Pub Date : 2023-07-18DOI: 10.3390/computers12070143
Alkinoos-Ioannis Zourmpakis, M. Kalogiannakis, Stamatios Papadakis
In recent years, gamification has captured the attention of researchers and educators, particularly in science education, where students often express negative emotions. Gamification methods aim to motivate learners to participate in learning by incorporating intrinsic and extrinsic motivational factors. However, the effectiveness of gamification has yielded varying outcomes, prompting researchers to explore adaptive gamification as an alternative approach. Nevertheless, there needs to be more research on adaptive gamification approaches, particularly concerning motivation, which is the primary objective of gamification. In this study, we developed and tested an adaptive gamification environment based on specific motivational and psychological frameworks. This environment incorporated adaptive criteria, learning strategies, gaming elements, and all crucial aspects of science education for six classes of third-grade students in primary school. We employed a quantitative approach to gain insights into the motivational impact on students and their perception of the adaptive gamification application. We aimed to understand how each game element experienced by students influenced their motivation. Based on our findings, students were more motivated to learn science when using an adaptive gamification environment. Additionally, the adaptation process was largely successful, as students generally liked the game elements integrated into their lessons, indicating the effectiveness of the multidimensional framework employed in enhancing students’ experiences and engagement.
{"title":"Adaptive Gamification in Science Education: An Analysis of the Impact of implementation and Adapted game Elements on Students' Motivation","authors":"Alkinoos-Ioannis Zourmpakis, M. Kalogiannakis, Stamatios Papadakis","doi":"10.3390/computers12070143","DOIUrl":"https://doi.org/10.3390/computers12070143","url":null,"abstract":"In recent years, gamification has captured the attention of researchers and educators, particularly in science education, where students often express negative emotions. Gamification methods aim to motivate learners to participate in learning by incorporating intrinsic and extrinsic motivational factors. However, the effectiveness of gamification has yielded varying outcomes, prompting researchers to explore adaptive gamification as an alternative approach. Nevertheless, there needs to be more research on adaptive gamification approaches, particularly concerning motivation, which is the primary objective of gamification. In this study, we developed and tested an adaptive gamification environment based on specific motivational and psychological frameworks. This environment incorporated adaptive criteria, learning strategies, gaming elements, and all crucial aspects of science education for six classes of third-grade students in primary school. We employed a quantitative approach to gain insights into the motivational impact on students and their perception of the adaptive gamification application. We aimed to understand how each game element experienced by students influenced their motivation. Based on our findings, students were more motivated to learn science when using an adaptive gamification environment. Additionally, the adaptation process was largely successful, as students generally liked the game elements integrated into their lessons, indicating the effectiveness of the multidimensional framework employed in enhancing students’ experiences and engagement.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"70 1","pages":"143"},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139358138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-18DOI: 10.3390/computers12070142
O. Montoya, O. Flórez-Cediel, W. Gil-González
This paper utilizes convex optimization to implement a day-ahead scheduling strategy for operating a photovoltaic distribution static compensator (PV-STATCOM) in medium-voltage distribution networks. The nonlinear non-convex programming model of the day-ahead scheduling strategy is transformed into a convex optimization model using the second-order cone programming approach in the complex domain. The main goal of efficiently operating PV-STATCOMs in distribution networks is to dynamically compensate for the active and reactive power generated by renewable energy resources such as photovoltaic plants. This is achieved by controlling power electronic converters, usually voltage source converters, to manage reactive power with lagging or leading power factors. Numerical simulations were conducted to analyze the effects of different power factors on the IEEE 33- and 69-bus systems. The simulations considered operations with a unity power factor (active power injection only), a zero power factor (reactive power injection only), and a variable power factor (active and reactive power injections). The results demonstrated the benefits of dynamic, active and reactive power compensation in reducing grid power losses, voltage profile deviations, and energy purchasing costs at the substation terminals. These simulations were conducted using the CVX tool and the Gurobi solver in the MATLAB programming environment.
{"title":"Efficient Day-Ahead Scheduling of PV-STATCOMs in Medium-Voltage Distribution Networks Using a Second-Order Cone Relaxation","authors":"O. Montoya, O. Flórez-Cediel, W. Gil-González","doi":"10.3390/computers12070142","DOIUrl":"https://doi.org/10.3390/computers12070142","url":null,"abstract":"This paper utilizes convex optimization to implement a day-ahead scheduling strategy for operating a photovoltaic distribution static compensator (PV-STATCOM) in medium-voltage distribution networks. The nonlinear non-convex programming model of the day-ahead scheduling strategy is transformed into a convex optimization model using the second-order cone programming approach in the complex domain. The main goal of efficiently operating PV-STATCOMs in distribution networks is to dynamically compensate for the active and reactive power generated by renewable energy resources such as photovoltaic plants. This is achieved by controlling power electronic converters, usually voltage source converters, to manage reactive power with lagging or leading power factors. Numerical simulations were conducted to analyze the effects of different power factors on the IEEE 33- and 69-bus systems. The simulations considered operations with a unity power factor (active power injection only), a zero power factor (reactive power injection only), and a variable power factor (active and reactive power injections). The results demonstrated the benefits of dynamic, active and reactive power compensation in reducing grid power losses, voltage profile deviations, and energy purchasing costs at the substation terminals. These simulations were conducted using the CVX tool and the Gurobi solver in the MATLAB programming environment.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"45 1","pages":"142"},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90549772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-17DOI: 10.3390/computation11070143
K. Oshinubi, O. J. Peter, Emmanuel Addai, Enock Mwizerwa, Oluwatosin Babasola, I. V. Nwabufo, Ibrahima Sané, U. M. Adam, Adejimi Adeniji, Janet O. Agbaje
In this paper, we develop a deterministic mathematical epidemic model for tuberculosis outbreaks in order to study the disease’s impact in a given population. We develop a qualitative analysis of the model by showing that the solution of the model is positive and bounded. The global stability analysis of the model uses Lyapunov functions and the threshold quantity of the model, which is the basic reproduction number is estimated. The existence and uniqueness analysis for Caputo fractional tuberculosis outbreak model is presented by transforming the deterministic model to a Caputo sense model. The deterministic model is used to predict real data from Uganda and Rwanda to see how well our model captured the dynamics of the disease in the countries considered. Furthermore, the sensitivity analysis of the parameters according to R0 was considered in this study. The normalised forward sensitivity index is used to determine the most sensitive variables that are important for infection control. We simulate the Caputo fractional tuberculosis outbreak model using the Adams–Bashforth–Moulton approach to investigate the impact of treatment and vaccine rates, as well as the disease trajectory. Overall, our findings imply that increasing vaccination and especially treatment availability for infected people can reduce the prevalence and burden of tuberculosis on the human population.
{"title":"Mathematical Modelling of Tuberculosis Outbreak in an East African Country Incorporating Vaccination and Treatment","authors":"K. Oshinubi, O. J. Peter, Emmanuel Addai, Enock Mwizerwa, Oluwatosin Babasola, I. V. Nwabufo, Ibrahima Sané, U. M. Adam, Adejimi Adeniji, Janet O. Agbaje","doi":"10.3390/computation11070143","DOIUrl":"https://doi.org/10.3390/computation11070143","url":null,"abstract":"In this paper, we develop a deterministic mathematical epidemic model for tuberculosis outbreaks in order to study the disease’s impact in a given population. We develop a qualitative analysis of the model by showing that the solution of the model is positive and bounded. The global stability analysis of the model uses Lyapunov functions and the threshold quantity of the model, which is the basic reproduction number is estimated. The existence and uniqueness analysis for Caputo fractional tuberculosis outbreak model is presented by transforming the deterministic model to a Caputo sense model. The deterministic model is used to predict real data from Uganda and Rwanda to see how well our model captured the dynamics of the disease in the countries considered. Furthermore, the sensitivity analysis of the parameters according to R0 was considered in this study. The normalised forward sensitivity index is used to determine the most sensitive variables that are important for infection control. We simulate the Caputo fractional tuberculosis outbreak model using the Adams–Bashforth–Moulton approach to investigate the impact of treatment and vaccine rates, as well as the disease trajectory. Overall, our findings imply that increasing vaccination and especially treatment availability for infected people can reduce the prevalence and burden of tuberculosis on the human population.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"1 1","pages":"143"},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83117820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-17DOI: 10.3390/computation11070144
A. Varga, J. Kizek, M. Rimár, M. Fedak, Ivan Čorný, L. Lukáč
Modern heating furnaces use combined modes of heating the charge. At high heating temperatures, more radiation heating is used; at lower temperatures, more convection heating is used. In large heating furnaces, such as pusher furnaces, it is necessary to monitor the heating of the material zonally. Zonal heating allows the appropriate thermal regime to be set in each zone, according to the desired parameters for heating the charge. The problem for each heating furnace is to set the optimum thermal regime so that at the end of the heating, after the material has been cross-sectioned, there is a uniform temperature field with a minimum temperature differential. In order to evaluate the heating of the charge, a mathematical model was developed to calculate the heat fluxes of the moving charge (slabs) along the length of the pusher furnace. The obtained results are based on experimental measurements on a test slab on which thermocouples were installed, and data acquisition was provided by a TERMOPHIL-stor data logger placed directly on the slab. Most of the developed models focus only on energy balance assessment or external heat exchange. The results from the model created showed reserves for changing the thermal regimes in the different zones. The developed model was used to compare the heating evaluation of the slabs after the rebuilding of the pusher furnace. Changing the furnace parameters and altering the heat fluxes or heating regimes in each zone contributed to more uniform heating and a reduction in specific heat consumption. The developed mathematical heat flux model is applicable as part of the powerful tools for monitoring and controlling the thermal condition of the charge inside the furnace as well as evaluating the operating condition of such furnaces.
{"title":"Modeling of Heat Flux in a Heating Furnace","authors":"A. Varga, J. Kizek, M. Rimár, M. Fedak, Ivan Čorný, L. Lukáč","doi":"10.3390/computation11070144","DOIUrl":"https://doi.org/10.3390/computation11070144","url":null,"abstract":"Modern heating furnaces use combined modes of heating the charge. At high heating temperatures, more radiation heating is used; at lower temperatures, more convection heating is used. In large heating furnaces, such as pusher furnaces, it is necessary to monitor the heating of the material zonally. Zonal heating allows the appropriate thermal regime to be set in each zone, according to the desired parameters for heating the charge. The problem for each heating furnace is to set the optimum thermal regime so that at the end of the heating, after the material has been cross-sectioned, there is a uniform temperature field with a minimum temperature differential. In order to evaluate the heating of the charge, a mathematical model was developed to calculate the heat fluxes of the moving charge (slabs) along the length of the pusher furnace. The obtained results are based on experimental measurements on a test slab on which thermocouples were installed, and data acquisition was provided by a TERMOPHIL-stor data logger placed directly on the slab. Most of the developed models focus only on energy balance assessment or external heat exchange. The results from the model created showed reserves for changing the thermal regimes in the different zones. The developed model was used to compare the heating evaluation of the slabs after the rebuilding of the pusher furnace. Changing the furnace parameters and altering the heat fluxes or heating regimes in each zone contributed to more uniform heating and a reduction in specific heat consumption. The developed mathematical heat flux model is applicable as part of the powerful tools for monitoring and controlling the thermal condition of the charge inside the furnace as well as evaluating the operating condition of such furnaces.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"89 1","pages":"144"},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84444066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-17DOI: 10.3390/computers12070141
S. Mekruksavanich, A. Jitpattanakul
With the rise of artificial intelligence, sensor-based human activity recognition (S-HAR) is increasingly being employed in healthcare monitoring for the elderly, fitness tracking, and patient rehabilitation using smart devices. Inertial sensors have been commonly used for S-HAR, but wearable devices have been demanding more comfort and flexibility in recent years. Consequently, there has been an effort to incorporate stretch sensors into S-HAR with the advancement of flexible electronics technology. This paper presents a deep learning network model, utilizing aggregation residual transformation, that can efficiently extract spatial–temporal features and perform activity classification. The efficacy of the suggested model was assessed using the w-HAR dataset, which included both inertial and stretch sensor data. This dataset was used to train and test five fundamental deep learning models (CNN, LSTM, BiLSTM, GRU, and BiGRU), along with the proposed model. The primary objective of the w-HAR investigations was to determine the feasibility of utilizing stretch sensors for recognizing human actions. Additionally, this study aimed to explore the effectiveness of combining data from both inertial and stretch sensors in S-HAR. The results clearly demonstrate the effectiveness of the proposed approach in enhancing HAR using inertial and stretch sensors. The deep learning model we presented achieved an impressive accuracy of 97.68%. Notably, our method outperformed existing approaches and demonstrated excellent generalization capabilities.
{"title":"A Deep Learning Network with Aggregation Residual Transformation for Human Activity Recognition Using Inertial and Stretch Sensors","authors":"S. Mekruksavanich, A. Jitpattanakul","doi":"10.3390/computers12070141","DOIUrl":"https://doi.org/10.3390/computers12070141","url":null,"abstract":"With the rise of artificial intelligence, sensor-based human activity recognition (S-HAR) is increasingly being employed in healthcare monitoring for the elderly, fitness tracking, and patient rehabilitation using smart devices. Inertial sensors have been commonly used for S-HAR, but wearable devices have been demanding more comfort and flexibility in recent years. Consequently, there has been an effort to incorporate stretch sensors into S-HAR with the advancement of flexible electronics technology. This paper presents a deep learning network model, utilizing aggregation residual transformation, that can efficiently extract spatial–temporal features and perform activity classification. The efficacy of the suggested model was assessed using the w-HAR dataset, which included both inertial and stretch sensor data. This dataset was used to train and test five fundamental deep learning models (CNN, LSTM, BiLSTM, GRU, and BiGRU), along with the proposed model. The primary objective of the w-HAR investigations was to determine the feasibility of utilizing stretch sensors for recognizing human actions. Additionally, this study aimed to explore the effectiveness of combining data from both inertial and stretch sensors in S-HAR. The results clearly demonstrate the effectiveness of the proposed approach in enhancing HAR using inertial and stretch sensors. The deep learning model we presented achieved an impressive accuracy of 97.68%. Notably, our method outperformed existing approaches and demonstrated excellent generalization capabilities.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"107 1","pages":"141"},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74995306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-16DOI: 10.3390/computation11070142
J. Hanna, Ahmed Elamin
Healing patterns are a critical issue that influence the fracture mechanism of self-healing concrete (SHC) structures. Partial healing cracks could happen even during the normal operating conditions of the structure, such as sustainable applied loads or quick crack spreading. In this paper, the effects of two main factors that control healing patterns, the healed crack length and the interfacial cohesive properties between the solidified healing agent and the cracked surfaces on the load carrying capacity and the fracture mechanism of healed SHC samples, are computationally investigated. The proposed computational modeling framework is based on the extended finite element method (XFEM) and cohesive surface (CS) technique to model the fracture and debonding mechanism of 2D healed SHC samples under a uniaxial tensile test. The interfacial cohesive properties and the healed crack length have significant effects on the load carrying capacity, the crack initiation, the propagation, and the debonding potential of the solidified healing agent from the concrete matrix. The higher their values, the higher the load carrying capacity. The solidified healing agent will be debonded from the concrete matrix when the interfacial cohesive properties are less than 25% of the fracture properties of the solidified healing agent.
{"title":"Computational Fracture Modeling for Effects of Healed Crack Length and Interfacial Cohesive Properties in Self-Healing Concrete Using XFEM and Cohesive Surface Technique","authors":"J. Hanna, Ahmed Elamin","doi":"10.3390/computation11070142","DOIUrl":"https://doi.org/10.3390/computation11070142","url":null,"abstract":"Healing patterns are a critical issue that influence the fracture mechanism of self-healing concrete (SHC) structures. Partial healing cracks could happen even during the normal operating conditions of the structure, such as sustainable applied loads or quick crack spreading. In this paper, the effects of two main factors that control healing patterns, the healed crack length and the interfacial cohesive properties between the solidified healing agent and the cracked surfaces on the load carrying capacity and the fracture mechanism of healed SHC samples, are computationally investigated. The proposed computational modeling framework is based on the extended finite element method (XFEM) and cohesive surface (CS) technique to model the fracture and debonding mechanism of 2D healed SHC samples under a uniaxial tensile test. The interfacial cohesive properties and the healed crack length have significant effects on the load carrying capacity, the crack initiation, the propagation, and the debonding potential of the solidified healing agent from the concrete matrix. The higher their values, the higher the load carrying capacity. The solidified healing agent will be debonded from the concrete matrix when the interfacial cohesive properties are less than 25% of the fracture properties of the solidified healing agent.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"28 1","pages":"142"},"PeriodicalIF":0.0,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73140704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-15DOI: 10.3390/computers12070140
A. Mikroyannidis, Maria A. Perifanou, A. Economides
In this paper, we present a sustainable approach for addressing the language skills gap among EU citizens, which significantly hinders their mobility across the EU and their participation in education, in training, as well as in youth programmes. Our approach is based on the sustainable design of the OpenLang Network platform, which provides an open and collaborative online learning environment for language learners and teachers across Europe, and addresses the limitations of existing computer-assisted language learning approaches. The OpenLang Network platform is bringing together educators and Erasmus+ mobility participants to improve their language skills and cultural knowledge. To this end, the OpenLang Network platform offers a collection of multilingual Open Educational Resources and language learning services. The paper presents the results from the user evaluation of the platform, which has been conducted with members of its community of language teachers and learners. A mixed methods approach has been adopted in order to collect and analyse both qualitative and quantitative data from users about the sustainable design of the OpenLang Network platform, as well as to measure the user satisfaction levels of the platform’s language learning services. According to the user evaluation results, the platform offers a sustainable online environment and a positive user experience for language learning. The user evaluation has also helped us identify a set of best practices and challenges associated with the long-term sustainability of an online language learning community.
{"title":"Developing a Sustainable Online Platform for Language Learning across Europe","authors":"A. Mikroyannidis, Maria A. Perifanou, A. Economides","doi":"10.3390/computers12070140","DOIUrl":"https://doi.org/10.3390/computers12070140","url":null,"abstract":"In this paper, we present a sustainable approach for addressing the language skills gap among EU citizens, which significantly hinders their mobility across the EU and their participation in education, in training, as well as in youth programmes. Our approach is based on the sustainable design of the OpenLang Network platform, which provides an open and collaborative online learning environment for language learners and teachers across Europe, and addresses the limitations of existing computer-assisted language learning approaches. The OpenLang Network platform is bringing together educators and Erasmus+ mobility participants to improve their language skills and cultural knowledge. To this end, the OpenLang Network platform offers a collection of multilingual Open Educational Resources and language learning services. The paper presents the results from the user evaluation of the platform, which has been conducted with members of its community of language teachers and learners. A mixed methods approach has been adopted in order to collect and analyse both qualitative and quantitative data from users about the sustainable design of the OpenLang Network platform, as well as to measure the user satisfaction levels of the platform’s language learning services. According to the user evaluation results, the platform offers a sustainable online environment and a positive user experience for language learning. The user evaluation has also helped us identify a set of best practices and challenges associated with the long-term sustainability of an online language learning community.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"16 1","pages":"140"},"PeriodicalIF":0.0,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82231009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-14DOI: 10.3390/computation11070141
Ahmad Alqatawna, Bilal Abu-Salih, Nadim Obeid, Muder Almiani
Time-series analysis is a widely used method for studying past data to make future predictions. This paper focuses on utilizing time-series analysis techniques to forecast the resource needs of logistics delivery companies, enabling them to meet their objectives and ensure sustained growth. The study aims to build a model that optimizes the prediction of order volume during specific time periods and determines the staffing requirements for the company. The prediction of order volume in logistics companies involves analyzing trend and seasonality components in the data. Autoregressive (AR), Autoregressive Integrated Moving Average (ARIMA), and Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) are well-established and effective in capturing these patterns, providing interpretable results. Deep-learning algorithms require more data for training, which may be limited in certain logistics scenarios. In such cases, traditional models like SARIMAX, ARIMA, and AR can still deliver reliable predictions with fewer data points. Deep-learning models like LSTM can capture complex patterns but lack interpretability, which is crucial in the logistics industry. Balancing performance and practicality, our study combined SARIMAX, ARIMA, AR, and Long Short-Term Memory (LSTM) models to provide a comprehensive analysis and insights into predicting order volume in logistics companies. A real dataset from an international shipping company, consisting of the number of orders during specific time periods, was used to generate a comprehensive time-series dataset. Additionally, new features such as holidays, off days, and sales seasons were incorporated into the dataset to assess their impact on order forecasting and workforce demands. The paper compares the performance of the four different time-series analysis methods in predicting order trends for three countries: United Arab Emirates (UAE), Kingdom of Saudi Arabia (KSA), and Kuwait (KWT), as well as across all countries. By analyzing the data and applying the SARIMAX, ARIMA, LSTM, and AR models to predict future order volume and trends, it was found that the SARIMAX model outperformed the other methods. The SARIMAX model demonstrated superior accuracy in predicting order volumes and trends in the UAE (MAPE: 0.097, RMSE: 0.134), KSA (MAPE: 0.158, RMSE: 0.199), and KWT (MAPE: 0.137, RMSE: 0.215).
{"title":"Incorporating Time-Series Forecasting Techniques to Predict Logistics Companies' Staffing Needs and Order Volume","authors":"Ahmad Alqatawna, Bilal Abu-Salih, Nadim Obeid, Muder Almiani","doi":"10.3390/computation11070141","DOIUrl":"https://doi.org/10.3390/computation11070141","url":null,"abstract":"Time-series analysis is a widely used method for studying past data to make future predictions. This paper focuses on utilizing time-series analysis techniques to forecast the resource needs of logistics delivery companies, enabling them to meet their objectives and ensure sustained growth. The study aims to build a model that optimizes the prediction of order volume during specific time periods and determines the staffing requirements for the company. The prediction of order volume in logistics companies involves analyzing trend and seasonality components in the data. Autoregressive (AR), Autoregressive Integrated Moving Average (ARIMA), and Seasonal Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX) are well-established and effective in capturing these patterns, providing interpretable results. Deep-learning algorithms require more data for training, which may be limited in certain logistics scenarios. In such cases, traditional models like SARIMAX, ARIMA, and AR can still deliver reliable predictions with fewer data points. Deep-learning models like LSTM can capture complex patterns but lack interpretability, which is crucial in the logistics industry. Balancing performance and practicality, our study combined SARIMAX, ARIMA, AR, and Long Short-Term Memory (LSTM) models to provide a comprehensive analysis and insights into predicting order volume in logistics companies. A real dataset from an international shipping company, consisting of the number of orders during specific time periods, was used to generate a comprehensive time-series dataset. Additionally, new features such as holidays, off days, and sales seasons were incorporated into the dataset to assess their impact on order forecasting and workforce demands. The paper compares the performance of the four different time-series analysis methods in predicting order trends for three countries: United Arab Emirates (UAE), Kingdom of Saudi Arabia (KSA), and Kuwait (KWT), as well as across all countries. By analyzing the data and applying the SARIMAX, ARIMA, LSTM, and AR models to predict future order volume and trends, it was found that the SARIMAX model outperformed the other methods. The SARIMAX model demonstrated superior accuracy in predicting order volumes and trends in the UAE (MAPE: 0.097, RMSE: 0.134), KSA (MAPE: 0.158, RMSE: 0.199), and KWT (MAPE: 0.137, RMSE: 0.215).","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"1 1","pages":"141"},"PeriodicalIF":0.0,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89648620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-11DOI: 10.3390/computers12070139
F. S. Alqurashi, Mohammad A. Al-Hashimi
Power and energy efficiency are among the most crucial requirements in high-performance and other computing platforms. In this work, extensive experimental methods and procedures were used to assess the power and energy efficiency of fundamental hardware building blocks inside a typical high-performance CPU, focusing on the dynamic branch predictor (DBP). The investigation relied on the Running Average Power Limit (RAPL) interface from Intel, a software tool for credibly reporting the power and energy based on instrumentation inside the CPU. We used well-known microbenchmarks under various run conditions to explore potential pitfalls and to develop precautions to raise the precision of the measurements obtained from RAPL for more reliable power estimation. The authors discuss the factors that affect the measurements and share the difficulties encountered and the lessons learned.
{"title":"An Experimental Approach to Estimation of the Energy Cost of Dynamic Branch Prediction in an Intel High-Performance Processor","authors":"F. S. Alqurashi, Mohammad A. Al-Hashimi","doi":"10.3390/computers12070139","DOIUrl":"https://doi.org/10.3390/computers12070139","url":null,"abstract":"Power and energy efficiency are among the most crucial requirements in high-performance and other computing platforms. In this work, extensive experimental methods and procedures were used to assess the power and energy efficiency of fundamental hardware building blocks inside a typical high-performance CPU, focusing on the dynamic branch predictor (DBP). The investigation relied on the Running Average Power Limit (RAPL) interface from Intel, a software tool for credibly reporting the power and energy based on instrumentation inside the CPU. We used well-known microbenchmarks under various run conditions to explore potential pitfalls and to develop precautions to raise the precision of the measurements obtained from RAPL for more reliable power estimation. The authors discuss the factors that affect the measurements and share the difficulties encountered and the lessons learned.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"126 1 1","pages":"139"},"PeriodicalIF":0.0,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73012193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-11DOI: 10.3390/computation11070140
A. M. Cañadas, Odette M. Mendez, Juan David Camacho Vega
Since its introduction, researching malware has had two main goals. On the one hand, malware writers have been focused on developing software that can cause more damage to a targeted host for as long as possible. On the other hand, malware analysts have as one of their main purposes the development of tools such as malware detection systems (MDS) or network intrusion detection systems (NIDS) to prevent and detect possible threats to the informatic systems. Obfuscation techniques, such as the encryption of the virus’s code lines, have been developed to avoid their detection. In contrast, shallow machine learning and deep learning algorithms have recently been introduced to detect them. This paper is devoted to some theoretical implications derived from these investigations. We prove that hidden algebraic structures as equipped posets and their categories of representations are behind the research of some infections. Properties of these categories are given to provide a better understanding of different infection techniques.
{"title":"Algebraic Structures Induced by the Insertion and Detection of Malware","authors":"A. M. Cañadas, Odette M. Mendez, Juan David Camacho Vega","doi":"10.3390/computation11070140","DOIUrl":"https://doi.org/10.3390/computation11070140","url":null,"abstract":"Since its introduction, researching malware has had two main goals. On the one hand, malware writers have been focused on developing software that can cause more damage to a targeted host for as long as possible. On the other hand, malware analysts have as one of their main purposes the development of tools such as malware detection systems (MDS) or network intrusion detection systems (NIDS) to prevent and detect possible threats to the informatic systems. Obfuscation techniques, such as the encryption of the virus’s code lines, have been developed to avoid their detection. In contrast, shallow machine learning and deep learning algorithms have recently been introduced to detect them. This paper is devoted to some theoretical implications derived from these investigations. We prove that hidden algebraic structures as equipped posets and their categories of representations are behind the research of some infections. Properties of these categories are given to provide a better understanding of different infection techniques.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"13 1","pages":"140"},"PeriodicalIF":0.0,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80919637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}