairment","authors":"Jing Zhang, Hui Tang, Lijun Zuo, Hao Liu, Chang Liu, Zixiao Li, Jing Jing, Yongjun Wang, Tao Liu","doi":"10.1007/s11571-024-10139-4","DOIUrl":"https://doi.org/10.1007/s11571-024-10139-4","url":null,"abstract":"<p>Altered connectivity within complex functional networks has been observed in individuals with post-stroke cognitive impairment (PSCI) and during cognitive tasks. This study aimed to identify a cognitive function network that is responsive to cognitive changes during cognitive tasks and also sensitive to PSCI. To explore the network, we analyzed resting-state fMRI data from 20 PSCI patients and task-state fMRI data from 100 unrelated healthy young adults using functional connectivity analysis. We further employed spectral dynamic causal modeling to examine the effective connectivity among the pivotal regions within the network. Our findings revealed a common cognitive network that encompassed the hub regions 231 in the Subcortical network (SC), 70, 199, 242 in the Frontoparietal network (FP), 214 in the Visual II network, and 253 in the Cerebellum network (CBL). These hubs’ effective connectivity, which showed reliable but slight changes during different cognitive tasks, exhibited notable alterations when comparing post-stroke cognitive impairment and improvement statuses. Decreased coupling strengths were observed in effective connections to CBL253 and from SC231 and FP70 in the improvement status. Increased connections to SC231 and FP70, from CBL253 and FP242, as well as from FP199 and FP242 to FP242 were observed in this status. These alterations exhibited a high sensitivity to signs of recovery, ranging from 80 to 100%. The effective connectivity pattern in both post-stroke cognitive statuses also reflected the influence of the MoCA score. This research succeeded in identifying a cognitive network with sensitive effective connectivity to cognitive changes after stroke, presenting a potential neuroimaging biomarker for forthcoming interventional studies.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"3 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142206240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global synchronization of functional corticomuscular coupling under precise grip tasks using multichannel EEG and EMG signals 利用多通道脑电图和肌电图信号对精确抓握任务下的皮质肌肉功能耦合进行全球同步分析
IF 3.7 3区 工程技术 Q2 NEUROSCIENCES Pub Date : 2024-08-06 DOI: 10.1007/s11571-024-10157-2
Xiaoling Chen, Tingting Shen, Yingying Hao, Jinyuan Zhang, Ping Xie

Functional corticomuscular coupling (FCMC), a phenomenon describing the information interaction between the cortex and muscles, plays an important role in assessing hand movements. However, related studies mainly focused on specific actions by one-to-one mapping between the brain and muscles, ignoring the global synchronization across the motor system. Little research has been done on the FCMC difference between the brain and different muscle groups in terms of precise grip tasks. This study combined the maximum information coefficient (MIC) and the S estimation method and constructed a multivariate global synchronization index (MGSI) to measure the FCMC by analyzing the multichannel electroencephalogram (EEG) and electromyogram (EMG) during precise grip tasks. Both signals were collected from 12 healthy subjects while performing different weight object tasks. Our results on Hilbert-Huang spectral entropy (HHSE) of signals showed differences in task stages in both β (13–30 Hz) and γ (31–45 Hz) bands. The weight difference was reflected in the HHSE of channel CP5 and muscles at both ends of the upper limb. The one-to-one mapping with MIC between EEG and the muscle pair AD-FDI showed larger MIC values than the muscle pair B-CED; the same trend was seen on the MGSI values. However, the difference in weight of static tasks was not significant. Both MGSI values and the connect ratio of EEG were related to HHSE values. This work investigated the changes in the cortex and muscles during precise grip tasks from different perspectives, contributing to a better understanding of human motor control.

功能性皮质肌肉耦合(FCMC)是一种描述大脑皮层与肌肉之间信息交互的现象,在评估手部运动中发挥着重要作用。然而,相关研究主要通过大脑和肌肉之间一对一的映射来关注特定动作,而忽略了整个运动系统的全局同步性。在精确握力任务方面,有关大脑与不同肌肉群之间的 FCMC 差异的研究还很少。本研究结合最大信息系数(MIC)和 S 估计法,通过分析精确抓握任务中的多通道脑电图(EEG)和肌电图(EMG),构建了多变量全局同步指数(MGSI)来测量 FCMC。这两个信号都是在 12 名健康受试者执行不同重量物体任务时采集的。我们对信号的希尔伯特-黄频谱熵(HHSE)的研究结果表明,在任务阶段,β(13-30 Hz)和γ(31-45 Hz)频段的信号存在差异。重量差异反映在 CP5 频道和上肢两端肌肉的 HHSE 上。EEG 与肌肉对 AD-FDI 之间的一对一 MIC 映射显示,MIC 值大于肌肉对 B-CED;MGSI 值也有同样的趋势。然而,静态任务的权重差异并不显著。MGSI 值和脑电图的连接比都与 HHSE 值有关。这项工作从不同角度研究了精确抓握任务过程中大脑皮层和肌肉的变化,有助于更好地理解人类的运动控制。
{"title":"Global synchronization of functional corticomuscular coupling under precise grip tasks using multichannel EEG and EMG signals","authors":"Xiaoling Chen, Tingting Shen, Yingying Hao, Jinyuan Zhang, Ping Xie","doi":"10.1007/s11571-024-10157-2","DOIUrl":"https://doi.org/10.1007/s11571-024-10157-2","url":null,"abstract":"<p>Functional corticomuscular coupling (FCMC), a phenomenon describing the information interaction between the cortex and muscles, plays an important role in assessing hand movements. However, related studies mainly focused on specific actions by one-to-one mapping between the brain and muscles, ignoring the global synchronization across the motor system. Little research has been done on the FCMC difference between the brain and different muscle groups in terms of precise grip tasks. This study combined the maximum information coefficient (MIC) and the S estimation method and constructed a multivariate global synchronization index (MGSI) to measure the FCMC by analyzing the multichannel electroencephalogram (EEG) and electromyogram (EMG) during precise grip tasks. Both signals were collected from 12 healthy subjects while performing different weight object tasks. Our results on Hilbert-Huang spectral entropy (HHSE) of signals showed differences in task stages in both<i> β</i> (13–30 Hz) and <i>γ</i> (31–45 Hz) bands. The weight difference was reflected in the HHSE of channel CP5 and muscles at both ends of the upper limb. The one-to-one mapping with MIC between EEG and the muscle pair AD-FDI showed larger MIC values than the muscle pair B-CED; the same trend was seen on the MGSI values. However, the difference in weight of static tasks was not significant. Both MGSI values and the connect ratio of EEG were related to HHSE values. This work investigated the changes in the cortex and muscles during precise grip tasks from different perspectives, contributing to a better understanding of human motor control.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"29 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141949153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Speed is associated with polarization during subjective evaluation: no tradeoff, but an effect of the ease of processing 速度与主观评价过程中的两极分化有关:没有取舍,而是处理难易程度的影响
IF 3.7 3区 工程技术 Q2 NEUROSCIENCES Pub Date : 2024-07-30 DOI: 10.1007/s11571-024-10151-8
Chunyu Ma, Yimeng Jin, Johan Lauwereyns

In human perceptual decision-making, the speed-accuracy tradeoff establishes a causal link between urgency and reduced accuracy. Less is known about how speed relates to the subjective evaluation of visual images. Here, we conducted a set of four experiments to tease apart two alternative hypotheses for the relation between speed and subjective evaluation. The hypothesis of “Speed-Polarization Tradeoff” implies that urgency causes more polarized evaluations. In contrast, the “Ease-of-Processing” hypothesis suggests that any association between speed and polarization is due to the salience of evaluation-relevant image content. The more salient the content, the easier to process, and therefore the faster and more extreme the evaluation. In each experiment, we asked participants to evaluate images on a continuous scale from − 10 to + 10 and measured their response times; in Experiments 1–3, the participants rated real-world images in terms of morality (from “very immoral,” -10, to “very moral,” +10); in Experiment 4, the participants rated food images in terms of appetitiveness (from “very disgusting,” -10, to “very attractive,” +10). In Experiments 1, 3, and 4, we used a cueing procedure to inform the participants on a trial-by-trial basis whether they could make a self-paced (SP) evaluation or whether they had to perform a time-limited (TL) evaluation within 2 s. In Experiment 2, we asked participants to rate the easiness of their SP moral evaluations. Compared to the SP conditions, the responses in the TL condition were consistently much faster, indicating that our urgency manipulation was successful. However, comparing the SP versus TL conditions, we found no significant differences in any of the evaluations. Yet, the reported ease of processing of moral evaluation covaried strongly with both the response speed and the polarization of evaluation. The overall pattern of data indicated that, while speed is associated with polarization, urgency does not cause participants to make more extreme evaluations. Instead, the association between speed and polarization reflects the ease of processing. Images that are easy to evaluate evoke faster and more extreme scores than images for which the interpretation is uncertain.

在人类的感知决策中,速度-准确性权衡在紧迫性和准确性降低之间建立了因果联系。至于速度与视觉图像的主观评价之间的关系,人们则知之甚少。在此,我们进行了一组四项实验,以揭示速度与主观评价之间关系的两种不同假设。速度-两极分化权衡 "假设意味着紧迫性会导致更多的两极分化评价。与此相反,"易处理 "假设认为,速度与两极化之间的任何关联都是由于与评价相关的图像内容的显著性造成的。内容越突出,处理起来就越容易,因此评价也就越快、越极端。在每个实验中,我们都要求参与者对图像进行从-10到+10的连续评价,并测量他们的反应时间;在实验1-3中,参与者对现实世界中的图像进行道德评价(从 "非常不道德"-10到 "非常道德 "+10);在实验4中,参与者对食物图像进行食欲评价(从 "非常恶心"-10到 "非常诱人 "+10)。在实验 1、3 和 4 中,我们使用了提示程序,逐次告知被试他们是可以进行自定步调(SP)评价,还是必须在 2 秒钟内进行限时(TL)评价。与 SP 条件相比,TL 条件下的反应速度始终要快得多,这表明我们的紧迫性操纵是成功的。然而,比较 SP 和 TL 条件,我们发现在任何评价中都没有显著差异。然而,所报告的道德评价处理的难易程度与反应速度和评价的极化程度都有很大关系。数据的总体模式表明,虽然速度与极化有关,但紧迫性并不会导致参与者做出更极端的评价。相反,速度与极化之间的关联反映了处理的难易程度。与解释不确定的图像相比,易于评价的图像会引起更快和更极端的评分。
{"title":"Speed is associated with polarization during subjective evaluation: no tradeoff, but an effect of the ease of processing","authors":"Chunyu Ma, Yimeng Jin, Johan Lauwereyns","doi":"10.1007/s11571-024-10151-8","DOIUrl":"https://doi.org/10.1007/s11571-024-10151-8","url":null,"abstract":"<p>In human perceptual decision-making, the speed-accuracy tradeoff establishes a causal link between urgency and reduced accuracy. Less is known about how speed relates to the subjective evaluation of visual images. Here, we conducted a set of four experiments to tease apart two alternative hypotheses for the relation between speed and subjective evaluation. The hypothesis of “Speed-Polarization Tradeoff” implies that urgency causes more polarized evaluations. In contrast, the “Ease-of-Processing” hypothesis suggests that any association between speed and polarization is due to the salience of evaluation-relevant image content. The more salient the content, the easier to process, and therefore the faster and more extreme the evaluation. In each experiment, we asked participants to evaluate images on a continuous scale from − 10 to + 10 and measured their response times; in Experiments 1–3, the participants rated real-world images in terms of morality (from “very immoral,” -10, to “very moral,” +10); in Experiment 4, the participants rated food images in terms of appetitiveness (from “very disgusting,” -10, to “very attractive,” +10). In Experiments 1, 3, and 4, we used a cueing procedure to inform the participants on a trial-by-trial basis whether they could make a self-paced (SP) evaluation or whether they had to perform a time-limited (TL) evaluation within 2 s. In Experiment 2, we asked participants to rate the easiness of their SP moral evaluations. Compared to the SP conditions, the responses in the TL condition were consistently much faster, indicating that our urgency manipulation was successful. However, comparing the SP versus TL conditions, we found no significant differences in any of the evaluations. Yet, the reported ease of processing of moral evaluation covaried strongly with both the response speed and the polarization of evaluation. The overall pattern of data indicated that, while speed is associated with polarization, urgency does not cause participants to make more extreme evaluations. Instead, the association between speed and polarization reflects the ease of processing. Images that are easy to evaluate evoke faster and more extreme scores than images for which the interpretation is uncertain.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"20 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cognitive Neurodynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1